Distance Methods

Bret Larget

Departments of Botany and of Statistics University of Wisconsin—Madison

September 22, 2011

Distance Methods 1 / 12

UPGMA

- UPGMA is an acronym for Unweighted Pair-Group Method with Arithmetic Mean.
- UPGMA produces an ultrametric tree from a symmetric distance matrix.
- The depth of each node is the average of all of the pairwise distances between joined subtrees from the original distance matrix.
- The algorithm joins the pair with the smallest distance and then recomputes the distance from the new group to others.
- Continue until there is only one group.

Distance Methods 2 / 12

UPGMA Algorithm

- Find the *i* and *j* with the smallest distance D_{ij} .
- 2 Create a new group (ij) which has $n_{(ij)} = n_i + n_j$ members.
- **3** Connect i and j on the tree to a new node (ij). Give the edges connecting i to (ij) and j to (ij) each length so that the depth of group (ij) is $D_{ij}/2$.
- Compute the distance between the new group and all other groups except i and j by using

$$D_{(ij),k} = \left(\frac{n_i}{n_i + n_i}\right) D_{ik} + \left(\frac{n_j}{n_i + n_i}\right) D_{jk}$$

1 Delete columns and rows corresponding to i and j and add one for (ij). If there are two or more groups left, go back to the first step.

Distance Methods 3 / 12

Example

	Dog	Bear	Raccoon	Weasel
Dog	0	32	48	52
Bear	32	0	26	34
Raccoon	48	26	0	42
Weasel	52	34	42	0

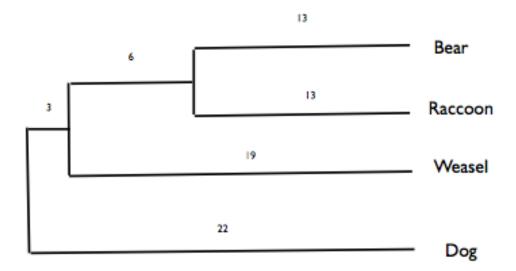
Join Bear and Raccoon, depth is 26/2 = 13.

Distance Methods 4 / 12

Example

	Dog	B/R	Weasel
Dog	0	40	52
B/R	40	0	38
Weasel	52	38	0

Join B/R and Weasel, depth is 38/2 = 19.


Distance Methods 5 / 12

Example

	Dog	B/R/W
Dog	0	44
B/R/W	44	0

Join Dog and B/R/W, depth is 44/2 = 22.

Distance Methods $6 \ / \ 12$

Distance Methods 7 / 12

Neighbor-joining

- Neighbor-Joining creates an unrooted tree which will be exact if original distance matrix matches an additive tree.
- Choice of the selected pair to join depends on adjusting distances to account for possible unequal rates.
- The adjustments result in negative "distances", and the smallest of these is selected.
- Once there are three remaining groups, the same tree results regardless which pair is selected to join next.
- UPGMA and Neighbor-joining can lead to different tree topologies.

Distance Methods 8 / 12

Neighbor-joining Algorithm

- **1** For each leaf, compute $u_i = \sum_{j \neq i} D_{ij}/(n-2)$.
- 2 Choose the i and j for which $D_{ij} u_i u_j$ is smallest.
- 3 Join *i* and *j* to a new node with lengths $(D_{ij} + u_i u_j)/2$ to node *i* and $(D_{ij} + u_i u_i)/2$ to node *j*.
- Compute the distance to the new node (ij) and the other groups as

$$D_{(ij),k} = \frac{D_{ik} + D_{jk} - D_{ij}}{2}$$

5 Delete columns and rows corresponding to i and j and add one for (ij). If there are three or more groups left, go back to the first step. Otherwise, connect the two remaining nodes with their distance.

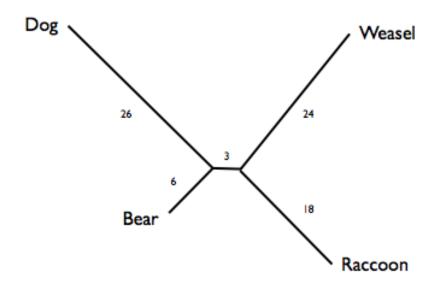
Distance Methods 9 / 12

Example

	D	В	R	W	иį
Dog	0	32	48	52	66
Bear	32	0	26	34	46
Raccoon	48	26	0	42	58
Weasel	52	34	42	0	64
$\overline{u_j}$	66	46	58	64	
)	В	R	W
Dog	_		80	-76	-78
Bear	-80)		-78	-76
Raccoon	-76	5 –	78		-80
Weasel	-78	3 –	76	-80	

- Can choose to join either
 D/B or R/W because of tie.
- New edge to dog has length (32 + 66 46)/2 = 26.
- New edge to bear has length (32 + 46 66)/2 = 6.
- Note these edges sum to 32, but are not equal.

Distance Methods $$10\ /\ 12$$


Example

	D/B	R	W	ui
D/B	0	21	27	48
Raccoon	21	0	42	63
Weasel	27	42	0	69
иј	48	63	69	
	D/B		R	W
D/B	_	-9	0 –	-90
Raccoon	-90			-90
Weasel	-90	-9	0	

- For the last three, you can always join any pair.
- Simply use the equation from step 4 of the algorithm for the distances.
- Note that in computing u_i , we now use n=3 as there are n groups now.

Distance Methods 11 / 12

Neighbor-Joining Tree

Distance Methods 12 / 12