Some material adapted from Appendix B of A. Downey’s *Think Python*
http://greenteapress.com/wp/think-python-2e/
What makes a good algorithm?

We have seen examples of good and bad data structures for a task

Ex: list vs set/dictionary for testing set membership

Ex: certain operations on pandas tables are fast

How do we make such judgments?
What makes a good algorithm?

We have seen examples of good and bad data structures for a task

Ex: list vs set/dictionary for testing set membership

Ex: certain operations on pandas tables are fast

How do we make such judgments?

Answer 1: run timing experiments (i.e., profile our code)

But then our answer to “what algorithm/structure is better?” is highly machine- and implementation-dependent.
What makes a good algorithm?

We have seen examples of good and bad data structures for a task.

Ex: list vs set/dictionary for testing set membership

Ex: certain operations on pandas tables are fast

How do we make such judgments?

Answer 2: algorithmic analysis

Provides a theoretical framework for comparing algorithms in terms of **worst-case** runtime and space requirements (i.e., how long they run and how much memory they need).
Measuring time and space usage

We measure an algorithm’s runtime and space usage in terms of input size n, e.g., number of objects in a set, length of a list to be sorted, etc.

Example: Suppose algorithm A takes $100n + 1$ steps of computation to solve a problem of size n while algorithm B takes $n^2 + n + 1$.

<table>
<thead>
<tr>
<th>Input size</th>
<th>Runtime of A</th>
<th>Runtime of B</th>
</tr>
</thead>
<tbody>
<tr>
<td>10</td>
<td>1001</td>
<td>111</td>
</tr>
<tr>
<td>100</td>
<td>10001</td>
<td>10101</td>
</tr>
<tr>
<td>1000</td>
<td>100001</td>
<td>1001001</td>
</tr>
<tr>
<td>10000</td>
<td>1000001</td>
<td>$>10^8$</td>
</tr>
</tbody>
</table>

B looks better than A for smaller inputs, but for n large, A is much faster than B. This is the motivation for **asymptotic analysis**, in which we compare algorithms based on their leading-order runtime terms.
Big-O notation

We form equivalence classes of runtimes according to these leading-order terms e.g., \(10n+1\), \(2n-1\), \(n+1000\), are all \(O(n)\) because leading-order terms are \(n\).

Test your understanding: what order are each of the following?

10\(n^3\)-\(n+1\)
n-100
n-100
n\(^2\)+n+1
1000
Big-O notation

We form equivalence classes of runtimes according to these leading-order terms e.g., $10n+1$, $2n-1$, $n+1000$, are all $O(n)$ because leading-order terms are n.

Test your understanding:

<table>
<thead>
<tr>
<th>Expression</th>
<th>Big-O</th>
</tr>
</thead>
<tbody>
<tr>
<td>$10n^3-n+1$</td>
<td>$O(n^3)$</td>
</tr>
<tr>
<td>$n-100$</td>
<td>$O(n)$</td>
</tr>
<tr>
<td>n^2+n+1</td>
<td>$O(n^2)$</td>
</tr>
<tr>
<td>1000</td>
<td>$O(1)$</td>
</tr>
</tbody>
</table>
Big-O notation

We form equivalence classes of runtimes according to these leading-order terms e.g., $10n+1$, $2n-1$, $n+1000$, are all $O(n)$ because leading-order terms are n

<table>
<thead>
<tr>
<th>Order</th>
<th>Common Name</th>
</tr>
</thead>
<tbody>
<tr>
<td>$O(1)$</td>
<td>constant</td>
</tr>
<tr>
<td>$O(\log n)$</td>
<td>logarithmic</td>
</tr>
<tr>
<td>$O(n)$</td>
<td>linear</td>
</tr>
<tr>
<td>$O(n^2)$</td>
<td>quadratic</td>
</tr>
<tr>
<td>$O(n^3)$</td>
<td>cubic</td>
</tr>
<tr>
<td>$O(n^c)$</td>
<td>polynomial</td>
</tr>
<tr>
<td>$O(c^n)$</td>
<td>exponential</td>
</tr>
</tbody>
</table>

Test your understanding:

<table>
<thead>
<tr>
<th>$10n^3-n+1$</th>
<th>$O(n^3)$</th>
</tr>
</thead>
<tbody>
<tr>
<td>$n-100$</td>
<td>$O(n)$</td>
</tr>
<tr>
<td>n^2+n+1</td>
<td>$O(n^2)$</td>
</tr>
<tr>
<td>1000</td>
<td>$O(1)$</td>
</tr>
</tbody>
</table>

c is any constant (doesn’t depend on n).
Runtimes of basic Python operations

Arithmetic: addition, subtraction, multiplication, division, all constant time*

Indexing: run in constant time, regardless of the size of the sequence
 Note: this is **not** the same as the time to check every entry of a sequence

For-loop and reduce-like operations: linear time in the length of the sequence
 Provided that each operation in the for loop is constant-time.

* technically, this is only approximately true
Runtimes of basic Python operations

Arithmetic: addition, subtraction, multiplication, division, all constant time*

Indexing: run in constant time, regardless of the size of the sequence

 Note: this is **not** the same as the time to check every entry of a sequence

For-loop and reduce-like operations: linear time in the length of the sequence

 Provided that each operation in the for loop is constant-time.

* technically, this is only approximately true
Constant-order work on each element of a list

Experiment: create lists of different lengths, time how long it takes to sum the elements of a list of that length. We expect to see linear dependence.

```python
seqlens = np.arange(1e5, 1e6, 1e4)
runtimes = np.zeros(len(seqlens))
for n in range(len(seqlens)):
    slen = int(seqlens[n])
    seq = np.random.random(size=slen)
    tstart = time.time()
    sum(seq)
    tend = time.time()
    runtimes[n] = tend - tstart
```

`seqlens` stores the different sequence lengths we’re going to use.
Experiment: create lists of different lengths, time how long it takes to sum the elements of a list of that length. We expect to see linear dependence.

```python
seqlen = np.arange(1e5, 1e6, 1e4)
runtimes = np.zeros(len(seqlen))
for n in range(len(seqlen)):
    slen = int(seqlen[n])
    seq = np.random.random(size=slen)
    tstart = time.time()
    sum(seq)
    tend = time.time()
    runtimes[n] = tend - tstart
```
Constant-order work on each element of a list

Experiment: create lists of different lengths, time how long it takes to sum the elements of a list of that length. We expect to see linear dependence.

```python
seqlen = np.arange(1e5, 1e6, 1e4)
runtimes = np.zeros(len(seqlen))
for n in range(len(seqlen)):
    slen = int(seqlen[n])
    seq = np.random.rand(size=slen)
    tstart = time.time()
    sum(seq)
    tend = time.time()
    runtimes[n] = tend - tstart
```
Constant-order work on each element of a list

Experiment: create lists of different lengths, time how long it takes to sum the elements of a list of that length. We expect to see linear dependence.
Constant-order work on each element of a list

Experiment: create lists of different lengths, time how long it takes to sum the elements of a list of that length. We expect to see linear dependence.

Note: there is some variability here because other processes were running on my computer at the same time as the experiment.

```python
seqlens = np.arange(1e5, 1e6, 1e4)
runtimes = np.zeros(len(seqlens))
for n in range(len(seqlens)):
    slen = int(seqlens[n])
    seq = np.random.random(size=slen)
    tstart = time.time()
    sum(seq)
    tend = time.time()
    runtimes[n] = tend - tstart
```
Interesting side-note: `len(t)` is constant time

Experiment: create lists of different lengths, time how long it takes to get the length of the list.

```
seqLens = np.arange(1e5, 1e6, 1e4)
ntrials = 100
runtimes = np.zeros((len(seqLens), ntrials))
for n in range(len(seqLens)):
    slen = int(seqLens[n])
    seq = list(np.random.random(size=slen))
    for m in range(ntrials):
        tstart = time.time()
        len(seq)
        tend = time.time()
        runtimes[n, m] = tend - tstart
```

`len(seq)` takes constant time because in Python, the length is an attribute of a list, which gets updated whenever the list is changed.
Sorting

Problem: given a list, sort the list in ascending order

The best sorting algorithms sort a length-n list time $O(n \log n)$

But let’s first look at some suboptimal sorting algorithms

```python
def argmax(t):
    if len(t)==0: # Handle a weird edge case.
        return (None, float('-inf'))
    (i,m)=(0, t[0])
    for j in range(1, len(t)):
        if t[j] > m:
            (i,m) = (j, t[j])
    return (i, m)

def naive_sort(t):
    n=len(t)
    for k in range(1, len(t)):
        # Find the largest element and its index
        (i,m) = argmax(t[(n-k+1):])
        # Swap the maximum with the last element
        (t[i], t[n-k]) = (t[n-k], m)
    return t
```

This is called **selection sort**. We look for the biggest element, move it to the end of the list, and then repeat on the rest of the list.

[argmax](https://en.wikipedia.org/wiki/Selection_sort) finds the largest element and its index.
Sorting

Problem: given a list, sort it in ascending order

The best sorting algorithms sort a length-n list time \(O(n \log n) \)

But let’s first look at some suboptimal sorting algorithms

```python
def argmax(t):
    if len(t)==0:  # Handle a weird edge case.
        return (None, float('-inf'))
    (i, m) = (0, t[0])
    for j in range(1, len(t)):
        if t[j] > m:
            (i, m) = (j, t[j])
    return (i, m)

def naive_sort(t):
    n = len(t)
    for k in range(1, len(t)):
        # Find the largest element and its index
        (i, m) = argmax(t[(n-k+1):])
        # Swap the maximum with the last element
        (t[i], t[n-k]) = (t[n-k], m)
    return t
```

This is called selection sort. We look for the biggest element, move it to the end of the list, and then repeat on the rest of the list.

In the \(k \)-th iteration of the for-loop, we look at \(n-k \) elements, so the total work is \(1+2+\ldots+n = O(n^2) \).

Sorting

Problem: given a list, sort it in ascending order

The best sorting algorithms sort a length-n list time $O(n \log n)$

But let’s first look at some suboptimal sorting algorithms

```python
def argmax(t):
    if len(t) == 0:
        # Handle a weird edge case.
        return (None, float('-inf'))
    (i, m) = (0, t[0])
    for j in range(1, len(t)):
        if t[j] > m:
            (i, m) = (j, t[j])
    return (i, m)

def naive_sort(t):
    n = len(t)
    for k in range(1, len(t)):
        # Find the largest element and its index
        (i, m) = argmax(t[:n-k+1])
        # Swap the maximum with the last element
        (t[i], t[n-k]) = (t[n-k], m)
    return t
```

And indeed, runtime grows quadratically with input size.

Sorting

Problem: given a list, sort it in ascending order

The best sorting algorithms sort a length-n list time $O(n \log n)$

```python
def quicksort(t):
    if len(t) <= 1:
        return t
    (less, mid, more) = (list(), list(), list())
    pivot = t[0]
    mid.append(t[0])
    for i in range(1, len(t)):
        if t[i] == pivot:
            mid.append(t[i])
        elif t[i] < pivot:
            less.append(t[i])
        else:  # t[i] > pivot
            more.append(t[i])
    return quicksort(less) + mid + quicksort(more)
```

This is called **quicksort**. We pick a “pivot” element from the list, split the list into elements less than, equal to, and greater than the pivot, and recurse on the less-than and greater-than lists. This pattern should look familiar from your binary search problem in HW2.

This recursion is the important part. *less* and *more* contain the elements less than and greater than the pivot, but they may not yet be sorted.
Sorting

Problem: given a list, sort it in ascending order

The best sorting algorithms sort a length-n list time $O(n \log n)$

```python
def quicksort(t):
    if len(t) <= 1:
        return t
    less, mid, more = (list(), list(), list())
    pivot = t[0]
    mid.append(t[0])
    for i in range(1, len(t)):
        if t[i] == pivot:
            mid.append(t[i])
        elif t[i] < pivot:
            less.append(t[i])
        else:  # t[i] > pivot
            more.append(t[i])
    return quicksort(less) + mid + quicksort(more)
```
Sorting

Problem: given a list, sort it in ascending order

The best sorting algorithms sort a length-n list time $O(n \log n)$

```python
def quicksort(t):
    if len(t) <= 1:
        return t
    (less, mid, more) = (list(), list(), list())
    pivot = t[0]
    mid.append(t[0])
    for i in range(1, len(t)):
        if t[i] == pivot:
            mid.append(t[i])
        elif t[i] < pivot:
            less.append(t[i])
        else:  # t[i] > pivot
            more.append(t[i])
    return quicksort(less) + mid + quicksort(more)
```

Proving that quicksort takes $O(n \log n)$ runtime is beyond the scope of this course, but it should be intuitively clear: the runtime $T(n)$ as a function of n should obey $T(n) = 2 \times T(n/2) + C$ for some constant C, and $T(n) = n \log n$ is such a function.
Aside: the house always wins, Python edition

If there is a Python implementation of the thing you are trying to do, use it.
(and the same goes all the more so for numpy/scipy!)
You should not expect to out-wit the Python developers!

```python
seqlens = np.arange(1e1, 5*1e3, 1e2)
ntrials=10
myruntimes = np.zeros((len(seqlens), ntrials))
pythonruntimes = np.zeros((len(seqlens), ntrials))
for n in range(len(seqlens)):
    slen = int(seqlens[n])
    seq = list(np.random.random(size=slen))
    for m in range(ntrials):
        tstart = time.time()
        quicksort(seq)
        tend = time.time()
        myruntimes[n, m] = tend-tstart
        tstart = time.time()
        sorted(seq)
        tend = time.time()
        pythonruntimes[n, m] = tend-tstart
```

https://en.wikipedia.org/wiki/Timsort
Profiling Code

Say you’ve written some code, but it’s fairly slow

How should you spend your time in optimizing it?

Most software engineers would agree that you should find the slowest part of your program and concentrate on making that part faster.

A profiler is a program that runs other programs and summarizes how long each part took to run.
Sometimes, all we want to do is compare the runtimes of two different solutions to a problem. For this, the `time` module is often enough. But note that timing in this way doesn’t tell us where in the process of checking set membership we are taking all our time. Other profiling tools will give us more granular summaries of runtime information.
profile and cProfile

Two related modules that both support profiling of code.

- **cProfile** is implemented in C, and thus avoids some of the overhead of Python.
- **profile** is basically the same as **cProfile**, but more is implemented in Python.

 More features, at the cost of (slightly) less accurate timing.

Unless you're doing some serious software engineering, **cProfile** is probably right for you.

```python
1 import cProfile
2 cProfile.run('8675309 in list_of_numbers')

3 function calls in 0.026 seconds

Ordered by: standard name

<table>
<thead>
<tr>
<th>ncalls</th>
<th>tottime</th>
<th>percall</th>
<th>cumtime</th>
<th>percall</th>
<th>filename:lineno(function)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0.026</td>
<td>0.026</td>
<td>0.026</td>
<td>0.026</td>
<td>&lt;string&gt;:1(&lt;module&gt;)</td>
</tr>
<tr>
<td>1</td>
<td>0.000</td>
<td>0.000</td>
<td>0.026</td>
<td>0.026</td>
<td>{built-in method builtins.exec}</td>
</tr>
<tr>
<td>1</td>
<td>0.000</td>
<td>0.000</td>
<td>0.000</td>
<td>0.000</td>
<td>{method 'disable' of '_lsprof.Profiler' objects}</td>
</tr>
</tbody>
</table>
```
Profiling your code is simple: pass the command that you want to profile, as a string, to the profiler's run method.

```python
import cProfile
cProfile.run('8675309 in list_of_numbers')
```

3 function calls in 0.026 seconds

Ordered by: standard name

<table>
<thead>
<tr>
<th>ncalls</th>
<th>tottime</th>
<th>percalls</th>
<th>cumtime</th>
<th>percall</th>
<th>filename:lineno(function)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0.026</td>
<td>0.026</td>
<td>0.026</td>
<td>0.026</td>
<td><string>:1(<module>)</td>
</tr>
<tr>
<td>1</td>
<td>0.000</td>
<td>0.000</td>
<td>0.026</td>
<td>0.026</td>
<td>{built-in method builtins.exec}</td>
</tr>
<tr>
<td>1</td>
<td>0.000</td>
<td>0.000</td>
<td>0.000</td>
<td>0.000</td>
<td>{method 'disable' of '_lsprof.Profiler' objects}</td>
</tr>
</tbody>
</table>

cProfile uses the exec function to run a string as Python code. https://docs.python.org/3.5/library/functions.html#exec
profile and cProfile

```
import cProfile

cProfile.run('8675309 in list_of_numbers')

3 function calls in 0.026 seconds

Ordered by: standard name

<table>
<thead>
<tr>
<th>ncalls</th>
<th>tottime</th>
<th>percall</th>
<th>cumtime</th>
<th>percall</th>
<th>filename:lineno(function)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0.026</td>
<td>0.026</td>
<td>0.026</td>
<td>0.026</td>
<td>&lt;string&gt;:l(&lt;module&gt;)</td>
</tr>
<tr>
<td>1</td>
<td>0.000</td>
<td>0.000</td>
<td>0.026</td>
<td>0.026</td>
<td>{built-in method builtins.exec}</td>
</tr>
<tr>
<td>1</td>
<td>0.000</td>
<td>0.000</td>
<td>0.000</td>
<td>0.000</td>
<td>{method 'disable' of '_lsprof.Profiler' objects}</td>
</tr>
</tbody>
</table>
```

Number of times each function was called
profile and cProfile

```
import cProfile

cProfile.run('8675309 in list_of_numbers')

3 function calls in 0.026 seconds

Ordered by: standard name

ncalls   tottime   percall   cumtime   percall  filename:lineno(function)
1        0.026    0.026     0.026     0.026  <string>:1(<module>)
1        0.000    0.000     0.026     0.026  {built-in method builtins.exec}
1        0.000    0.000     0.000     0.000  {method 'disable' of '_lsprof.Profiler' objects}
```

Total time spent inside this function (but not in subcalls of the function).
profile and cProfile

```python
import cProfile
cProfile.run('8675309 in list_of_numbers')
```

3 function calls in 0.026 seconds

Ordered by: standard name

<table>
<thead>
<tr>
<th>ncalls</th>
<th>tottime</th>
<th>percall</th>
<th>cumtime</th>
<th>percall</th>
<th>filename:lineno(function)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0.026</td>
<td>0.026</td>
<td>0.026</td>
<td>0.026</td>
<td><string>:1(<module>)</td>
</tr>
<tr>
<td>1</td>
<td>0.000</td>
<td>0.000</td>
<td>0.026</td>
<td>0.026</td>
<td>{built-in method builtins.exec}</td>
</tr>
<tr>
<td>1</td>
<td>0.000</td>
<td>0.000</td>
<td>0.000</td>
<td>0.000</td>
<td>{method 'disable' of '_lsprof.Profiler' objects}</td>
</tr>
</tbody>
</table>

Total time per call (averaged over all calls to the function).
profile and cProfile

```python
import cProfile
cProfile.run('8675309 in list_of_numbers')
```

3 function calls in 0.026 seconds

Ordered by: standard name

<table>
<thead>
<tr>
<th>ncalls</th>
<th>tottime</th>
<th>percall</th>
<th>cumtime</th>
<th>percall</th>
<th>filename:lineno(function)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0.026</td>
<td>0.026</td>
<td>0.026</td>
<td></td>
<td><string>:1(<module>)</td>
</tr>
<tr>
<td>1</td>
<td>0.000</td>
<td>0.000</td>
<td>0.026</td>
<td></td>
<td>{built-in method builtins.exec}</td>
</tr>
<tr>
<td>1</td>
<td>0.000</td>
<td>0.000</td>
<td>0.000</td>
<td></td>
<td>{method 'disable' of '_lsprof.Profiler' objects}</td>
</tr>
</tbody>
</table>

Total time spent in the function, **including** function subcalls.
profile and cProfile

```
import cProfile
cProfile.run('8675309 in list_of_numbers')
```

3 function calls in 0.026 seconds

Ordered by: standard name

<table>
<thead>
<tr>
<th>ncalls</th>
<th>tottime</th>
<th>percall</th>
<th>cumtime</th>
<th>percall</th>
<th>filename:lineno(function)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0.026</td>
<td>0.026</td>
<td>0.026</td>
<td>0.026</td>
<td>string>:1(<module>)</td>
</tr>
<tr>
<td>1</td>
<td>0.000</td>
<td>0.000</td>
<td>0.026</td>
<td>0.026</td>
<td>built-in method builtins.exec</td>
</tr>
<tr>
<td>1</td>
<td>0.000</td>
<td>0.000</td>
<td>0.000</td>
<td>0.000</td>
<td>method 'disable' of '_lsprof.Profiler' objects</td>
</tr>
</tbody>
</table>

Cumulative time spent in the function, including function subcalls.
profile and cProfile

```python
import cProfile

import cProfile

cProfile.run('8675309 in list_of_numbers')

3 function calls in 0.026 seconds

Ordered by: standard name

<table>
<thead>
<tr>
<th>ncalls</th>
<th>tottime</th>
<th>percall</th>
<th>cumtime</th>
<th>percall</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0.026</td>
<td>0.026</td>
<td>0.026</td>
<td>0.026</td>
</tr>
<tr>
<td>1</td>
<td>0.000</td>
<td>0.000</td>
<td>0.026</td>
<td>0.026</td>
</tr>
<tr>
<td>1</td>
<td>0.000</td>
<td>0.000</td>
<td>0.000</td>
<td>0.000</td>
</tr>
</tbody>
</table>

filename:lineno(function)
<string>:1(<module>)
{built-in method builtins.exec}
{method 'disable' of '_lsprof.Profiler' objects}
```

Names of the functions, with their files and line numbers.
profile and cProfile

Recall that this is slow….

...while this is fast.

But why is one faster than the other, and where does the slow one spend all its time?…

```python
def naive_fibo(n):
    if n < 0:
        raise ValueError('Negative Fibonacci number?')
    if n==0:
        return 0
    elif n==1:
        return 1
    else:
        return naive_fibo(n-1) + naive_fibo(n-2)

known = {0: 0, 1: 1}
def fibo(n):
    if n in known:
        return known[n]
    else:
        f = fibo(n-1) + fibo(n-2)
        known[n] = f
        return f
```
```python
import fibonacci

cProfile.run('fibonacci.naive_fibo(30)')

2692540 function calls (4 primitive calls) in 2.583 seconds

Ordered by: standard name

<table>
<thead>
<tr>
<th>ncalls</th>
<th>tottime</th>
<th>percall</th>
<th>cumtime</th>
<th>percall</th>
<th>filename:lineno(function)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0.000</td>
<td>0.000</td>
<td>2.583</td>
<td>2.583</td>
<td>&lt;string&gt;:1(&lt;module&gt;)</td>
</tr>
<tr>
<td>2692537</td>
<td>2.583</td>
<td>0.000</td>
<td>2.583</td>
<td>2.583</td>
<td>fibonacci.py:1(naive_fibo)</td>
</tr>
<tr>
<td>1</td>
<td>0.000</td>
<td>0.000</td>
<td>2.583</td>
<td>2.583</td>
<td>{built-in method builtins.exec}</td>
</tr>
<tr>
<td>1</td>
<td>0.000</td>
<td>0.000</td>
<td>0.000</td>
<td>0.000</td>
<td>{method 'disable' of '_lsprof.Profiler' objects}</td>
</tr>
</tbody>
</table>

cProfile.run('fibonacci.fibo(30)')

62 function calls (4 primitive calls) in 0.000 seconds

Ordered by: standard name

<table>
<thead>
<tr>
<th>ncalls</th>
<th>tottime</th>
<th>percall</th>
<th>cumtime</th>
<th>percall</th>
<th>filename:lineno(function)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0.000</td>
<td>0.000</td>
<td>0.000</td>
<td>0.000</td>
<td>&lt;string&gt;:1(&lt;module&gt;)</td>
</tr>
<tr>
<td>59/1</td>
<td>0.000</td>
<td>0.000</td>
<td>0.000</td>
<td>0.000</td>
<td>fibonacci.py:12(fibo)</td>
</tr>
<tr>
<td>1</td>
<td>0.000</td>
<td>0.000</td>
<td>0.000</td>
<td>0.000</td>
<td>{built-in method builtins.exec}</td>
</tr>
<tr>
<td>1</td>
<td>0.000</td>
<td>0.000</td>
<td>0.000</td>
<td>0.000</td>
<td>{method 'disable' of '_lsprof.Profiler' objects}</td>
</tr>
</tbody>
</table>
```
```python
import fibonacci

cProfile.run('fibonacci.naive_fibo(30)')

2692540 function calls (4 primitive calls) in 2.583 seconds

Ordered by: standard name

<table>
<thead>
<tr>
<th>ncalls</th>
<th>tottime</th>
<th>percall</th>
<th>cumtime</th>
<th>percall</th>
<th>filename:lineno(function)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0.000</td>
<td>0.000</td>
<td>2.583</td>
<td>2.583</td>
<td>&lt;string&gt;:1(&lt;module&gt;)</td>
</tr>
<tr>
<td>2692537</td>
<td>2.583</td>
<td>0.000</td>
<td>2.583</td>
<td>2.583</td>
<td>fibonacci.py:1(naive_fibo)</td>
</tr>
<tr>
<td>1</td>
<td>0.000</td>
<td>0.000</td>
<td>0.000</td>
<td>0.000</td>
<td>{built-in method builtins.exec}</td>
</tr>
</tbody>
</table>

```

naive_fibo(30) results in >2.5M (recursive) calls!

```python

cProfile.run('fibonacci.fibo(30)')

62 function calls (4 primitive calls) in 0.000 seconds

Ordered by: standard name

<table>
<thead>
<tr>
<th>ncalls</th>
<th>tottime</th>
<th>percall</th>
<th>cumtime</th>
<th>percall</th>
<th>filename:lineno(function)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0.000</td>
<td>0.000</td>
<td>0.000</td>
<td>0.000</td>
<td>&lt;string&gt;:1(&lt;module&gt;)</td>
</tr>
<tr>
<td>59/1</td>
<td>0.000</td>
<td>0.000</td>
<td>0.000</td>
<td>0.000</td>
<td>fibonacci.py:12(fibo)</td>
</tr>
<tr>
<td>1</td>
<td>0.000</td>
<td>0.000</td>
<td>0.000</td>
<td>0.000</td>
<td>{built-in method builtins.exec}</td>
</tr>
</tbody>
</table>
```

Note: the total time per call is negligible, but the cumulative time is not.
This example code uses numpy and sklearn, the latter of which you don’t know about, yet. For now, it’s enough to know that: `generate_data` generates data from a simple linear model and saves it to a pair of files; `load_data` loads data from those files; and `olsmodel.fit(x, y)` fits the model `olsmodel` to the data `x, y`.

This function is the important part. It generates data, writes it to a file, reads it back in and fits a model. Let’s see where Python spends most of its time in this function.
Reminder of what our experiment does

I cropped a bunch of output from the `cProfile` report.
Reminder of what our experiment does

Important point: vast majority of the execution time is spent on I/O, vanishingly little on actual computation.
How do I know if my code works?

Once we’ve written a program, how do we verify that it works as intended? Problems often have edge cases that we may not think of ahead of time. Easy to make mistakes in code.

Until now, you probably have done something like:
1. Write a function to do something
2. Try running the function on a bunch of different inputs
3. Search for problems with print statements
How do I know if my code works?

Once we’ve written a program, how do we verify that it works as intended?
Problems often have edge cases that we may not think of
Easy to make mistakes in code

Until now, you probably have done something like:
1. Write a function to do something
2. Try running the function on a bunch of different inputs
3. Search for problems with print statements

This works well enough for small projects, but it doesn’t scale well. Better is to write a test suite for your program.
How do I know if my code works?

How can we (more) systematically find errors like this one?

def is_prime(x):
 if n <= 1:
 return False
 elif n==2:
 return True
 else:
 ulim = math.ceil(math.sqrt(x))
 for k in range(2,ulim):
 if n%k==0:
 return False
 return True
Python unittest module

Supports nicely organized test suites for your program

Note: there are plenty of other testing suites out there

```python
def is_prime(x):
    if n <= 1:
        return False
    elif n==2:
        return True
    else:
        ulim = math.ceil(math.sqrt(x))
        for k in range(2,ulim):
            if n%k==0:
                return False
        return True
```

```python
class PrimeTest(unittest.TestCase):
    def test_base(self):
        self.assertFalse(is_prime(-1))
        self.assertFalse(is_prime(0))
        self.assertFalse(is_prime(1))
        self.assertTrue(is_prime(2))
        self.assertTrue(is_prime(3))

    def test_sieve(self):
        # Composite numbers are not prime
        for q in range(2,100):
            for b in range(2,100):
                self.assertFalse(is_prime(q*b))
```
Python `unittest` module

Supports nicely organized test suites for your program

Note: there are plenty of other testing suites out there

```python
def is_prime(x):
    if n <= 1:
        return False
    elif n==2:
        return True
    else:
        ulim = math.ceil(math.sqrt(x))
        for k in range(2,ulim):
            if n%k==0:
                return False
        return True
```

```python
class PrimeTest(unittest.TestCase):
    def test_base(self):
        self.assertFalse(is_prime(-1))
        self.assertFalse(is_prime(0))
        self.assertFalse(is_prime(1))
        self.assertTrue(is_prime(2))
        self.assertTrue(is_prime(3))

    def test_seive(self):
        # Composite numbers are not prime
        for q in range(2,100):
            for b in range(2,100):
                self.assertFalse(is_prime(q*b))
```

Note: `unittest` is most naturally used from the command line. Some examples will seem a bit clumsy because we are running them in Python instead.

`unittest` module:
https://docs.python.org/3/library/unittest.html
Python `unittest` module

Supports nicely organized test suites for your program

Note: there are plenty of other testing suites out there

Tests are encapsulated in a class that extends `unittest.TestCase`.

Methods prefaced by `test_` will run automatically once we run the test suite.

Note: a collection of tests is typically called a *test suite*. `unittest` uses this term to refer to a collection of `TestCase` objects (or a collection of objects that inherit from `TestCase`).
Python `unittest` module

```python
class PrimeTest(unittest.TestCase):
    def test_base(self):
        self.assertFalse(is_prime(-1))
        self.assertFalse(is_prime(0))
        self.assertFalse(is_prime(1))
        self.assertTrue(is_prime(2))
        self.assertTrue(is_prime(3))
    def test_sieve(self):
        # Composite numbers are not prime
        for q in range(2,100):
            for b in range(2,100):
                self.assertFalse(is_prime(q*b))
prime_suite = unittest.defaultTestLoader.loadTestsFromTestCase(PrimeTest)
unittest.TextTestRunner().run(prime_suite)
```

Reminder: only methods prefaced by `test_` will be run as part of the test!

Initializes an instance of `PrimeTest` and sets some of its attributes for us.

The `unittest.TextTestRunner` runs all the tests in our `PrimeTest` object.
Python unittest module

```python
prime_suite = unittest.defaultTestLoader.loadTestsFromTestCase(PrimeTest)
unittest.TextTestRunner().run(prime_suite)
```

```
F
====================================================================
FAIL: test_seive (__main__.PrimeTest)
====================================================================
Traceback (most recent call last):
  File "<ipython-input-5-2e2a707dd63a>", line 12, in test_seive
    self.assertFalse(is_prime(q*b))
AssertionError: True is not false

Ran 2 tests in 0.004s
FAILED (failures=1)
```

If one or more tests fail, unittest will raise an error, and tell you which test(s) failed.

The results would also be stored in a TextTestResult object, if we had chosen to assign the output.
Python unittest module

Let’s correct the error.

def is_prime(x):
 if n <= 1:
 return False
 elif n==2:
 return True
 else:
 ulim = math.ceil(math.sqrt(n))
 for k in range(2,ulim):
 if n\%k==0:
 return False
 return True

def is_prime(n):
 if n <= 1:
 return False
 elif n==2:
 return True
 else:
 ulim = math.ceil(math.sqrt(n))
 for k in range(2,ulim+1):
 if n\%k==0:
 return False
 return True
Python `unittest` module

```python
def is_prime(n):
    if n <= 1:
        return False
    elif n == 2:
        return True
    else:
        ulim = math.ceil(math.sqrt(n))
        for k in range(2, ulim + 1):
            if n % k == 0:
                return False
        return True

prime_suite = unittest.defaultTestLoader.loadTestsFromTestCase(PrimeTest)
unittest.TextTestRunner().run(prime_suite)
```

Using the same set of tests as before, all defined in the `PrimeTest` object.
This function operates on files (and creates new files). So to test it, we need our test suite to create files for testing and check that the new files are as expected.

```python
def file2upper(infile, outfile):
    """Takes a file infile, and copies it to file outfile, but with all words in upper-case.""
    if type(infile) != str:
        raise TypeError('Input file name must be a string.')
    if type(outfile) != str:
        raise TypeError('Output file name must be a string.')
    with open(infile, 'r') as infh:
        with open(outfile, 'w') as outf:
            for line in infh:
                outf.write(line.upper())
```
Often, it is useful to set up some files or objects before running our tests. This can be done using the `setUp` and `tearDown` methods.

The `setUp` method is called **before** each test. Here, our setup involves creating a directory and moving into it. This provides a “sandbox” for us to operate in where we won’t touch important files elsewhere.

```python
def setUp(self):
    '''Create a test directory and create a few files that we will work with in the test cases.'''
    try:
        os.mkdir(self.testdir)  # Create a test dir...
    except FileExistsError:
        pass  # foo already exists as a directory.
    os.chdir(self.testdir)
```

The `tearDown` method is called **after** each test. Here, our tear down just requires that we delete the files that we created in the test directory and then delete the test directory.

```python
def tearDown(self):
    '''Delete the test directory.'''
    os.remove(self.infile)
    os.remove(self.outfile)
    os.chdir('..')  # Up a level out of testdir.
    os.rmdir(self.testdir)
```
Reminder: the pattern is setUp, run a test, then tearDown.

The setUp/tearDown pattern ensures that each of these tests takes place in an otherwise empty, clean directory.

file2upper is a fairly simple function, so this setUp/tearDown framework isn’t particularly necessary, but it should be clear that for functions or objects that do more complicated things, it can be very useful. For example, if we were writing tests for our Time object, the setUp/tearDown methods would enable us to create a new Time object for each test without having to repeat the same few lines of code everywhere.
Python `unittest` module

```python
upper_suite = unittest.defaultTestLoader.loadTestsFromTestCase(UpperTest)
unittest.TextTestRunner().run(upper_suite)
```

```
....
===================================================================
Ran 4 tests in 0.020s
OK
```

Parting note: the `unittest` module supports a whole lot of additional functionality and control over tests, but most of them are going to be beyond your needs unless you expect to be a software engineer. The module is useful to us as data scientists primarily in that it provides a (comparatively) clean way to encapsulate your testing code.