
STATS 507
Data Analysis in Python

Lecture 25: TensorFlow II



TensorFlow
Previous lecture: Introduction to TensorFlow

tf.Tensor objects represent tensors
Tensors are combined into a computational graph

Captures the computational operations to be carried out at runtime

This lecture: Advanced TF
More detail on the computational graph and tf.Tensor objects
Lab: recognizing MNIST handwritten digits



Recall: TensorFlow as DataFlow
Computational graph: how data “flows” through program

In previous lecture:
We were a bit fast and loose with nodes and edges

Strictly speaking:
Nodes are operations (tf.Operation)
Edges are tensors (tf.Tensor)



More on the Computational Graph
tf.Graph

Special class provided by TF to represent a computational graph
Contains tf.Operation objects and tf.Tensor objects 

...and keeps track of how they interact (i.e., the graph structure itself)

When you define tensors in TF, a graph is built for you automatically
Called the default graph
At all times, some graph is the default graph
Call tf.get_default_graph() to access it

More information: https://www.tensorflow.org/api_docs/python/tf/Graph

https://www.tensorflow.org/api_docs/python/tf/Graph


More on the Computational Graph
tf.Tensor

(Already familiar to you)
Represents a tensor, i.e., data on which to perform computations

tf.Operation
TF class that represents a computation performed on zero or more tensors
Also a node in a computational graph



Tensor operations
Previous lecture: we saw different ways of creating tensors…

...but not much in the way of how to do things with them.

Example functions available in TF:
tf.abs(...): computes absolute value of a tensor
tf.add_n(...): adds two or more tensors, element-wise
tf.cholesky(...): computes Cholesky decomposition

https://en.wikipedia.org/wiki/Cholesky_decomposition
tf.exp(...): computes exponential, element-wise
tf.less(...): evaluates x < y, element-wise
tf.sigmoid(...): computes sigmoid function element-wise

https://en.wikipedia.org/wiki/Sigmoid_function

More detail: https://www.tensorflow.org/api_docs/python/tf#functions

https://en.wikipedia.org/wiki/Cholesky_decomposition
https://en.wikipedia.org/wiki/Sigmoid_function
https://www.tensorflow.org/api_docs/python/tf#functions


Tensor operations: +,-,*,/

+,-,*,/ short for tf.add() , 
tf.subtract() , tf.multiply() , 
tf.divide() , respectively.

Note: Division by zero results in inf, 
rather than nan.



Matrix multiplication in TF: tf.matmul()

...

tf.matmul(A,B) multiplies tensors A 
and B, as matrices, provided their ranks 
and types agree.



Matrix multiplication in TF: tf.matmul()

...

tf.matmul(A,B) multiplies tensors A 
and B, as matrices, provided their ranks 
and types agree.

Note: tf.matmul()  can be used to multiply tensors of 
arbitrary rank. Using appropriate flags, we can 
transpose/adjoint the arguments as we please.
Details: https://www.tensorflow.org/api_docs/python/tf/matmul

https://www.tensorflow.org/api_docs/python/tf/matmul


More matrix operations in TF
tf.matrix_diag: picks out diagonal of a matrix (or other tensor)

tf.matrix_determinant: computes determinant of a matrix

tf.matrix_inverse: computes inverse of a matrix

tf.matrix_solve: solves Ax = b

tf.matrix_transpose: transposes a matrix



Element-wise operations in TF
TF element-wise operations are just like Numpy universal functions

Examples:
tf.abs(): computes absolute value
tf.acos(): computes arccosine 
tf.cos(): computes cosine
tf.exp(): computes exponential
tf.log(): computes logarithm
tf.sigmoid(): computes sigmoid function

https://en.wikipedia.org/wiki/Sigmoid_function

https://en.wikipedia.org/wiki/Sigmoid_function


Element-wise comparisons in TF
TF supports element-wise comparisons of tensors

tf.less(), tf.less_equal(),
tf.greater(), tf.greater_equal()
tf.equal(), tf.not_equal()

Logical (operate on tensors with dtype=bool)
tf.logical_and()
tf.logical_or()
tf.logical_xor()
Also supported: tf.logical_not(), but this isn’t a comparison



So, TF has a lot of stuff going on!
“low-level” TF API makes lots of powerful tools available

...almost too many!

I just wanted to train a neural net!
Why do I have to worry about all this stuff?!



Rest of Lecture: Lab
1) We’ll use softmax regression to classify handwritten digits

Using the low-level API that we discussed last lecture

2) We’ll build and train a simple NN on the same data
Also using the low-level API
So you can see why many people just use the tf.estimator API! 



Workshop: Recognizing MNIST Digits
MNIST is a famous computer vision data set

28-by-28 greyscale images of hand-written digits
https://en.wikipedia.org/wiki/MNIST_database

Each image is labeled according to what digit it represents

2012: 0.23 percent error rate: https://arxiv.org/abs/1202.2745
(there has probably been improvement in this number since then…)

Follow along: https://www.tensorflow.org/get_started/mnist/beginners

Pared-down demo code:
http://www-personal.umich.edu/~klevin/teaching/
Winter2018/STATS701/demo/softmax_mnist.ipynb

Image credit: Wyss, König, and Verschure (2003)

https://en.wikipedia.org/wiki/MNIST_database
https://arxiv.org/abs/1202.2745
https://www.tensorflow.org/get_started/mnist/beginners
http://www-personal.umich.edu/~klevin/teaching/Winter2018/STATS701/demo/softmax_mnist.ipynb
http://www-personal.umich.edu/~klevin/teaching/Winter2018/STATS701/demo/softmax_mnist.ipynb


Recognizing MNIST Digits
Goal: given an image, classify what digit it represents.

In particular, we’ll build a model that outputs a vector of probabilities

i-th entry of vector will be model’s confidence that image is digit i.

= 5?
= 9?

0 1 2 3 4 5 6 7 8 9

More confidentLess confident



Generalizes logistic regression to categorical variables with >2 values

Softmax function:

Our model will assign probabilities to digits as

Softmax Regression

More information:
https://en.wikipedia.org/wiki/Multinomial_logistic_regression
https://en.wikipedia.org/wiki/Softmax_function
C. M. Bishop (2006). Pattern Recognition and Machine Learning. Springer. 

Model parameters
Probability that the 
observation is from 

category j

Observed data

https://en.wikipedia.org/wiki/Multinomial_logistic_regression
https://en.wikipedia.org/wiki/Softmax_function


The Plan
Represent 28-by-28 images by flattened 784-dimensional vectors

Apply softmax regression to vectors
Learn weights W and bias b
Train on a training set of labeled images

Evaluate learned model on test set



Flattening the data
Images are most naturally represented as matrices...

Image credit: TensorFlow tutorial

...but softmax regression requires vector inputs.

Solution: “unroll” image into a vector. It doesn’t matter how we do this, so 
long as we’re consistent. That is, so long as every image is flattened to a 
vector in the same way.



Building the model

Image credit: TensorFlow tutorial



Building the model

W is a matrix of weights. We are computing 
xW, so for matrix multiplication to make 
sense rows of W must agree with columns 
of x. Our model outputs a 10-dimensional 
probability, so 10 columns is what we want.

Each row of x is going to be a single 
observation, each of which is 
784-dimensional vector (28-by-28 image 
has 784 pixels), but we don’t know how 
many rows x will have, yet.

Bias term is same dimension as Wx.

Image credit: TensorFlow tutorial



Training the model

To train our model, we need to choose a loss function

We’ll use cross-entropy: https://en.wikipedia.org/wiki/Cross_entropy
Related to the KL divergence

Our modelThe true distributionSum over digits 0 to 9

https://en.wikipedia.org/wiki/Cross_entropy


Training the model

To train our model, we need to choose a loss function

We’ll use cross-entropy: https://en.wikipedia.org/wiki/Cross_entropy
Related to the KL divergence

Our modelThe true distribution

Note: the formula above is the sum for one observation. Our actual loss function will be a sum 
of these sums: for each training example, we need to sum of over the 10 digits.

Sum over digits 0 to 9

https://en.wikipedia.org/wiki/Cross_entropy


Training the model

To train our model, we need to choose a loss function

We’ll use cross-entropy: https://en.wikipedia.org/wiki/Cross_entropy
Related to the KL divergence

https://en.wikipedia.org/wiki/Cross_entropy


Training the model

To train our model, we need to choose a loss function

We’ll use cross-entropy: https://en.wikipedia.org/wiki/Cross_entropy
Related to the KL divergence

“True” y Our model

Tells TF to take the mean 
across the second axis.

https://en.wikipedia.org/wiki/Cross_entropy


Training the model

To train our model, we need to choose a loss function

We’ll use cross-entropy: https://en.wikipedia.org/wiki/Cross_entropy
Related to the KL divergence

“True” y Our model

Tells TF to take the mean 
across the second axis.

Note: it turns out that it’s more efficient and more numerically 
stable to use TF built-in function for cross-entropy, but this is 
how we would implement it if we had to.

https://en.wikipedia.org/wiki/Cross_entropy


Training the model: building more of the graph

We’ll read the truth into ytrue. Again, we don’t 
know how many training instances there will be. 

Specify the gradient descent step. This 
operation encodes a single gradient step in 
trying to minimize the cross-entropy.

Specify the learning rate, which 
controls the step size in our 
gradient descent algorithm.



Training the model: building more of the graph

We’ll read the truth into ytrue. Again, we don’t 
know how many training instances there will be. 

Note: we are using what is called a one-hot encoding in the true labels ytrue.



Aside: one-hot encodings
In ML, it is common to represent categorical variables by vectors

K possible values for the variable
represent by a K-dimensional vector
Object of k-th category represented by vector with k-th entry 1, rest 0

01 2 3 4 5 6 7 8 9

01 2 3 4 5 6 7 8 9

01 2 3 4 5 6 7 8 9

01 2 3 4 5 6 7 8 9

3:

1:

5:

0:



Aside: one-hot encodings
In ML, it is common to represent categorical variables by vectors

K possible values for the variable
represent by a K-dimensional vector
Object of type k represented by vector with k-th entry 1, rest 0

01 2 3 4 5 6 7 8 9

01 2 3 4 5 6 7 8 9

01 2 3 4 5 6 7 8 9

01 2 3 4 5 6 7 8 9

3:

1:

5:

0:

Note: this is a case where it’s good 
to use the tf.SparseTensor  
object. If K is really big, it’s 
expensive to store all those 0s! In 
our application, K=10, so it’s no big 
deal, but in, for example, NLP, 
K=1e6 is not uncommon.



Training the model: building more of the graph

We’ll read the truth into ytrue. Again, we don’t 
know how many training instances there will be. 

Note: TensorFlow supplies a number of other optimization routines
https://www.tensorflow.org/api_guides/python/train#Optimizers

https://www.tensorflow.org/api_guides/python/train#Optimizers


Running the Computational Graph

matmul

+
b

W

x

y
softmax

ytrue

cross-entropy

tf.train.minimize

Here’s the graph we’ve built, so far:

Note: this is a simplification of the graph that TF would build 
for you. You can view the actual graph using TensorBoard: 
https://www.tensorflow.org/get_started/graph_viz

https://www.tensorflow.org/get_started/graph_viz


Putting it all together



Putting it all together
TF includes code for 
downloading MNIST data. 
We just need to tell it what 
directory to save it in.

Build the computational graph 
(x,y,W,b omitted for space)

Start session, take 5000 gradient steps. Use a 
batched approach. Each gradient step is based 
on a small subset of the training data.



Assessing the model: test data
Once we’ve trained a model, how do we tell if it’s good?

Use train/test split
Data set aside ahead of time, which the model hasn’t seen before
Train on one set of data (train data), evaluate on another (test data)

Now we’re using the test data 
instead of the training data.



Workshop II: Better Digit Recognition with NNs
Can we do better than 92% accuracy?

One obvious flaw:
Our softmax regression doesn’t use structure of the image
How we vectorized our image didn’t matter!

Two options:
1) Write down a better model
2) Use a neural net!



Crash Course: Neural Nets
Biologically-inspired computing model

Inputs processed by units (“neurons”)
Each unit outputs a function of some inputs 
Units apply linear functions to their inputs...
...followed by a nonlinear activation function

Output of unit

Inputs to unit

Activation function

Weights

Goal: build a model that approximates some function
Ex: input is an audio signal, output is a (prob. dist. over) word label
Ex: input is English text, output is (prob. dist. over) French text
Ex: input is an image, output is (prob. dist. over) label



Crash Course: Neural Nets

X Y

Output
Input

Hidden layers Note: each unit has its own weight and 
bias. We will often collect the weights 
and biases from a single layer into a 
single tensor or pair of tensors.

Note: multiple arrows from a 
unit denote broadcast, not 
different outputs.



Crash Course: Neural Nets
Early NNs: perceptron (Rosenblatt, 1957)

Single-layer of computation
Can only learn linearly separable functions
https://en.wikipedia.org/wiki/Perceptron

Multilayer perceptron (MLP)
Multiple layers of units, can learn more complicated functions (e.g., XOR)
https://en.wikipedia.org/wiki/Multilayer_perceptron

Feed-forward vs recurrent neural net (RNN)
Feed-forward network is an acyclic graph
RNN can have units whose outputs feed back to earlier units

https://en.wikipedia.org/wiki/Perceptron
https://en.wikipedia.org/wiki/Multilayer_perceptron


Convolutional Neural Nets (CNNs)
Deep (many layers)

Feed-forward (NN connections are acyclic)

Three basic types of layers:
Convolutional
Pooling
Fully connected

Dropout “layer” provides regularization



Convolution
(Based on) an operation from signal processing

Roughly speaking, convolution computes response of a system to an input
https://en.wikipedia.org/wiki/Convolution

Typical NNs: units apply matrix multiplication followed by nonlinearity

CNN: units apply convolution instead of matrix multiplication
Still a linear operation

In image processing, units apply convolution to their receptive fields
Biologically inspired: e.g., neurons in visual cortex respond selectively
https://en.wikipedia.org/wiki/Receptive_field

https://en.wikipedia.org/wiki/Convolution
https://en.wikipedia.org/wiki/Receptive_field


Pooling
Typical setup: pass output of one unit to next layer

Pooling replaces this with a summary statistic
Input to next layer is a function of several units from previous layer 
Example: pool adjacent pixels in an image

Common pooling operations:
Max pooling: report maximum value over the outputs
(weighted) average: take weighted average over the outputs

Weighted according to, e.g., distance from center of receptive field



Dropout
Common technique for regularization (avoiding overfitting)

At each training step, randomly choose some units to drop
These units do not contribute to the network computation
Forces other weights to “compensate”, introduces redundancy across units

Image credit: Srivastava, et al (2014)
This is the paper in which dropout was initially suggested.
https://www.cs.toronto.edu/~hinton/absps/JMLRdropout.pdf

https://www.cs.toronto.edu/~hinton/absps/JMLRdropout.pdf


Building the Neural Net
Four layers

Two convolutional layers
Two fully-connected layers
Dropout between FC layers

Nonlinearity: We’ll use Rectified Linear Unit (RELU)
https://en.wikipedia.org/wiki/Rectifier_(neural_networks)

Pooling: max-pooling over 2-by-2 squares

Jupyter notebook:
http://www-personal.umich.edu/~klevin/teaching/Winter2019/STATS5
07/demo/cnn_mnist.ipynb

https://en.wikipedia.org/wiki/Rectifier_(neural_networks)
http://www-personal.umich.edu/~klevin/teaching/Winter2019/STATS507/demo/cnn_mnist.ipynb
http://www-personal.umich.edu/~klevin/teaching/Winter2019/STATS507/demo/cnn_mnist.ipynb

