Models of Molecular Evolution

Bret Larget

Departments of Botany and of Statistics University of Wisconsin—Madison

September 15, 2007

Genetics 875 (Fall 2009) Molecular Evolution September 15, 2009 1 / 14

◀ㅁ▶ ◀ @ ▶ ◀ 혼▶ ◀ 혼▶ │ 돈│ ⊙ ٩ ⊙

Features of Molecular Evolution

- **1** Possible multiple changes on edges
- 2 Transition/transversion bias
- ³ Non-uniform base composition
- 4 Rate variation across sites
- **5** Dependence among sites
- **6** Codon position
- **2** Protein structure

 OQ

<伊) <ミ) <ミ) =ミ

A Famous Quote About Models

Essentially, all models are wrong, but some are useful.

George Box

Probability Models

- A probabilistic framework provides a platform for formal statistical inference
- Examining goodness of fit can lead to model refinement and a better understanding of the actual biological process
- Model refinement is a continuing area of research
- Most common models of molecular evolution treat sites as independent
- These common models just need to describe the substitutions among four bases at a single site over time.

◀ㅁ▶ ◀♬▶ ◀톧▶ ◀툳▶ _ 톤 _ ⊙٩⊙

The Markov Property

- Use the notation $X(t)$ to represent the base at time t.
- **•** Formal statement:

$$
P\{X(s+t) = j \mid X(s) = i, X(u) = x(u) \text{ for } u < s\}
$$
\n
$$
= P\{X(s+t) = j \mid X(s) = i\}
$$

- Informal understanding: given the present, the past is independent of the future
- If the expression does not depend on the time s, the Markov process is called homogeneous.

Rate Matrix

- **•** Positive off-diagonal rates of transition
- Negative total on the diagonal
- Row sums are zero
- Example

$$
Q = \{q_{ij}\} = \left(\begin{array}{cccc} -1.1 & 0.3 & 0.6 & 0.2 \\ 0.2 & -1.1 & 0.3 & 0.6 \\ 0.4 & 0.3 & -0.9 & 0.2 \\ 0.2 & 0.9 & 0.3 & -1.4 \end{array}\right)
$$

Alarm Clock Description

- \bullet If the current state is i, the time to the next event is exponentially distributed with rate $-q_{ii}$ defined to be q_i .
- \bullet Given a transition occurs from state *i*, the probability that the transition is to state j is proportional to $\overline{q_{ij}}$, namely $\overline{q_{ij}}/\sum_{k\neq i}q_{ik}.$

◀ㅁ▶ ◀♬▶ ◀톧▶ ◀툳▶ _ 톤 _ ⊙٩⊙

Path Probability Density Calculation

Example: Begin at A, change to G at time 0.3, change to C at time 0.8, and then no more changes before time $t = 1$.

$$
\begin{array}{rcl} \mathsf{P} \left\{ \mathsf{path} \right\} & = & \mathsf{P} \left\{ \mathsf{begin} \mathsf{at} \mathsf{A} \right\} \\ & \times \left(1.1 \mathrm{e}^{-(1.1)(0.3)} \cdot \frac{0.6}{1.1} \right) \\ & \times \left(0.9 \mathrm{e}^{-(0.9)(0.5)} \cdot \frac{0.3}{0.9} \right) \\ & \times \left(\mathrm{e}^{-(1.1)(0.2)} \right) \end{array}
$$

Transition Probabilities

- For a continuous time Markov chain, the *transition matrix* whose *ij* element is the probability of being in state j at time t given the process begins in state i at time 0 is $P(t) = \mathrm{e}^{Qt}.$
- A probability transition matrix has non-negative values and each row sums to one.
- Each row contains the probabilities from a probability distribution on the possible states of the Markov process.

K □ ▶ K 何 ▶ K 로 ▶ K 로 ▶ │ 로 │ Y Q (∿

Examples

$$
P(0.1)=\left(\begin{array}{cccc} 0.897 & 0.029 & 0.055 & 0.019 \\ 0.019 & 0.899 & 0.029 & 0.053 \\ 0.037 & 0.029 & 0.916 & 0.019 \\ 0.019 & 0.080 & 0.029 & 0.872 \end{array}\right)\quad P(0.5)=\left(\begin{array}{cccc} 0.605 & 0.118 & 0.199 & 0.079 \\ 0.079 & 0.629 & 0.118 & 0.174 \\ 0.132 & 0.118 & 0.671 & 0.079 \\ 0.079 & 0.261 & 0.118 & 0.542 \end{array}\right)
$$

$$
P(1)=\left(\begin{array}{cccc} 0.407 & 0.190 & 0.276 & 0.126 \\ 0.126 & 0.464 & 0.190 & 0.219 \\ 0.184 & 0.190 & 0.500 & 0.126 \\ 0.126 & 0.329 & 0.190 & 0.355 \end{array}\right)\quad P(10)=\left(\begin{array}{cccc} 0.200 & 0.300 & 0.300 & 0.200 \\ 0.200 & 0.300 & 0.300 & 0.200 \\ 0.200 & 0.300 & 0.300 & 0.200 \\ 0.200 & 0.300 & 0.300 & 0.200 \end{array}\right)
$$

K ロ ▶ K @ ▶ K 할 ▶ K 할 ▶ │ 할 │ ◆ 9 Q (º

The Stationary Distribution

- Well behaved continuous-time Markov chains have a stationary distribution, often designated π (not the constant close to 3.14 related to circles).
- When the time t is large enough, the probability $P_{ij}(t)$ will be close to π_j for each $i.$ (See $P(10)$ from earlier.)
- The stationary distribution can be thought of as a long-run average over a long time, the proportion of time the state spends in state i converges to π_i .

◀ㅁ▶ ◀♬▶ ◀톧▶ ◀툳▶ _ 톤 _ ⊙٩⊙

Parameterization

The matrix $Q = \{q_{ij}\}$ is typically parameterized as $q_{ij} = r_{ij} \pi_j / \mu$ for $i \neq j$ which guarantees that π will be the stationary distribution when $r_{ij} = r_{ji}$.

Scaling

• The expected number of substitutions per unit time is the average rate of substitution which is a weighted average of the rates for each state weighted by their stationary distribution.

$$
\mu=\sum_i \pi_i q_i
$$

 \bullet If the matrix Q is reparameterized so that all elements are divided by μ , then the unit of measurement becomes one substitution.

Time-reversibility

• The matrix Q is the matrix for a time-reversible Markov chain when $\pi_i q_{ij} = \pi_j q_{ji}$ for all i and j . That is the overall rate of substitutions from i to j equals the overall rate of substitutions from j to i for every pair of states i and j .