
STATS 507
Data Analysis in Python

Lecture 27: APIs

Previously: Scraping Data from the Web
We used BeautifulSoup to process HTML that we read directly

We had to figure out where to find the data in the HTML
This was okay for simple things like Wikipedia…
...but what about large, complicated data sets?

E.g., Climate data from NOAA; Twitter/reddit/etc.; Google maps

Many websites support APIs, which make these tasks simpler

Instead of scraping for what we want, just ask!

Example: ask Google Maps for a computer repair shop near a given address

Three common API approaches
Via a Python package

Service (e.g., Google maps, ESRI*) provides library for querying DB
Example: from arcgis.gis import GIS

Via a command-line tool
Example: twurl https://developer.twitter.com/

Via HTTP requests
We submit an HTTP request to a server
Supply additional parameters in URL to specify our query
Example: https://www.yelp.com/developers/documentation/v3/business_search

* ESRI is a GIS service, to which the university has a subscription: https://developers.arcgis.com/python/

Ultimately, all three of these
approaches end up submitting an
HTTP request to a server, which
returns information in the form of a
JSON or XML file, typically.

https://developer.twitter.com/
https://www.yelp.com/developers/documentation/v3/business_search
https://developers.arcgis.com/python/

Web service APIs
Step 1: Create URL with query parameters

Example (non-working): www.example.com/search?key1=val1&key2=val2

Step 2: Make an HTTP request
Communicates to the server what kind of action we wish to perform
https://en.wikipedia.org/wiki/Hypertext_Transfer_Protocol#Request_methods

Step 3: Server returns a response to your request
May be as simple as a code (e.g., 404 error)...
...but typically a JSON or XML file (e.g., in response to a DB query)

http://www.example.com/search?key1=value1&key2=value2
https://en.wikipedia.org/wiki/Hypertext_Transfer_Protocol#Request_methods

HTTP Requests
Allows a client to ask a server to perform an action on a resource

E.g., perform a search, modify a file, submit a form

Two main parts of an HTTP request:
URI: specifies a resource on the server
Method: specifies the action to be performed on the resource

HTTP request also includes (optional) additional information
E.g., specifying message encoding, length and language

More information:
https://en.wikipedia.org/wiki/Hypertext_Transfer_Protocol#Request_methods
RFC specifying HTTP requests: https://tools.ietf.org/html/rfc7231#section-4

https://en.wikipedia.org/wiki/Hypertext_Transfer_Protocol#Request_methods
https://tools.ietf.org/html/rfc7231#section-4

HTTP Request Methods
GET: retrieves information from the server

POST: sends information to the serve (e.g., a file for upload)

PUT: replace the URI with a client-supplied file

DELETE: delete the file indicated by the URI

CONNECT: establishes a tunnel (i.e., connection) with the server

More: https://developer.mozilla.org/en-US/docs/Web/HTTP/Methods

See also Representational State Transfer:
https://en.wikipedia.org/wiki/Representational_state_transfer

https://developer.mozilla.org/en-US/docs/Web/HTTP/Methods
https://en.wikipedia.org/wiki/Representational_state_transfer

Refresher: JSON
JavaScript Object Notation

https://en.wikipedia.org/wiki/JSON

Commonly used by website APIs

Basic building blocks:
attribute–value pairs
array data

Example (right) from wikipedia:
Possible JSON representation of a person

https://en.wikipedia.org/wiki/JSON

Python json module
JSON string encoding
information about information
theorist Claude Shannon

json.loads parses a string
and returns a JSON object.

json.dumps turns a JSON
object back into a string.

Python json module

JSON object returned by
json.loads acts just like a
Python dictionary.

Example: Querying Yelp’s Business Search Service
I am sitting at my desk, woefully undercaffeinated

I could open a new tab and search for coffee nearby…
...but why leave the comfort of my Jupyter notebook?

Yelp provides several services under their “Fusion API”
https://www.yelp.com/developers/documentation/v3/get_started

We’ll use the business search endpoint
Supports queries that return businesses reviewed on Yelp
https://www.yelp.com/developers/documentation/v3/business_search

https://www.yelp.com/developers/documentation/v3/get_started
https://www.yelp.com/developers/documentation/v3/business_search

Example: Querying Yelp’s Business Search Service
URL to which to direct
our request, specified in
Yelp’s documentation.

Documentation: https://www.yelp.com/developers/documentation/v3/business_search

https://www.yelp.com/developers/documentation/v3/business_search

Example: Querying Yelp’s Business Search Service

Yelp requires that we obtain an
API key to use for authentication.
You must register with Yelp to
obtain such a key.

Documentation: https://www.yelp.com/developers/documentation/v3/business_search

https://www.yelp.com/developers/documentation/v3/business_search

Example: Querying Yelp’s Business Search Service

We are going to pass a dictionary
of parameter values for
requests to use in constructing
a GET request for us.

Documentation: https://www.yelp.com/developers/documentation/v3/business_search

The resulting URL looks like this (can be access with r.url):
https://api.yelp.com/v3/businesses/search?term=coffee&radius=1000&location=1085+S.+University
Notice that if you try to follow that link, you’ll get an error asking for an authentication token.

https://www.yelp.com/developers/documentation/v3/business_search
https://api.yelp.com/v3/businesses/search?term=coffee&radius=1000&location=1085+S.+University

Example: Querying Yelp’s Business Search Service

This line actually submits the GET request to the
URL, and includes the authorization header and
our search parameters. requests handles all
the annoying formatting and construction of the
HTTP request for us.

Documentation: https://www.yelp.com/developers/documentation/v3/business_search

https://www.yelp.com/developers/documentation/v3/business_search

Example: Querying Yelp’s Business Search Service

requests packages up the JSON object
returned by Yelp, if we ask for it. Recall that we
can naturally go back and forth between JSON
formatted files and dictionaries, so it makes
sense that r.json() is a dictionary.

Documentation: https://www.yelp.com/developers/documentation/v3/business_search

https://www.yelp.com/developers/documentation/v3/business_search

The businesses attribute of the JSON
object returned by Yelp is a list of
dictionaries, one dictionary per result.
The name of each business is stored in
its alias key.

See Yelp’s documentation for more
information on the structure of the
returned JSON object.
https://www.yelp.com/developers/doc
umentation/v3/business_search

https://www.yelp.com/developers/documentation/v3/business_search
https://www.yelp.com/developers/documentation/v3/business_search

More interesting API services
National Oceanic and Atmospheric Administration (NOAA)

https://www.ncdc.noaa.gov/cdo-web/webservices/v2

ESRI ArcGIS
https://developers.arcgis.com/python/

MediaWiki (includes API for accessing Wikipedia pages)
https://www.mediawiki.org/wiki/API:Main_page

Open Movie Database (OMDb)
https://omdbapi.com/

Major League Baseball
http://statsapi.mlb.com/docs

Of course, these are just examples. Just about
every large tech company provides an API, as
do most groups/agencies that collect data.

https://www.ncdc.noaa.gov/cdo-web/webservices/v2
https://developers.arcgis.com/python/
https://www.mediawiki.org/wiki/API:Main_page
https://omdbapi.com/
http://statsapi.mlb.com/docs

STATS 701
Data Analysis using Python

Closing Remarks

First, a word of thanks

Seth Meyer
Research Computing Lead

ARC-TS

Peter Knoop
Programmer & Senior Analyst

LSA IT

Without these two gentlemen, the second half of this course would not have
been possible. If you see them, please thank them for their help!

Second, more words of thanks

Roger Fan
PhD Student

Department of Statistics

Topics We Surveyed

We’ve only scratched the surface on all of these
topics. The best way to learn more is to pick a
project and start working on it. For example, pick
a simple statistical model and implement it in
TensorFlow, then apply that model to data,
perhaps scraped from the web somewhere.

Regular expressions

Markup languages

Databases

UNIX Command Line

MapReduce

Spark

TensorFlow

APIs

Topics We Surveyed
Regular expressions

Markup languages

Databases

UNIX Command Line

MapReduce

Spark

TensorFlow

APIs

We’ve only scratched the surface on all of these
topics. The best way to learn more is to pick a
project and start working on it. For example, pick
a simple statistical model and implement it in
TensorFlow, then apply that model to data,
perhaps scraped from the web somewhere.

But these topics are constantly changing
New software versions
New tools
New frameworks

It’s a lot of work to keep up!

Keeping up with new tools
Find a few blogs/twitter feeds to follow

Forums: e.g., HackerNews, Reddit

Read papers on the arXiv
Most good papers will describe what framework(s) they used

Keeping up with changes in the software ecosystem is a part of
the job, especially in industry, and requires time and effort.

Finding Projects
If you are currently doing research:

At least one thing we discussed this semester should apply to your project!
Speak to your supervisor about Flux allocation or buying GCP time

If you aren’t:
Find an interesting question, and answer it
Interesting data set? Visualization? Simulation?
Consider Amazon AWS or GoogleCloud for compute resources

Finding Projects
If you are currently doing research:

At least one thing we discussed this semester should apply to your project!
Speak to your supervisor about Flux allocation or buying GCP time

If you aren’t:
Find an interesting question, and answer it
Interesting data set? Visualization? Simulation?
Consider Amazon AWS or GoogleCloud for compute resources

“I picked this card shuffling problem up off the street.
Find a problem that sparks your interest, and pursue it!”

-Persi Diaconis (paraphrased)

Thanks!

