
A BUCKy Tutorial

Bret Larget
Departments of Botany

 and of Statistics,
UW-Madison

Workshop on New Methods

for Phylogenomics and Metagenomics

1

What Does BUCKy Intend to do?
BUCKy was conceived as a program to answer
the question, what fractions of genomes (or
genes within genomes) share the same
evolutionary history?

The specific way BUCKy is set to address this
question is to jointly estimate many gene trees
given data for each gene and prior information
about the level of gene tree discordance.

2

What is a GTM?
GTM is an acronym for a Gene-to-Tree-
Map which can be represented as an
array of tree topologies, one for each
gene.

M = (T1,T2,...,TG)

where M is the map, Ti is the tree topology for
the ith gene, and G is the number of genes.

3

Joint Posterior Distribution

For data sets X1,X2,...,XG, one for each
gene, BUCKy tries to compute
P(M|X1,X2,...,XG), the joint posterior
distribution of the tree topology for all
the genes given the data on all of the
genes.

4

Form of Posterior Distribution

Under assumptions of independence of
parameters other than topology across
different genes, this posterior has the
form:

P(M|X)∝P(M)×∏ P(Ti | Xi)

for M = (T1,T2,...,TG)and X = (X1,X2,...,XG)

i

5

Approximation

BUCKy approximates the exact product of
posterior probabilities of trees given single
data sets with simple relative frequencies
from MCMC samples on single genes.

As a consequence, BUCKy can mislead
when single gene posterior distributions
are inaccurate.

6

Preliminary: Installation
If you:

 (1) Have gcc installed on your computer;

 (2) Are using Linux or the Terminal on a Mac;

 (3) Have a directory ~/bin which is part of your path of executable files;

Then, you can compile and install bucky and mbsum with these steps.

In a terminal:

 (1) Change directories to where the file bucky-1.4.2.tgz exists.

 (2) Unzip and untar the file, creating a directory tree and files

tar zxf bucky-1.4.2.tgz
 (3) Change to the source directory and compile the code.

cd bucky-1.4.2/src
make

 (4) Move executables to ~/bin.

mv mbsum bucky ~/bin

7

Preliminary: Installation

Or, download a previously compiled
binary from:

 http://www.stat.wisc.edu/~ane/bucky .

8

http://www.stat.wisc.edu/~ane/bucky
http://www.stat.wisc.edu/~ane/bucky

Preliminary: Single Gene Samples
Use MrBayes for each gene individually.

You can use different parameters and
models for each.

BUCKy assumes that each gene has data
for exactly the same species. More on
dealing with this later if it is not true!

We need the .t files for each gene. It is okay
if there are more than one.

9

Preliminary: mbsum

mbsum is a simple program that reads in one or
more output .t files from MrBayes and creates
a file with two parts:

a translate section which gives a list of
species names and the number code for this
species in trees:

a list of tree indices, trees, and their counts.

10

Example: mbsum output
translate
 1 Scer,
 2 Spar,
 3 Smik,
 4 Skud,
 5 Sbay,
 6 Scas,
 7 Sklu,
 8 Calb;
(1,(2,(3,(4,(5,(6,(7,8))))))); 31366
(1,(2,(3,(4,(5,((6,7),8)))))); 10461
(1,(2,(3,(4,(5,((6,8),7)))))); 7279
(1,(2,(3,((4,5),(6,(7,8)))))); 448
(1,(2,(3,((4,5),((6,7),8))))); 236
(1,(2,(3,((4,5),((6,8),7))))); 101
(1,(2,((3,(6,(7,8))),(4,5)))); 41
(1,(2,((3,((6,7),8)),(4,5)))); 37
(1,(2,(3,((4,(6,(7,8))),5)))); 12
(1,(2,((3,((6,8),7)),(4,5)))); 8
(1,(2,(3,((4,((6,8),7)),5)))); 7
(1,(2,((3,8),(4,(5,(6,7)))))); 2
(1,(2,(3,((4,((6,7),8)),5)))); 2

11

Example: Running mbsum

Change directory to bucky-tutorial/TreeFiles

Run mbsum on the .t files here, removing the
first 501 trees from each.

Save the output in a new file named y000.in.

mbsum -n 501 -o y000.in y000.run*.t

12

Input Files

There should be a single input file for
each gene.

For this tutorial, input files are in the
directory bucky-tutorial/InFiles .

13

Options for BUCKy

BUCKy is run from the command line.

The program is usually called with
multiple options.

The program is called as follows.

mbsum [options] [gene files]

14

Running BUCKy
cd bucky-tutorial
bucky -a 1 -k 4 -n 1000000 -c 4 -s1 23546 -s2 4564 -o yeast InFiles/*.in

1. -a 1 sets alpha to 1

2. -k 4 sets 4 separate runs

3. -n 1000000 sets that many MCMC generations

4. -c 4 sets 4 chains, one cold and three hot

5. -s1 23546 -s2 4564 sets random seeds

6. -o yeast sets the root name for output files

15

More on BUCKy options
-a alpha --- set alpha parameter

alpha = 0 is equivalent to disallowing discordance
among gene trees

alpha = infinity is equivalent to independence among
genes

the probability that two specific genes share the
same tree is about 1/(1+α)if α is much smaller than
the size of tree space

use tool from BUCKy web page to visualize prior
distribution on number of clusters

16

More on BUCKy options
-k number --- sets number of chains

good to do more than one to informally
check convergence

-n number --- sets number of MCMC
updates

Do enough for thorough mixing
(millions?)

10% extra automatic for burn-in

17

More on BUCKy Options

-c number --- number of chains

-r number --- rate to swap chains

-m number ---multiplier for hot chains

For each run, bucky will run one or more chains.

Additional chains are run with a larger alpha.

At specified rate, BUCKy tries to swap chains

This can help mixing when mixing with desired
alpha is too slow.

18

BUCKy Output Files
BUCKy produces these files

.out --- screen output and other information

.input --- list of input files (one for each gene)

.gene --- summary of information for each gene

.cluster --- summary of the number of clusters
(different trees)

.concordance --- summary of concordance
among gene trees

19

.gene File
Separate entry for each
gene

Shows trees for each gene

Single is the probability of
the tree given only the data
in the gene

Joint is the probability of
the tree given the data in all
of the genes (for specified
prior concordance)

Gene 0:
 numTrees = 13
 index topology single joint
 0 ((((((1,2),3),4),5),6),7,8); 0.627320 0.999783
 1 ((((((1,2),3),4),5),7),6,8); 0.145580 0.000148
 2 (((((1,2),3),(4,5)),6),7,8); 0.008960 0.000000
 3 ((((((1,2),3),5),4),6),7,8); 0.000240 0.000000
 4 (((((1,2),3),4),5),(6,7),8); 0.209220 0.000003
 5 (((((1,2),(4,5)),3),6),7,8); 0.000820 0.000000
 6 ((((((1,2),3),5),4),7),6,8); 0.000140 0.000000
 9 ((((1,2),(4,5)),3),(6,7),8); 0.000740 0.000066
 10 (((((1,2),3),5),4),(6,7),8); 0.000040 0.000000
 12 (((((1,2),3),(4,5)),7),6,8); 0.002020 0.000000
 13 (((((1,2),(4,5)),3),7),6,8); 0.000160 0.000000
 14 ((((1,2),3),(4,5)),(6,7),8); 0.004720 0.000000
 15 (((1,2),(4,(5,(6,7)))),3,8); 0.000040 0.000000

20

.cluster

Summarizes
distribution of
number of
clusters for each
run

mean #groups = 2.024
SD across runs = 0.006

credible regions for # of groups
probability region

 0.99 (2,3)
 0.95 (2,2)
 0.90 (2,2)

Distribution of cluster number in run 1:
 # of raw posterior
groups counts probability

 2 982478 0.98247800
 3 17521 0.01752100
 4 1 0.00000100

Distribution of cluster number in run 2:
 # of raw posterior
groups counts probability

 2 972060 0.97206000
 3 27788 0.02778800
 4 152 0.00015200

21

.concordance

Splits in the Primary Concordance Tree: sample-wide and genome-wide mean CF (95% credibility), SD of
mean sample-wide CF across runs
{1,2,3,4,5|6,7,8} 1.000(1.000,1.000) 0.991(0.966,1.000)	 0.000
{1,2|3,4,5,6,7,8} 1.000(1.000,1.000) 0.991(0.967,1.000)	 0.000
{1,2,3|4,5,6,7,8} 0.941(0.906,0.962) 0.933(0.869,0.978)	 0.000
{1,2,3,4|5,6,7,8} 0.941(0.906,0.962) 0.932(0.868,0.978)	 0.000
{1,2,3,4,5,6|7,8} 0.941(0.906,0.962) 0.933(0.867,0.978)	 0.000

Splits NOT in the Primary Concordance Tree but with estimated CF > 0.050:
{1,2,3,6,7,8|4,5} 0.059(0.038,0.094) 0.059(0.017,0.121)	 0.000
{1,2,4,5|3,6,7,8} 0.059(0.038,0.085) 0.058(0.016,0.119)	 0.000
{1,2,3,4,5,8|6,7} 0.059(0.038,0.085) 0.059(0.017,0.120)	 0.000

22

.concordance

All Splits:
{1,2,3,4,5|6,7,8}
#Genes count in run(s) 1 through 4, Overall probability, Overall cumulative probability
 103 0 0 58 0 0.000015 0.000015
 104 0 1 7 87 0.000024 0.000038
 105 117 129 161 165 0.000143 0.000181
 106 999883 999870 999774 999748 0.999819 1.000000

mean CF = 1.000 (proportion of loci)
 = 106.000 (number of loci)
99% CI for CF = (106,106)
95% CI for CF = (106,106)
90% CI for CF = (106,106)

23

.concordance
{1,2,3|4,5,6,7,8}
#Genes count in run(s) 1 through 4, Overall probability, Overall cumulative probability
 86 0 0 5 0 0.000001 0.000001
 87 0 0 12 0 0.000003 0.000004
 88 0 0 6 1 0.000002 0.000006
 89 3 1 12 23 0.000010 0.000016
 90 9 2 10 27 0.000012 0.000028
 91 52 14 22 46 0.000034 0.000061
 92 100 81 49 98 0.000082 0.000143
 93 351 320 323 268 0.000316 0.000459
 94 1399 1365 1412 1091 0.001317 0.001775
 95 5287 5239 5273 4843 0.005161 0.006936
 96 19119 17688 18873 16846 0.018131 0.025067
 97 53703 51645 52046 49587 0.051745 0.076813
 98 120841 120342 119981 118385 0.119887 0.196700
 99 205640 212025 208334 207422 0.208355 0.405055
 100 255104 258592 260203 261258 0.258789 0.663844
 101 212900 209695 208838 215144 0.211644 0.875489
 102 101661 99021 99904 102864 0.100862 0.976351
 103 23363 23167 24143 21560 0.023058 0.999409
 104 468 803 554 537 0.000590 1.000000

mean CF = 0.941 (proportion of loci)
 = 99.772 (number of loci)
99% CI for CF = (95,103)
95% CI for CF = (96,102)
90% CI for CF = (97,102)

24

Cautions

BUCKy assumes that the single gene
posterior distributions are estimated
perfectly by the samples; if a gene has
mostly trees with very low sample
counts, BUCKy will be misleading.

Be extra careful if there are many taxa.

25

Cautions
BUCKy assumes discordant trees are randomly
drawn from all possible trees.

Real mechanisms that cause discordance
(hybridization, lateral gene flow, incomplete
lineage sorting) result in trees that share many
clades.

BUCKy may underestimate true discordance,
especially when tree space is large.

26

