Who was Bayes?

Bayesian Phylogenetics

Bret Larget

Departments of Botany and of Statistics University of Wisconsin—Madison

October 6, 2011

- The Reverand Thomas Bayes was born in London in 1702.
- He was the son of one of the first Noncomformist ministers to be ordained in England.
- He became a Presbyterian minister in the late 1720s, but was well known for his studies of mathematics.
- He was elected a Fellow of the Royal Society of London in 1742.
- He died in 1761 before his works were published.

Bayesian Phylogenetics 1 / 27	Bayesian Phylogenetics History Reverend Thomas Bayes 2 / 27				
What is Bayes' Theorem?	What is Bayes' Theorem?				
• Bayes' Theorem explains how to calculate inverse probabilities.					
 For example, suppose that Box B₁ contains four balls, three of which are black and one of which is white. 	$B_1: \bigcirc \bigcirc \bigcirc \bigcirc \bigcirc \\ B_2: \bigcirc \bigcirc \bigcirc \bigcirc \bigcirc \\ B_3: \bigcirc \bigcirc \bigcirc \bigcirc \\ B_3: \bigcirc \bigcirc \bigcirc \bigcirc \\ B_3: \bigcirc \bigcirc \bigcirc \bigcirc \bigcirc \\ B_3: \bigcirc \bigcirc \bigcirc \bigcirc \bigcirc \bigcirc \\ B_3: \bigcirc \\ B_3: \bigcirc 0 \\ B_3: \bigcirc \bigcirc \bigcirc \bigcirc \bigcirc 0 \\ B_3: \bigcirc \bigcirc \bigcirc \bigcirc 0 \\ B_3: \bigcirc \bigcirc \bigcirc 0 \\ B_3: \bigcirc \bigcirc 0 \\ O \bigcirc \bigcirc 0 \\ B_3: \bigcirc 0 \bigcirc 0 \\ O \bigcirc$				
• Box B_2 has four balls, two of which are black and two of which are white	• If a black ball is drawn, how likely is it that it came from Box B_1 ?				
 white. Box B₃ has four balls, one of which is black and three of which are 	 To answer this question, we need to have prespecified probabilities of which box we pick to draw the ball from. 				
white. $B_1: \bigcirc \bigcirc \bigcirc \bigcirc B_2: \bigcirc \bigcirc \bigcirc \bigcirc B_3: \bigcirc \bigcirc \bigcirc \bigcirc$	• The answer will be different if we believe <i>a priori</i> that Box <i>B</i> ₁ is 10% likely to be the chosen box than if we believe that all three boxes are				
• If a ball is chosen <i>uniformly at random</i> from Box B_1 , there is a $3/4$	equally likely.				
chance that it is black.	 Do the problem with a probability tree. 				

• But if a black ball is drawn, how likely is it that it came from Box B_1 ?

Bayes' Theorem

Bayesian Phylogenetics

Bayes' Theorem

Connection to Phylogeny

• Bayes' Theorem states that if a complete list of mutually exclusive events B_1, B_2, \ldots have prior probabilities $P(B_1), P(B_2), \ldots$, and if the *likelihood* of the event A given event B_i is $P(A | B_i)$ for each *i*, then

$$\mathsf{P}(B_i | A) = \frac{\mathsf{P}(A | B_i)\mathsf{P}(B_i)}{\sum_j \mathsf{P}(A | B_j)\mathsf{P}(B_j)}$$

The *posterior probability* of B_i given A, written P(B_i | A), is proportional to the product of the *likelihood* P(A | B_i) and the *prior probability* P(B_i) where the normalizing constant P(A) = ∑_i P(A | B_j)P(B_j) is the prior probability of A.

- In a Bayesian approach to phylogenetics, the boxes are like different tree topologies, only one of which is right.
- The colored balls are like site patterns, except that there are many more than two varieties and we are able to observe multiple independent draws from each box.
- Things are further complicated in that additional parameters such as branch lengths and likelihood model parameters affect the likelihood, but are also unknown.

Bayesian Phylogenetics	Mathematical Background	Bayes' Theorem	5 / 27	Bayesian Phylogenetics	Mathematical Background	Phylogenetics	6 / 27

Prior and Posterior Distributions

Bayesian Methods vs. Maximum Likelihood

	Maximum Likelihood	Bayesian		
Probability	Only defined	Describes everything		
	in the context	that is uncertain		
	of long-run			
	relative frequencies			
Parameters	Fixed and Unknown	Random		
Nuisance	Optimize them	Average over them		
Parameters				
Testing	p-values	Bayes' factors		
Model	Likelihood	Likelihood and Prior Distribution		

Likelihood

- A *prior distribution* is a probability distribution on parameters *before* any data is observed.
- A *posterior distribution* is a probability distribution on parameters *after* data is observed.

Bayesian Phylogenetic Methods

- Let's say we want to find the posterior probability of a clade.
- Then we are interested in computing

$$P(\text{clade} | \text{data}) = \sum_{\text{tree with clade}} P(\text{tree} | \text{data})$$
$$= \sum_{\text{tree with clade}} \frac{P(\text{data} | \text{tree})P(\text{tree})}{P(\text{data})}$$

• But we need to know the parameters including branch lengths (params) to compute the likelihood.

Bayesian Phylogenetic Methods

• So, we need to compute:

$$\frac{\sum_{\text{tree with clade}} P(\text{tree}) \int P(\text{data} \mid \text{params}, \text{tree}) P(\text{params} \mid \text{tree}) d\text{params}}{P(\text{data})}$$

- However, P(data) is generally not computable.
- Solution? Markov chain Monte Carlo.

Bayesian Phylogenetics

Bayesian Phylogenetics

Methods

10 / 27

Metropolis-Hastings Example

- Assume a Jukes-Cantor likelihood model for two species where we observe 50 sites, 9 of which differ.
- The likelihood for the distance d is

$$L(d) = \left(\frac{1}{4}\right)^{50} \times \left(\frac{1}{4} - \frac{1}{4}e^{-\frac{4}{3}d}\right)^9 \times \left(\frac{1}{4} + \frac{3}{4}e^{-\frac{4}{3}d}\right)^{41}$$

• Assume a prior for *d* with the form

$$p(d) = rac{\lambda}{(1+\lambda d)^2}, \quad d > 0$$

where $\lambda > 0$ is a parameter.

- This density is what you get if you take the ratio of two independent exponential random variables, one with parameter λ and one with parameter 1.
- The median is $1/\lambda$, but the mean is $+\infty$.

Example

• An exact expression for the posterior density of d is

$$p(d \mid x) = \frac{\left(\frac{\lambda}{(1+\lambda d)^2}\right) \left(\left(\frac{1}{4}\right)^{50} \left(\frac{1}{4} - \frac{1}{4}e^{-\frac{4}{3}d}\right)^9 \left(\frac{1}{4} + \frac{3}{4}e^{-\frac{4}{3}d}\right)^{41}\right)}{\int_0^\infty \left(\frac{\lambda}{(1+\lambda d)^2}\right) \left(\left(\frac{1}{4}\right)^{50} \left(\frac{1}{4} - \frac{1}{4}e^{-\frac{4}{3}d}\right)^9 \left(\frac{1}{4} + \frac{3}{4}e^{-\frac{4}{3}d}\right)^{41}\right) \mathrm{d}d}$$

- Markov chain Monte Carlo (MCMC) is a method to take (dependent) samples from a distribution.
- The distribution need only be known up to a constant of proportionality.
- MCMC is especially useful for computation of Bayesian posterior probabilities.
- Simple summary statistics from the sample converge to posterior probabilities.
- Metropolis-Hastings is a form of MCMC that works using any Markov chain to propose the next item to sample, but rejecting proposals with specified probability.

An MCMC Algorithm

- Start at x_0 ; Set i = 0.
- **2** Propose x^* from the current x_i .
- Galculate the acceptance probability.
- Generate a random number.
- If accepted, set x_{i+1} = x*.
 If rejected, set x_{i+1} = x_i.
- Increment *i* to i + 1.
- Repeat steps 2 through 6 many times.

Computation

Example

- We have a function $h(\theta)$ from which we want to sample.
- We only need to know *h* up to a normalizing constant.

Target Distribution

мсмс

Example

Initial Point

- We begin the Markov chain at a single point.
- We evaluate the value of *h* at this point.

Proposal Distribution

• Given our current state, we have a proposal distribution for the next candidate state.

Initial Point			Proposal Distribution			
Bayesian Phylogenetics Computa	tion Example	17 / 27	Bayesian Phylogenetics	Computation	Example	18 / 27
First Proposal			Second Propos	sal		
 We propose a <i>candidate</i> Current state θ; Propos This proposal is accepted 	ed state $ heta^*$			θ ; Proposed state	proposed state becomes $ heta^*$; Make another propo	
	Proposal th probability 1		θθ	Second Proposal Accept with probability 0.	153	

Computation

Example

Third Proposal

- The proposal was rejected, so proposed state *is sampled again* and remains current.
- Current state θ ; Proposed state θ^* ; Make another proposal.
- This proposal is accepted.

Beginning of Sample

- The first four sample points.
- Vertical position is random to separate points at the same point.

Larger Sample

• Repeat this for 10,000 proposals and show the sample.

Comparison to Target

Example

Computation

Example

Things to Note

MCMC for Phylogenetics

- The resulting sample mimics the target sample very well.
- The shape of the proposal distribution *did not depend on the target* distribution at all: almost any type of proposal method would have worked.
- There is a lot of *autocorrelation*: MCMC produces *dependent samples*.
- The acceptance probabilities depend on the proposal distributions and *relative* values of the target.
- Summaries of the sample are *good estimates* of corresponding target quantities:
 - The sample mean converges to the mean of the target.

Computation

- The sample median converges to the median of the target.
- ▶ The sample tail area above 1.0 converges to the relative area above 1.0 in the target.

- The model parameters for a Bayesian phylogenetics analysis typically includes:
 - a tree (topology and branch lengths);
 - substitution process parameters.
- There are most often multiple MCMC methods used in combination.
- For example, methods may:
 - Adust the stationary distribution, leaving other things fixed;
 - Adjust the rates, leaving the tree fixed;
 - Adjust some branch lengths, leaving the topology and Q fixed;
 - Adjust the tree in a small region, leaving the rest of the tree fixed;

26 / 27

and so on.

Example

25 / 27

Bayesian Phylogenetics

MCMC for Phylogenetics

Cautions

- It is important to discard an initial portion of the sample as *burnin*.
- The MCMC sampler must be run for a long time after reaching stationarity.
- It is good practice to make several independent runs to assess agreement; chains can get stuck in local regions, leading to inaccurate inferences.
- Problems with many taxa or very long sequences are more likely to have computational problems.