Models of Molecular Evolution

Bret Larget

Departments of Botany and of Statistics University of Wisconsin—Madison

September 15, 2007

Genetics 875 (Fall 2009)

Molecular Evolution

September 15, 2009 1 / 14

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ ● 三 ● の Q @

Features

Features of Molecular Evolution

- Possible multiple changes on edges
- Transition/transversion bias 2
- On-uniform base composition
- Rate variation across sites 4
- Dependence among sites
- Odon position
- Protein structure

 $\mathcal{O} \mathcal{Q} \mathcal{O}$

(日本)

Models

A Famous Quote About Models

Essentially, all models are wrong, but some are useful.

George Box

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 のへで

Probability Models

- A probabilistic framework provides a platform for formal statistical inference
- Examining goodness of fit can lead to model refinement and a better understanding of the actual biological process
- Model refinement is a continuing area of research
- Most common models of molecular evolution treat sites as independent
- These common models just need to describe the substitutions among four bases at a single site over time.

The Markov Property

- Use the notation X(t) to represent the base at time t.
- Formal statement:

$$P \{X(s+t) = j | X(s) = i, X(u) = x(u) \text{ for } u < s\}$$

= P {X(s+t) = j | X(s) = i}

- Informal understanding: given the present, the past is independent of the future
- If the expression does not depend on the time s, the Markov process is called *homogeneous*.

Rate Matrix

- Positive off-diagonal rates of transition
- Negative total on the diagonal
- Row sums are zero
- Example

$$Q = \{q_{ij}\} = egin{pmatrix} -1.1 & 0.3 & 0.6 & 0.2 \ 0.2 & -1.1 & 0.3 & 0.6 \ 0.4 & 0.3 & -0.9 & 0.2 \ 0.2 & 0.9 & 0.3 & -1.4 \end{pmatrix}$$

▲□▶ ▲□▶ ▲ 三▶ ▲ 三 ● ● ●

Alarm Clock Description

- If the current state is *i*, the time to the next event is exponentially distributed with rate $-q_{ii}$ defined to be q_i .
- Given a transition occurs from state *i*, the probability that the transition is to state *j* is proportional to q_{ij} , namely $q_{ij} / \sum_{k \neq i} q_{ik}$.

Path Probability Density Calculation

• Example: Begin at A, change to G at time 0.3, change to C at time 0.8, and then no more changes before time t = 1.

$$P \{ path \} = P \{ begin at A \}$$

$$\times \left(1.1 e^{-(1.1)(0.3)} \cdot \frac{0.6}{1.1} \right)$$

$$\times \left(0.9 e^{-(0.9)(0.5)} \cdot \frac{0.3}{0.9} \right)$$

$$\times \left(e^{-(1.1)(0.2)} \right)$$

▲□▶▲□▶▲□▶▲□▶ = のへで

Transition Probabilities

- For a continuous time Markov chain, the *transition matrix* whose *ij* element is the probability of being in state *j* at time *t* given the process begins in state *i* at time 0 is $P(t) = e^{Qt}$.
- A probability transition matrix has non-negative values and each row sums to one.
- Each row contains the probabilities from a probability distribution on the possible states of the Markov process.

Examples

$$P(0.1) = \begin{pmatrix} 0.897 & 0.029 & 0.055 & 0.019 \\ 0.019 & 0.899 & 0.029 & 0.053 \\ 0.037 & 0.029 & 0.916 & 0.019 \\ 0.019 & 0.080 & 0.029 & 0.872 \end{pmatrix} P(0.5) = \begin{pmatrix} 0.605 & 0.118 & 0.199 & 0.079 \\ 0.079 & 0.629 & 0.118 & 0.174 \\ 0.132 & 0.118 & 0.671 & 0.079 \\ 0.079 & 0.261 & 0.118 & 0.542 \end{pmatrix}$$
$$P(1) = \begin{pmatrix} 0.407 & 0.190 & 0.276 & 0.126 \\ 0.126 & 0.464 & 0.190 & 0.219 \\ 0.184 & 0.190 & 0.500 & 0.126 \\ 0.126 & 0.329 & 0.190 & 0.355 \end{pmatrix} P(10) = \begin{pmatrix} 0.200 & 0.300 & 0.300 & 0.200 \\ 0.200 & 0.300 & 0.300 & 0.200 \\ 0.200 & 0.300 & 0.300 & 0.200 \\ 0.200 & 0.300 & 0.300 & 0.200 \end{pmatrix}$$

September 15, 2009 10 / 14

< ロ > < 団 > < 国 > < 国 > < 国 > < 国 > < 回 > < の < ()

The Stationary Distribution

- Well behaved continuous-time Markov chains have a stationary distribution, often designated π (not the constant close to 3.14 related to circles).
- When the time t is large enough, the probability $P_{ij}(t)$ will be close to π_j for each i. (See P(10) from earlier.)
- The stationary distribution can be thought of as a long-run average over a long time, the proportion of time the state spends in state *i* converges to π_i.

11 / 14

Parameterization

• The matrix $Q = \{q_{ij}\}$ is typically parameterized as $q_{ij} = r_{ij}\pi_j/\mu$ for $i \neq j$ which guarantees that π will be the stationary distribution when $r_{ij} = r_{ji}$.

▲□▶ ▲□▶ ▲ □▶ ▲ □▶ ▲ □ ● ● ● ●

Scaling

 The expected number of substitutions per unit time is the average rate of substitution which is a weighted average of the rates for each state weighted by their stationary distribution.

$$\mu = \sum_{i} \pi_{i} q_{i}$$

• If the matrix Q is reparameterized so that all elements are divided by μ , then the unit of measurement becomes one substitution.

Time-reversibility

 The matrix Q is the matrix for a time-reversible Markov chain when π_iq_{ij} = π_jq_{ji} for all i and j. That is the overall rate of substitutions from i to j equals the overall rate of substitutions from j to i for every pair of states i and j.

▲□▶▲□▶▲□▶▲□▶ = のへで