Who was Bayes?

Bayesian Phylogenetics

Bret Larget

Departments of Botany and of Statistics University of Wisconsin—Madison

October 6, 2011

- The Reverand Thomas Bayes was born in London in 1702.
- He was the son of one of the first Noncomformist ministers to be ordained in England.
- He became a Presbyterian minister in the late 1720s, but was well known for his studies of mathematics.
- He was elected a Fellow of the Royal Society of London in 1742.
- He died in 1761 before his works were published.

 \bullet But if a black ball is drawn, how likely is it that it came from Box B_1 ?

Bayes' Theorem

Connection to Phylogeny

Bayes' Theorem states that if a complete list of mutually exclusive events B_1, B_2, \ldots have prior probabilities $P(B_1), P(B_2), \ldots$, and if the likelihood of the event A given event B_i is $P(A | B_i)$ for each i, then

$$
P(B_i | A) = \frac{P(A | B_i)P(B_i)}{\sum_j P(A | B_j)P(B_j)}
$$

The *posterior probability* of B_i given A , written $\mathsf{P}(B_i \,|\, A)$, is proportional to the product of the *likelihood* $P(A | B_i)$ and the *prior* probability $P(B_i)$ where the normalizing constant $\mathsf{P}(\mathsf{A}) = \sum_j \mathsf{P}(\mathsf{A} \,|\, \mathsf{B}_j) \mathsf{P}(\mathsf{B}_j)$ is the prior probability of $\mathsf{A}.$

- In a Bayesian approach to phylogenetics, the boxes are like different tree topologies, only one of which is right.
- The colored balls are like site patterns, except that there are many more than two varieties and we are able to observe multiple independent draws from each box.
- Things are further complicated in that additional parameters such as branch lengths and likelihood model parameters affect the likelihood, but are also unknown.

Prior and Posterior Distributions

Bayesian Methods vs. Maximum Likelihood

Maximum Likelihood Bayesian

• A prior distribution is a probability distribution on parameters before any data is observed.

• A *posterior distribution* is a probability distribution on parameters after data is observed.

Bayesian Phylogenetic Methods

- Let's say we want to find the posterior probability of a clade.
- Then we are interested in computing

$$
P(\text{clade} | \text{data}) = \sum_{\text{tree with clade}} P(\text{tree} | \text{data})
$$

$$
= \sum_{\text{tree with clade}} \frac{P(\text{data} | \text{tree})P(\text{tree})}{P(\text{data})}
$$

• But we need to know the parameters including branch lengths (params) to compute the likelihood.

Bayesian Phylogenetic Methods

• So, we need to compute:

$$
\frac{\sum_{\text{tree with clade}} P(\text{tree}) \int P(\text{data} \mid \text{params}, \text{tree}) P(\text{params} \mid \text{tree}) \text{dparams}}{P(\text{data})}
$$

- However, P(data) is generally not computable.
- Solution? Markov chain Monte Carlo.

Bayesian Phylogenetics Bayesian Phylogenetics Methods 10 / 27

Metropolis-Hastings Example

- Assume a Jukes-Cantor likelihood model for two species where we observe 50 sites, 9 of which differ.
- \bullet The likelihood for the distance d is

$$
L(d) = \left(\frac{1}{4}\right)^{50} \times \left(\frac{1}{4} - \frac{1}{4}e^{-\frac{4}{3}d}\right)^{9} \times \left(\frac{1}{4} + \frac{3}{4}e^{-\frac{4}{3}d}\right)^{41}
$$

• Assume a prior for d with the form

$$
p(d)=\frac{\lambda}{(1+\lambda d)^2},\quad d>0
$$

where $\lambda > 0$ is a parameter.

- This density is what you get if you take the ratio of two independent exponential random variables, one with parameter λ and one with parameter 1.
- The median is $1/\lambda$, but the mean is $+\infty$.

Example

 \bullet An exact expression for the posterior density of d is

$$
p(d \mid x) = \frac{\left(\frac{\lambda}{(1+\lambda d)^2}\right) \left(\left(\frac{1}{4}\right)^{50} \left(\frac{1}{4} - \frac{1}{4}e^{-\frac{4}{3}d}\right)^9 \left(\frac{1}{4} + \frac{3}{4}e^{-\frac{4}{3}d}\right)^{41}\right)}{\int_0^\infty \left(\frac{\lambda}{(1+\lambda d)^2}\right) \left(\left(\frac{1}{4}\right)^{50} \left(\frac{1}{4} - \frac{1}{4}e^{-\frac{4}{3}d}\right)^9 \left(\frac{1}{4} + \frac{3}{4}e^{-\frac{4}{3}d}\right)^{41}\right) \mathrm{d}d}
$$

- Markov chain Monte Carlo (MCMC) is a method to take (dependent) samples from a distribution.
- The distribution need only be known up to a constant of proportionality.
- MCMC is especially useful for computation of Bayesian posterior probabilities.
- Simple summary statistics from the sample converge to posterior probabilities.
- Metropolis-Hastings is a form of MCMC that works using any Markov chain to propose the next item to sample, but rejecting proposals with specified probability.

An MCMC Algorithm

- **1** Start at x_0 ; Set $i = 0$.
- **2** Propose x^* from the current x_i .
- ³ Calculate the acceptance probability.
- **4** Generate a random number.
- **9 0** If accepted, set $x_{i+1} = x^*$. **2** If rejected, set $x_{i+1} = x_i$.
- **O** Increment *i* to $i + 1$.
- **7** Repeat steps 2 through 6 many times.

Example

- We have a function $h(\theta)$ from which we want to sample.
- \bullet We only need to know h up to a normalizing constant.

Target Distribution

Initial Point

- We begin the Markov chain at a single point.
- \bullet We evaluate the value of h at this point.

Proposal Distribution

Given our current state, we have a proposal distribution for the next candidate state.

Third Proposal

- The proposal was rejected, so proposed state is sampled again and remains current.
- Current state θ ; Proposed state θ^* ; Make another proposal.
- This proposal is accepted.

Beginning of Sample

- The first four sample points.
- Vertical position is random to separate points at the same point.

Larger Sample

• Repeat this for 10,000 proposals and show the sample.

Comparison to Target

Things to Note

MCMC for Phylogenetics

- The resulting sample mimics the target sample very well.
- The shape of the proposal distribution did not depend on the target distribution at all: almost any type of proposal method would have worked.
- There is a lot of *autocorrelation*: MCMC produces *dependent samples*.
- The acceptance probabilities depend on the proposal distributions and relative values of the target.
- Summaries of the sample are good estimates of corresponding target quantities:
	- \blacktriangleright The sample mean converges to the mean of the target.
	- \blacktriangleright The sample median converges to the median of the target.
	- \blacktriangleright The sample tail area above 1.0 converges to the relative area above 1.0 in the target.
- The model parameters for a Bayesian phylogenetics analysis typically includes:
	- \triangleright a tree (topology and branch lengths);
	- \blacktriangleright substitution process parameters.
- There are most often multiple MCMC methods used in combination.
- For example, methods may:
	- \triangleright Adust the stationary distribution, leaving other things fixed;
	- \blacktriangleright Adjust the rates, leaving the tree fixed;
	- \triangleright Adjust some branch lengths, leaving the topology and Q fixed;
	- Adjust the tree in a small region, leaving the rest of the tree fixed;
	- \blacktriangleright and so on.

Bayesian Phylogenetics MCMC for Phylogenetics 26 / 27

Cautions

- It is important to discard an initial portion of the sample as *burnin*.
- The MCMC sampler must be run for a long time after reaching stationarity.
- It is good practice to make several independent runs to assess agreement; chains can get stuck in local regions, leading to inaccurate inferences.
- Problems with many taxa or very long sequences are more likely to have computational problems.