Analysis of ChIP-seq Data with ‘mosaics’ Package

Dongjun Chung!, Pei Fen Kuan? and Siindiiz Keleg!?
Department of Statistics, University of Wisconsin
Madison, WI 53706.
2Department of Biostatistics, University of North Carolina at Chapel Hill
Chapel Hill, NC 27599.
3Department of Biostatistics and Medical Informatics, University of Wisconsin
Madison, WI 53706.

January 16, 2012

1 Overview

This vignette provides an introduction to the analysis of ChIP-seq data with the ‘mosaics’ package.
R package mosaics implements MOSAiICS, a statistical framework for the analysis of ChIP-seq
data, proposed in [I]. MOSAICS stands for “MOdel-based one and two Sample Analysis and
Inference for ChIP-Seq Data”. It implements a flexible parametric mixture modeling approach
for detecting peaks, i.e., enriched regions, in one-sample (ChIP sample) or two-sample (ChIP and
control samples) ChIP-seq data. It accounts for mappability and GC content biases that arise in
ChIP-seq data.
The package can be loaded with the command:

R> library("mosaics")

2 Getting started

We assume that you already have the aligned read files for your samples (ChIP and/or control) such
as aligned read files obtained from the ELAND or bowtie aligner. R package ‘mosaics’ analyzes the
data after converting aligned read files into bin-level files for modeling and visualization purposes.
These bin-level data can easily be generated from the aligned read files with the command:

R> constructBins(infileLoc = "/scratch/eland/", infileName = "STAT1_eland_results.txt",
+ fileFormat = "eland_result", outfileLoc = infileLoc, byChr = FALSE,
+ fraglen = 200, binSize = fraglen, capping = 0)

You can specify the directory, name, and file format of the aligned read file in ‘infileLoc’,
‘infileName’, and ‘fileFormat’, respectively. ‘constructBins’ method currently allows the follow-
ing aligned read file formats: Eland result (‘"eland result"’), Eland extended (‘"eland extended"’),
Eland export (‘"eland export"’), default Bowtie (‘"bowtie"’), SAM (‘"sam"’), BED (‘"bed"’),
and CSEM BED (‘"csem"’). This method assumes that these aligned read files are obtained from
single-end tag (SET) experiments. If input file format is neither BED nor CSEM BED, it retains
only reads mapping uniquely to the reference genome (uni-reads).

Even though ‘constructBins’ retains only uni-reads for most aligned read files, reads map-
ping to multiple locations on the reference genome (multi-reads) can still be easily incorporated

into bin-level data by utilizing our multi-read allocator, CSEM (ChIP-Seq multi-read allocator us-
ing Expectation-Maximization algorithm). Galaxy tool for CSEM is available in Galaxy Tool
Shed (http://toolshed.g2.bx.psu.edu/). Please check “csem” under “Next Gen Mappers”.
Stand-alone version of CSEM is also available at http://www.stat.wisc.edu/ keles/Software/
multi-reads/. CSEM exports uni-reads and allocated multi-reads into standard BED file and
corresponding bin-level files can be constructed by applying ‘constructBins’ to this BED file with
the argument ‘fileFormat="csem"’.

If ‘byChr=FALSE’, bin-level data for all chromosomes are exported to one file named as ‘[infileName] fragL [fr:
If ‘byChr=TRUE’, bin-level data for each chromosome is exported to a separate file named as
‘[chrID]_[infileName] fragL[fraglen] bin[binSize].txt’, where [chrID] is chromosome ID
that reads align to. By default, constructed bin-level files are exported to the directory that the
aligned read file is located at. If you prefer to export them to another directory, you can specify it
in ‘outfileLoc’. Bin-level files are named as These chromosome IDs are extracted from the aligned
read file.

In addition, you can set average fragment length and bin size in ‘fraglen’ and ‘binSize’, respec-
tively, and these arguments control the resolution of bin-level ChIP-seq data. By default, average
fragment length is set to 200 bp, which is the common fragment length for Illumina sequences,
and bin size equals to average fragment length. ‘capping’ argument indicates maximum number of
reads allowed to start at each nucleotide position and it is to exclude extremely large read counts
that might correspond to PCR amplification artifacts. ‘capping’ is not used if it is set to some
non-positive value. Small value (e.g., 3) are recommended only for the ChIP-seq data with low
sequencing depth and ‘capping’ is not used by default.

You might also need to have bin-level mappability, GC content, and sequence ambiguity score
files for the reference genome you are working with, depending on the arguments of the methods
‘readBins’ and ‘mosaicsFit’ (read the next section for more details). If you are working with
organisms such as human (HG18 and HG19), mouse (MM9), rat (RN4), and Arabidopsis (TAIR9),
you can download their corresponding preprocessed mappability, GC content, and sequence am-
biguity score files at http://www.stat.wisc.edu/ keles/Software/mosaics/. If your reference
genome of interest is not listed on our website, you can inquire about it at our Google group,
http://groups.google.com/group/mosaics_user_group, and we would be happy to add your
genome of interest to the list. The companion website also provides all the related scripts and easy-
to-follow instructions to prepare these files. Please check http://www.stat.wisc.edu/ keles/
Software/mosaics/ for more details. We encourage questions or requests regarding ‘mosaics’ pack-
age to be posted on our Google group http://groups.google.com/group/mosaics_user_groupl

3 Workflow: Two-Sample Analysis

3.1 Reading Bin-Level Data into the R Environment

‘mosaics’ package assumes chromosome-wise analysis of ChIP-seq data. For the two-sample analy-
sis, you need preprocessed bin-level ChIP data, control sample data, mappability score, GC content
score, and sequence ambiguity score. In this vignette, we use chromosome 21 data from a ChIP-
seq experiment of STAT1 binding in interferon-y-stimulated HeLa S3 cells [2]. ‘mosaicsExample’
package provides this example dataset.

R> library(mosaicsExample)

Bin-level data can be imported to the R environment with the command:

http://toolshed.g2.bx.psu.edu/
http://www.stat.wisc.edu/~keles/Software/multi-reads/
http://www.stat.wisc.edu/~keles/Software/multi-reads/
http://www.stat.wisc.edu/~keles/Software/mosaics/
http://groups.google.com/group/mosaics_user_group
http://www.stat.wisc.edu/~keles/Software/mosaics/
http://www.stat.wisc.edu/~keles/Software/mosaics/
http://groups.google.com/group/mosaics_user_group

R> exampleBinData <- readBins(type = c("chip", "input", "M", "GC",

+ "N"), fileName = c(system.file(file.path("extdata", "chip_chr21.txt"),

+ package = "mosaicsExample"), system.file(file.path("extdata",

+ "input_chr2l.txt"), package = "mosaicsExample"), system.file(file.path("extdata",
+ "M_chr21.txt"), package = "mosaicsExample"), system.file(file.path("extdata",

+ "GC_chr21.txt"), package = "mosaicsExample"), system.file(file.path("extdata",

+ "N_chr21l.txt"), package = "mosaicsExample")))

- percentage of bins with ambiguous sequences: 277
(these bins will be excluded from the analysis)
- before preprocessing:
first coordinates = 0, last coordinates = 46944350
- after preprocessing:
first coordinates = 9719550, last coordinates = 46944250

For the ‘type’ argument, "chip", "input", "M", "GC", and "N" indicate bin-level ChIP data,
control sample data, mappability score, GC content score, and sequence ambiguity score, respec-
tively. You need to specify the corresponding file names in ‘fileName’. ‘mosaics’ package assumes
that each file name in ‘fileName’ is provided in the same order as in ‘type’.

R package mosaics provides functions for generating simple summaries of the data. The fol-
lowing command prints out basic information about the bin-level data, such as number of bins and
total “effective tag counts”. “Total effective tag counts” is defined as the sum of the tag counts of all
bins. This value is usually larger than the sequencing depth since tags are counted after extension
to average fragment length and an extended fragment can contribute to multiple bins.

R> exampleBinData

Summary: bin-level data (class: BinData)

- # of chromosomes in the data: 1

- total effective tag counts: 1637819
(sum of ChIP tag counts of all bins)

- control sample is incorporated

- mappability score is incorporated

- GC content score is incorporated

- uni-reads are assumed

‘print’ method returns the bin-level data in data frame format.

R> print (exampleBinData) [61680:51690,]

chrID coord tagCount mappability gcContent input
51680 chr21 15353100 10 1.00 0.36 4
51681 chr21 15353150 25 1.00 0.38 3

51682 chr21 15353200 61 1.00 0.39 5
51683 chr21 15353250 105 1.00 0.39 5
51684 chr21 15353300 125 1.00 0.39 6
51685 chr21 15353350 124 1.00 0.38 6
51686 chr21 15353400 109 1.00 0.38 7
51687 chr21 15353450 72 1.00 0.36 4
51688 chr21 15353500 30 0.99 0.36 2
51689 chr21 15353550 10 0.99 0.36 1
51690 chr21 15353600 6 0.99 0.36 1

‘plot’ method provides exploratory plots for the ChIP data. Different type of plots can
be obtained by varying the ‘plotType’ argument. ‘plotType="M"" and ‘plotType="GC" gen-
erate plots of mean ChIP tag counts versus mappability and GC content scores, respectively.
‘plotType="input"’ generates a plot of mean ChIP tag counts versus control tag counts. Moreover,
‘plotType="M|input"’ and ‘plotType="GC|input"’ generate plots of mean ChIP tag counts versus
mappability and GC content scores, respectively, conditional on control tag counts. If ‘plotType’
is not specified, this method plots the histogram of ChIP tag counts.

R> plot(exampleBinData)

R> plot(exampleBinData, plotType = "M")

R> plot(exampleBinData, plotType = "GC")

R> plot(exampleBinData, plotType = "input")
R> plot(exampleBinData, plotType = "M|input")
R> plot (exampleBinData, plotType = "GC|input")

Figures and [6] display examples of different types of plots. As discussed in [I], we
observe that mean ChIP tag count increases as mappability score increases (Figure . Mean ChIP
tag count depends on GC score in a non-linear fashion (Figure [3). The relationship between mean
ChIP tag counts and control tag counts seems to be linear, especially for small control tag counts
(Figure . When we condition on control tag counts (Figures |5 and @]), mean ChIP tag count
versus mappability and GC content relations exhibit similar patterns to that of marginal plots
given in Figures [2| and MOSAICS incorporates this observation by modeling ChIP tag counts
from non-peak regions with a small number of control tag counts as a function of mappability, GC
content, and control tag counts.

3.2 Fitting MOSAiCS

We are now ready to fit a MOSAiCS model using the bin-level data above (exampleBinData) with
the command:

R> exampleFit <- mosaicsFit(exampleBinData, analysisType = "TS")

‘analysisType="TS"’ indicates implementation of the two-sample analysis. ‘mosaicsFit’ fits
both one-signal-component and two-signal-component models. When identifying peaks, you can
choose the number of signal components to be used for the final model. The optimal choice of the
number of signal components depends on the characteristics of data. In order to support users
in the choice of optimal signal model, mosaics package provides Bayesian Information Criterion
(BIC) values and Goodness of Fit (GOF) plots of these signal models.

Histogram of tag count

—— ChIP
control

Frequency
1000 10000 1e+05
| |

100
l

10

Tag count

Figure 1: Histograms of the count data from ChIP and control samples.

The following command prints out BIC values of one-signal-component and two-signal-component
models, with additional information about the parameters used in fitting the background (non-
enriched) distribution. A lower BIC value indicates a better model fit. For this dataset, we conclude
that the two-signal-component model has a lower BIC and hence it provides a better fit.

R> exampleFit

Summary: MOSAiCS model fitting (class: MosaicsFit)

analysis type: two-sample analysis (with mappability & GC content)
parameters used: k = 3, meanThres =1, s = 2, d = 0.25

BIC of one-signal-component model = 1137784

BIC of two-signal-component model = 1135762

‘plot’ method provides the GOF plot. This plots allows visual comparisons of the fits of
the background, one-signal-component, and two-signal-component models with the actual data.

Mappability score vs. Mean ChIP tag count

2.0

@ " tﬁ ﬁw
% o _ Wﬁ

. mﬁ

g AJMW

Mappability score

Figure 2: Mean ChIP tag count versus Mappability.

Figure [7] displays the GOF plot for our dataset and we conclude that the two-signal-component
model provides a better fit as is also supported by its lower BIC value compared to the one-signal
component model.

R> plot(exampleFit)

In addition to ‘analysisType’, ‘mosaicsFit’ method provides parameters to tune the back-
ground distribution of the MOSAiICS model. We specified appropriate default values for these
parameters based on computational experiments and analysis of diverse ChIP-seq datasets. De-
fault values work well in general but some tuning might be required for some cases. You may need
to consider parameter tuning if the fitted background model is too similar to the actual data in the
GOF plot or you encounter some warning or error messages while running ‘mosaicsFit’ method.
Section [6] provides basic guidelines on parameter tuning. If you encounter a fitting problem you
need help with, feel free to contact us at our Google group, http://groups.google.com/group/
mosaics_user_group.

http://groups.google.com/group/mosaics_user_group
http://groups.google.com/group/mosaics_user_group

GC content score vs. Mean ChIP tag count

ray

12

10

Mean ChIP tag count
6
|
=

4H4#44¢44+444444“¢W00 {
T T T T T
0.0 0.2 0.4 0.6 0.8

GC content score

Figure 3: Mean ChIP tag count versus GC content.

3.3 Identifying Peaks Based on the Fitted Model

Using BIC values and GOF plots in the previous section, we concluded that two-signal-component
model fits our data better. Next, we will identify peaks with the two-signal-component model at a
false discovery rate (FDR) of 0.05 using the command:

R> examplePeak <- mosaicsPeak(exampleFit, signalModel = "2S", FDR = 0.05,
+ maxgap = 200, minsize = 50, thres = 10)

‘signalModel="2S"’ indicates two-signal-component model. Similarly, one-signal-component
model can be specified by ‘signalModel="1S"’. FDR can be controlled at the desired level by
specifying ‘FDR’. In addition to these two essential parameters, you can also control three more
parameters, ‘maxgap’, ‘minsize’, and ‘thres’. These parameters are for refining initial peaks called
using specified signal model and FDR. Initial nearby peaks are merged if the distance (in bp)
between them is less than ‘maxgap’. Some initial peaks are removed if their lengths are shorter
than ‘minsize’ or their ChIP tag counts are less than ‘thres’.

Control tag count vs. Mean ChIP tag count

o

LO_

—

q
q
5 o
o o -
(&) —
(@]
8 11114
o T 1119
< 9 q
O
C q
o
s fh
4!
4
oéd
O—000°°°°°
I I I I
0 10 20 30

Control tag count

Figure 4: Mean ChIP tag count versus Control tag count.

If you use a bin size shorter than the average fragment length in the experiment, we recommend
to set ‘maxgap’ to the average fragment length and ‘minsize’ to the bin size. This setting removes
peaks that are too narrow (e.g., singletons). If you set the bin size to the average fragment length
(or maybe bin size is larger than the average fragment length), we recommend setting ‘minsize’ to
a value smaller than the average fragment length while leaving ‘maxgap’ the same as the average
fragment length. This is to prevent filtering using ‘minsize’ because initial peaks would already
be at a reasonable width. ‘thres’ is employed to filter out initial peaks with very small ChIP tag
counts because such peaks might be false discoveries. Optimal choice of ‘thres’ depends on the
sequencing depth of the ChIP-seq data to be analyzed. If you don’t wish to filter out initial peaks
using ChIP tag counts, you can set ‘thres’ to an arbitrary negative value.

The following command prints out a summary of identified peaks including the number of peaks
identified, median peak width, and the empirical false discovery rate (FDR).

R> examplePeak

Summary: MOSAiCS peak calling (class: MosaicsPeak)

Mappability score vs. Mean ChIP tag count,
conditional on Control tag count

0.00.20.40.60.81.0 0.00.20.40.60.81.0
[I e e e S [e I Y O
Input Input Input Input
— ° o: ° -~ 1.0
— ° R ° ° ° — 08
. o, o Lt o ! g - 0.6
7] ¢ o ooo %8 b ° o.'“; o : B O 4
— S ° oo 0® — 02
o
- — 0.0
Input Input Input Input
10] ° ° 00 oo ° —
E o8] i : e : -
-] 0 o ° :wacao > .00 e o B
S 04 e o e 2053058 ARy
o 02+ .7 B oo "N S
8 0.0 : : =
o Input Input Input Input
= — ° oo o ° o s — 1.0
O — o ° go ° e ° 4 ° 0o { ° ~ 0.8
C °°£&5”§o‘$g ° °0 39., ° w 00
c — :: o o % &%‘%‘9 = o:.{q,% 00 g ?&0?:? ~ 0.6
% i o&‘&;{ ’ %’W‘ °°°o§°o ooo wot %ﬁ&g"o: _ 8 g
4. o . ~ 0.0
Input Input Input Input
1.0 B ch '; N oy o L
0.8 oo g Y - i
0.6 %f?o & o i _
0.4 Sl . o L es -
02 = oo 3&% %;o?f o;‘g —
&
0.0 o5 ‘I-’ | oo -

0.00.20.40.60.81.0 0.00.20.40.60.81.0
Mappability score

Figure 5: Mean ChIP tag count versus Mappability, conditional on control tag counts.

final model: two-sample analysis (with M & GC) with two signal components
setting: FDR = 0.05, maxgap = 200, minsize = 50, thres = 10

of peaks = 520

median peak width = 250

empirical FDR = 0.05

‘print’ method returns the peak calling results in data frame format. This data frame can
be used as an input for downstream analysis such as motif finding. This output might have
different number of columns, depending on ‘analysisType’ of ‘mosaicsFit’. For example, if
‘analysisType="TS"’, columns are peak start position, peak end position, peak width, averaged
posterior probability, minimum posterior probability, averaged ChIP tag count, maximum ChIP
tag count, averaged control tag count, averaged control tag count scaled by sequencing depth, av-
eraged log base 2 ratio of ChIP over input tag counts, averaged mappability score, and averaged
GC content score for each peak. Here, the posterior probability of a bin refers to the probability
that the bin is not a peak conditional on data. Hence, smaller posterior probabilities provide more

GC content score vs. Mean ChlIP tag count,
conditional on Control tag count

0.00.20.40.60.8

0.00.20.40.60.8
| |]]

]
Input

Input Input
- . oy P ° ° ~ 1.0
. . o, . . ros
1 e - <4 £ pos
- A 71 o8 ¥, Ry . 04
° ° % °o &
. o . é - 0.2
— ° — 0.0
Input Input Input Input
1.0 K ° R ° s
= 0.8 . ., -
0.4 N P W3 oF N
(&) o 8 o K S o % &, ° o 3 500 So
0.2 Rionas™ 0 S N N
g ool S A @ -
o Input Input Input Input
< — K ° ° s - 1.0
cé | X N . 08
< — ° - 0.6
% _ Lo RA Y ‘e 04
— ° Mg o o M ® ; 3’: ° 6’09. — 02
N o il P e sy 00
Input Input Input Input
1.0 .. . S .
0.8 — ?““:‘») ° °o [~
R R Y as % o
- w® | ‘o . ° s L
8(2) - K % .%&w i °%°3“‘M ° L

0.00.20.40.60.8

0.00.20.40.60.8

GC content score

Figure 6: Mean ChIP tag count versus GC content, conditional on control tag counts.

evidence that the bin is actually a peak.

R> print (examplePeak) [1:15,]

chrID peakStart peakStop peakSize aveP minP aveChipCount
1 chr21 14538100 14538499 400 2.316159e-02 1.732184e-11 32.00000
2 chr21 14828000 14828449 450 4.683745e-02 4.537161e-05 21.77778
3 chr21 14901550 14901849 300 1.120661e-02 4.268164e-05 20.00000
4 chr21 15032250 15032499 250 2.122025e-02 4.995990e-04 15.00000
5 chr21 15068000 15068099 100 9.315207e-02 7.948542e-02 13.50000
6 chr21 15175200 15175299 100 8.070661e-02 3.541864e-02 15.50000
7 chr21 15177350 15177599 250 1.030375e-01 7.688995e-03 16.80000
8 chr21 15353150 15353549 400 2.190450e-06 9.188126e-26 81.37500
9 chr21 15362700 15362849 150 1.498505e-01 7.948542e-02 12.33333
10 chr21 15374650 15375349 700 6.933481e-05 2.139220e-65 88.28571
11 chr21 15378850 15379049 200 9.072711e-02 7.649026e-04 21.00000
12 chr21 15486500 15486799 300 3.124502e-02 5.137427e-04 33.00000

10

Lo =
T —— Actual data (ChIP)
— Actual data (Control)
Sim:N
S —— Sim:N+S1
S —— Sim:N+S1+S2
—
>‘ o
O o _|
s 32
>
(on
o
L o
o p—
—
o _|
—
H —
[I I
0 9 99

Tag count

Figure 7: Goodness of Fit (GOF) plot. Depicted are actual data for ChIP and control samples
with simulated data from the following fitted models: (Sim:N): Background model; (Sim:N+S1):
one-signal-component model; (Sim:N+S1+S2): two-signal-component model.

13 chr21 15498300 15499149 850 3.892446e-02 5.263370e-12 48.23529

14 chr21 15501950 15502249 300 2.826662e-01 7.688995e-03 14.33333

15 chr21 15502950 15503399 450 2.188426e-03 2.830815e-49 90.66667
maxChipCount aveInputCount aveInputCountScaled aveLog2Ratio map

1 48 2.375000 2.662827 3.140374 0.9925000

2 31 3.777778 4.235608 2.183571 1.0000000

3 25 2.833333 3.176706 2.358010 1.0000000

4 17 2.000000 2.242380 2.466431 0.9940000

5 14 2.000000 2.242380 2.160069 1.0000000

6 17 3.000000 3.363571 1.962167 0.9850000

7 20 1.800000 2.018142 2.601233 0.9800000

8 125 4.750000 5.325654 3.560025 0.9987500

9 13 1.666667 1.868650 2.240231 1.0000000

10 180 2.714286 3.043231 4.127678 1.0000000

—_
—_

11 23 3.750000 4.204463 2.178285 0.9975000

12 40 6.666667 7.474602 2.008631 0.9833333

13 64 7.705882 8.639760 2.346157 1.0000000

14 18 3.000000 3.363571 1.829847 1.0000000

15 144 5.111111 5.730528 3.907724 1.0000000
GC

1 0.4250000

2 0.3788889

3 0.3933333

4 0.3320000

5 0.3900000

6 0.3800000

7 0.4540000

8 0.3787500

9 0.3800000

10 0.3557143

11 0.4325000

12 0.4016667

13 0.4311765

14 0.4333333

15 0.4644444

You can export peak calling results to text files in diverse file formats. Currently, ‘mosaics’ pack-
age supports TXT, BED, and GFF file formats. In the exported file, TXT file format (‘type="txt"’)
includes all the columns that ‘print’ method returns. ‘type="bed"’ and ‘type="gff"’ export peak
calling results in standard BED and GFF file formats, respectively, where score is the averaged
ChIP tag counts in each peak. Peak calling results can be exported in TXT, BED, and GFF file
formats, respectively, by the commands:

R> export(examplePeak, type = "txt'", fileLoc = ".", fileName = "TSpeakList.txt")
R> export(examplePeak, type = "bed", fileLoc = ".", fileName = "TSpeakList.bed")
R> export(examplePeak, type = "gff", fileLoc = ".", fileName = "TSpeakList.gff")

‘fileLoc’ and ‘fileName’ indicate the directory and the name of the exported file.

4 One-Sample Analysis

When control sample is not available, ‘mosaics’ package accommodates one-sample analysis of
ChIP-seq data. Implementation of the MOSAiICS one-sample model is very similar to that of
the two-sample analysis. Bin-level data for the one-sample analysis can be imported to the R
environment with the command:

R> OneSampleBinData <- readBins(type = c("chip", "M", "GC", "N"),

+ fileName = c(system.file(file.path("extdata", "chip_chr21.txt"),
+ package = "mosaicsExample"), system.file(file.path("extdata",

+ "M_chr21.txt"), package = "mosaicsExample"), system.file(file.path("extdata",
+ "GC_chr21.txt"), package = "mosaicsExample"), system.file(file.path("extdata",
+ "N_chr21.txt"), package = "mosaicsExample")))

12

- percentage of bins with ambiguous sequences: 277
(these bins will be excluded from the analysis)
- before preprocessing:
first coordinates = 0, last coordinates = 46944350
- after preprocessing:
first coordinates = 9719550, last coordinates = 46944250

Note that you don’t need to provide ‘"input"’ in ‘type’ and the file name of a control dataset in
‘fileName’ here. In order to fit a MOSAiCS model for the one-sample analysis, you need to specify
‘analysisType="0S"’ instead of ‘analysisType="TS"’ when calling the ‘mosaicsFit’ method.

R> OneSampleFit <- mosaicsFit(OneSampleBinData, analysisType = "0S")
Peak identification can be done exactly in the same way as in the case of the two-sample analysis.

R> OneSamplePeak <- mosaicsPeak(OneSampleFit, signalModel = "2S",
+ FDR = 0.05, maxgap = 200, minsize = 50, thres = 10)

5 Two-Sample Analysis Without Mappability and GC Content

Application of MOSAICS to multiple case studies showed that consideration of mappability and
GC content in the model improves sensitivity and specificity of peak identification even in the
presence of a control sample [I]. However, mosaics package accommodates a two-sample analysis
without mappability and GC content by specification of ‘analysisType="I0"" when calling the
‘mosaicsFit’ method.

R> inputOnlyFit <- mosaicsFit(exampleBinData, analysisType = "I0")

You can import bin-level data (for ChIP and control sample only) and fit MOSAiICS model for
the two-sample analysis without mappability and GC content with the commands:

R> inputOnlyBinData <- readBins(type = c("chip", "input"), fileName = c(system.file(file.path(
+ "chip_chr21.txt"), package = "mosaicsExample"), system.file(file.path("extdata",
+ "input_chr2l.txt"), package = "mosaicsExample")))

R> inputOnlyFit <- mosaicsFit(inputOnlyBinData, analysisType = "I0")

6 Tuning of MOSAiCS Parameters

In the two-sample analysis, users can control three tuning parameters: ‘s’, ‘d’, and ‘meanThres’.
‘s’ and ‘d’ are parameters of the background distribution and control the functional form used for
the control data. Please see [I] for further details on these two model parameters. ‘meanThres’
controls the number of strata used at the robust linear regression modelling step of the background
distribution fitting. ‘mosaics’ package uses the following parameter setting as default:

13

R> exampleFit <- mosaicsFit(exampleBinData, analysisType = "TS",
+ meanThres = 1, s = 2, d = 0.25)

Users might need to consider parameter tuning especially when the fitted background model is
too similar to the actual data, resulting in too few peaks. If such cases are detected or predicted,
‘mosaicsFit’ prints out warning or error messages. You may also be able to detect this case using
the GOF plot. Using a higher ‘s’ value and lower ‘meanThres’ often solves the problem, e.g., ‘s =
6’ and ‘meanThres = 0.

7 Conclusion and Ongoing Work

R package mosaics provides effective tools to read and investigate ChIP-seq data, fit MOSAiCS
model, and identify peaks. We are continuously working on improving mosaics package further,
especially in supporting more diverse genomes, automating fitting procedures, developing more
friendly and easy-to-use user interface, and providing more effective data investigation tools. Please
post any questions or requests regarding ‘mosaics’ package at http://groups.google.com/group/
mosaics_user_group. Updates and changes of ‘mosaics’ package will be announced at our Google
group and the companion website (http://www.stat.wisc.edu/ keles/Software/mosaics/).

References

[1] Kuan, PF, D Chung, JA Thomson, R Stewart, and S Keleg (2010), “A Statistical Framework
for the Analysis of ChIP-Seq Data”, submitted (http://works.bepress.com/sunduz_keles/
19/).

[2] Rozowsky, J, G Euskirchen, R Auerbach, D Zhang, T Gibson, R Bjornson, N Carriero, M
Snyder, and M Gerstein (2009), “PeakSeq enables systematic scoring of ChIP-Seq experiments
relative to controls”, Nature Biotechnology, 27, 66-75.

14

http://groups.google.com/group/mosaics_user_group
http://groups.google.com/group/mosaics_user_group
http://www.stat.wisc.edu/~keles/Software/mosaics/
http://works.bepress.com/sunduz_keles/19/
http://works.bepress.com/sunduz_keles/19/

	Overview
	Getting started
	Workflow: Two-Sample Analysis
	Reading Bin-Level Data into the R Environment
	Fitting MOSAiCS
	Identifying Peaks Based on the Fitted Model

	One-Sample Analysis
	Two-Sample Analysis Without Mappability and GC Content
	Tuning of MOSAiCS Parameters
	Conclusion and Ongoing Work

