UPGMA

Distance Methods

Bret Larget

Departments of Botany and of Statistics University of Wisconsin-Madison

September 22, 2011

- UPGMA is an acronym for Unweighted Pair-Group Method with Arithmetic Mean.
- UPGMA produces an ultrametric tree from a symmetric distance matrix.
- The depth of each node is the average of all of the pairwise distances between joined subtrees from the original distance matrix.
- The algorithm joins the pair with the smallest distance and then recomputes the distance from the new group to others.
- Continue until there is only one group.

Distance Methods

UPGMA Algorithm

- Find the *i* and *j* with the smallest distance D_{ij} .
- 2 Create a new group (*ij*) which has $n_{(ij)} = n_i + n_j$ members.
- Sonnect *i* and *j* on the tree to a new node (*ij*). Give the edges connecting *i* to (ij) and *j* to (ij) each length so that the depth of group (*ij*) is $D_{ii}/2$.
- Compute the distance between the new group and all other groups except *i* and *j* by using

$$D_{(ij),k} = \left(\frac{n_i}{n_i + n_j}\right) D_{ik} + \left(\frac{n_j}{n_i + n_j}\right) D_{jk}$$

5 Delete columns and rows corresponding to *i* and *j* and add one for (*ij*). If there are two or more groups left, go back to the first step.

Example

Distance Methods

	Dog	Bear	Raccoon	Weasel
Dog	0	32	48	52
Bear	32	0	26	34
Raccoon	48	26	0	42
Weasel	52	34	42	0

Join Bear and Raccoon, depth is 26/2 = 13.

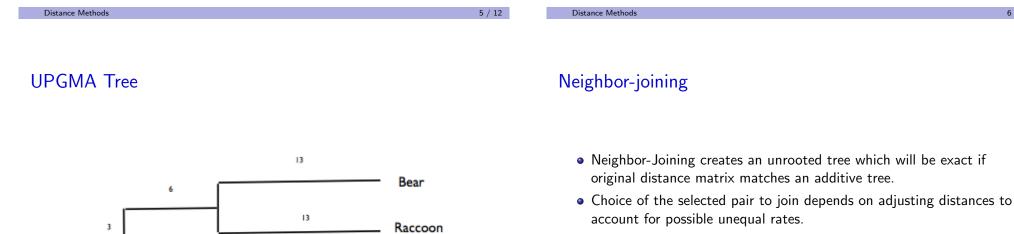
1 / 12

2 / 12

Example

Example

	Dog	B/R	Weasel
Dog	0	40	52
B/R	40	0	38
Weasel	52	38	0


19

22

Join B/R and Weasel, depth is 38/2 = 19.

	Dog	B/R/W
Dog	0	44
B/R/W	44	0

Join Dog and B/R/W, depth is 44/2 = 22.

Weasel

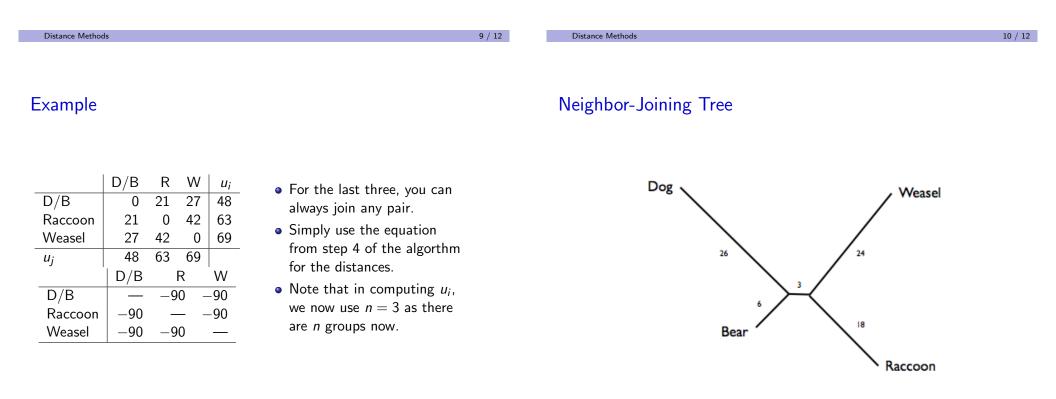
Dog

- The adjustments result in negative "distances", and the smallest of these is selected.
- Once there are three remaining groups, the same tree results regardless which pair is selected to join next.
- UPGMA and Neighbor-joining can lead to different tree topologies.

6 / 12

Neighbor-joining Algorithm

Example


- For each leaf, compute $u_i = \sum_{j \neq i} D_{ij}/(n-2)$.
- **2** Choose the *i* and *j* for which $D_{ij} u_i u_j$ is smallest.
- So Join *i* and *j* to a new node with lengths $(D_{ij} + u_i u_j)/2$ to node *i* and $(D_{ij} + u_j u_i)/2$ to node *j*.
- Compute the distance to the new node (ij) and the other groups as

$$D_{(ij),k} = \frac{D_{ik} + D_{jk} - D_{ij}}{2}$$

Delete columns and rows corresponding to *i* and *j* and add one for (*ij*). If there are three or more groups left, go back to the first step. Otherwise, connect the two remaining nodes with their distance.

	D	В	R	W	Ui	
Dog	0	32	48	52	66	•
Bear	32	0	26	34	46	
Raccoon	48	26	0	42	58	•
Weasel	52	34	42	0	64	
и _ј	66	46	58	64		
-	D)	В	R	W	٩
Dog			80	-76	-78	-
Bear	-80)		-78	-76	٩
Raccoon	-76	5 —	78		-80	
Weasel	-78	3 —	76	-80		_

- Can choose to join either D/B or R/W because of tie.
- New edge to dog has length (32 + 66 46)/2 = 26.
- New edge to bear has length (32+46-66)/2=6.
- Note these edges sum to 32, but are not equal.

