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History Reverend Thomas Bayes

Who was Bayes?

The Reverand Thomas Bayes was born in London in 1702.

He was the son of one of the first Noncomformist ministers to be
ordained in England.

He became a Presbyterian minister in the late 1720s, but was well
known for his studies of mathematics.

He was elected a Fellow of the Royal Society of London in 1742.

He died in 1761 before his works were published.
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Mathematical Background Bayes’ Theorem

What is Bayes’ Theorem?

Bayes’ Theorem explains how to calculate inverse probabilities.

For example, suppose that Box B1 contains four balls, three of which
are black and one of which is white.

Box B2 has four balls, two of which are black and two of which are
white.

Box B3 has four balls, one of which is black and three of which are
white.

B1: ©©©© B2: ©©©© B3: ©©©©

If a ball is chosen uniformly at random from Box B1, there is a 3/4
chance that it is black.

But if a black ball is drawn, how likely is it that it came from Box B1?
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Mathematical Background Bayes’ Theorem

What is Bayes’ Theorem?

B1: ©©©© B2: ©©©© B3: ©©©©

If a black ball is drawn, how likely is it that it came from Box B1?

To answer this question, we need to have prespecified probabilities of
which box we pick to draw the ball from.

The answer will be different if we believe a priori that Box B1 is 10%
likely to be the chosen box than if we believe that all three boxes are
equally likely.

Do the problem with a probability tree.
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Mathematical Background Bayes’ Theorem

Bayes’ Theorem

Bayes’ Theorem states that if a complete list of mutually exclusive
events B1,B2, . . . have prior probabilities P(B1),P(B2), . . ., and if the
likelihood of the event A given event Bi is P(A |Bi ) for each i , then

P(Bi |A) =
P(A |Bi )P(Bi )∑
j P(A |Bj)P(Bj)

The posterior probability of Bi given A, written P(Bi |A), is
proportional to the product of the likelihood P(A |Bi ) and the prior
probability P(Bi ) where the normalizing constant
P(A) =

∑
j P(A |Bj)P(Bj) is the prior probability of A.
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Mathematical Background Phylogenetics

Connection to Phylogeny

In a Bayesian approach to phylogenetics, the boxes are like different
tree topologies, only one of which is right.

The colored balls are like site patterns, except that there are many
more than two varieties and we are able to observe multiple
independent draws from each box.

Things are further complicated in that additional parameters such as
branch lengths and likelihood model parameters affect the likelihood,
but are also unknown.
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Mathematical Background Distributions

Prior and Posterior Distributions

A prior distribution is a probability distribution on parameters before
any data is observed.

A posterior distribution is a probability distribution on parameters
after data is observed.
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Mathematical Background Likelihood

Bayesian Methods vs. Maximum Likelihood

Maximum Likelihood Bayesian

Probability Only defined Describes everything
in the context that is uncertain

of long-run
relative frequencies

Parameters Fixed and Unknown Random

Nuisance Optimize them Average over them
Parameters

Testing p-values Bayes’ factors

Nature of Objective Subjective
Method
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Bayesian Phylogenetics Methods

Bayesian Phylogenetic Methods

Let’s say we want to find the posterior probability of a clade.

Then we are interested in computing

P(clade | data) =
∑

tree with clade

P(tree | data)

=
∑

tree with clade

P(data | tree)P(tree)

P(data)

But we need to know the parameters including branch lengths
(params) to compute the likelihood.X

tree with clade

P(data | tree)P(tree)

=
X

tree with clade

Z
P(data, params | tree)P(tree)dparams

=
X

tree with clade

P(tree)

Z
P(data | params, tree)P(params | tree)dparams
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Bayesian Phylogenetics Methods

Bayesian Phylogenetic Methods

So, we need to compute:P
tree with clade P(tree)

R
P(data | params, tree)P(params | tree)dparams

P(data)

However, P(data) is generally not computable.

Solution? Markov chain Monte Carlo.
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Example

Metropolis-Hastings Example

Assume a Jukes-Cantor likelihood model for two species where we
observe 50 sites, 9 of which differ.

The likelihood for the distance d is

L(d) =

(
1

4

)50

×
(

1

4
− 1

4
e−

4
3
d

)9

×
(

1

4
+

3

4
e−

4
3
d

)41

Assume a prior for d with the form

p(d) =
λ

(1 + λd)2
, d > 0

where λ > 0 is a parameter.

This density is what you get if you take the ratio of two independent
exponential random variables, one with parameter λ and one with
parameter 1.

The median is 1/λ, but the mean is +∞.
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Example

Example

An exact expression for the posterior density of d is

p(d | x) =

(
λ

(1+λd)2

)((
1
4

)50
(

1
4 −

1
4e−

4
3
d
)9 (

1
4 + 3

4e−
4
3
d
)41
)

∫∞
0

(
λ

(1+λd)2

)((
1
4

)50
(

1
4 −

1
4e−

4
3
d
)9 (

1
4 + 3

4e−
4
3
d
)41
)

dd
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Example

Graph
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