Maximum Likelihood

Bret Larget

Departments of Botany and of Statistics University of Wisconsin—Madison

September 24, 2009

Genetics 629 (Fall 2009)

Maximum Likelihood

October 6, 2009 1 / 8

990

Principle of Maximum Likelihood

- Given parameters θ and data X
- The function $f(X | \theta)$ is the probability of observing data X given parameter θ . (Both X and θ can be multi-dimensional.)
- Keeping θ fixed, and treating f as a function of X, the total probability is one.

 $\mathcal{A} \mathcal{A} \mathcal{A}$

Principle of Maximum Likelihood

- The function $L(\theta) = f(X | \theta)$ with X fixed and θ unknown is called the *likelihood function*.
- The *principle of maximum likelihood* is to estimate θ with the value $\hat{\theta}$ that maximizes $L(\theta)$.
- In practice, it is common to maximize the log-likelihood, $\ell(\theta) = \ln L(\theta)$.
- This is because X often takes the form of an independent sample so that

$$L(X) = \prod_{i=1}^{n} f(X_i \mid \theta), \qquad \ell(\theta) = \sum_{i=1}^{n} \ln f(X_i \mid \theta)$$

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Coin-tossing Example

- A coin has a probability θ of being a head.
- Consider tossing the coin 100 times. The probability of each single sequence with exactly x heads is $f(x | \theta) = p^x (1 p)^{100-x}$.
- Say we observe the sequence

where heads appear 57 times.

• The maximum likelihood estimate is the value $\hat{\theta}$ that maximizes the function

$$L(\theta) = \theta^{57} (1-\theta)^{43},$$

or, equivalently that maximizes

$$\ell(heta) = 57(\ln heta) + 43(\ln(1- heta))$$
.

Simple calculus and common sense lead to the estimate $\hat{\theta} = 0.57$.

 $\mathcal{A} \mathcal{A} \mathcal{A}$

Maximum-likelihood edge lengths

- For the Jukes-Cantor model, a pair of sequences have x sites with observed differences and n x sites with the same base.
- The probability of any given sequence pair is

$$L(d) = \left(\frac{1}{4}\right)^{n} \times \left(\frac{1}{4} - \frac{1}{4}e^{-\frac{4}{3}d}\right)^{x} \times \left(\frac{1}{4} + \frac{3}{4}e^{-\frac{4}{3}d}\right)^{n-x}$$

which has the form

$$L(\theta) = C \times \theta^{x} (1 - 3\theta)^{n-x}$$

where

$$\theta = \frac{1}{4} - \frac{1}{4} e^{-\frac{4}{3}d}$$

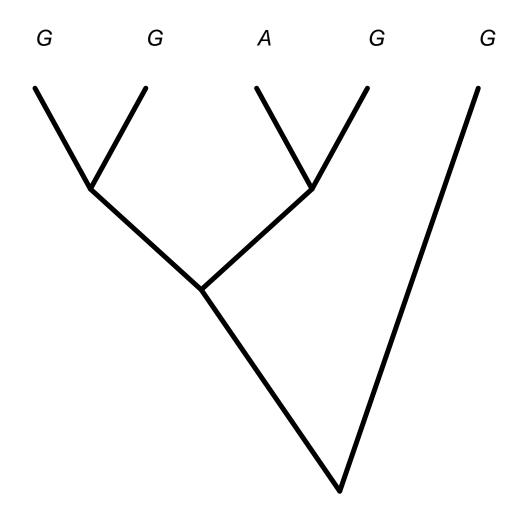
- Solving the calculus problem yields $\hat{\theta} = \frac{x}{3n}$.
- Plugging in and solving for *d* gives

$$\hat{d} = -\frac{3}{4} \ln \left(1 - \frac{4}{3} \frac{x}{n} \right)$$

Genetics 629 (Fall 2009)

- E

Computing Likelihood on a Tree



Genetics 629 (Fall 2009)

Maximum Likelihood

October 6, 2009 6 / 8

 $\mathcal{O}\mathcal{Q}\mathcal{O}$

◆□ ▶ < @ ▶ < E ▶ < E ▶ < E</p>

Transition Probabilities

$$P(0.1) = \begin{bmatrix} 0.90 & 0.04 & 0.04 & 0.03\\ 0.03 & 0.91 & 0.04 & 0.03\\ 0.03 & 0.04 & 0.91 & 0.03\\ 0.03 & 0.04 & 0.04 & 0.90 \end{bmatrix} P(0.2) = \begin{bmatrix} 0.81 & 0.07 & 0.07 & 0.05\\ 0.05 & 0.83 & 0.07 & 0.05\\ 0.05 & 0.07 & 0.83 & 0.05\\ 0.05 & 0.07 & 0.07 & 0.81 \end{bmatrix}$$
$$P(0.4) = \begin{bmatrix} 0.67 & 0.13 & 0.13 & 0.08\\ 0.08 & 0.71 & 0.13 & 0.08\\ 0.08 & 0.13 & 0.71 & 0.08\\ 0.08 & 0.13 & 0.13 & 0.67 \end{bmatrix}$$

October 6, 2009 7 / 8

◆□▶ ◆□▶ ◆ ミ▶ ◆ ミ▶ ● 三 の へ ()

12 *rbcL* genes from 12 plant species

Model	р	ℓ
JC69	21	-6262.01
K80	22	-6113.86
HKY85	25	-6101.76
HKY85 + Γ_5	26	-5764.26
HKY85 + C	35	-5624.70

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ ● ○ ○ ○ ○ ○