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A common problem in molecular phylogenetics is choosing a model of DNA substitution that does a good job of
explaining the DNA sequence alignment without introducing superfluous parameters. A number of methods have been
used to choose among a small set of candidate substitution models, such as the likelihood ratio test, the Akaike
Information Criterion (AIC), the Bayesian Information Criterion (BIC), and Bayes factors. Current implementations of
any of these criteria suffer from the limitation that only a small set of models are examined, or that the test does not allow
easy comparison of non-nested models. In this article, we expand the pool of candidate substitution models to include all
possible time-reversible models. This set includes seven models that have already been described. We show how Bayes
factors can be calculated for these models using reversible jump Markov chain Monte Carlo, and apply the method to 16
DNA sequence alignments. For each data set, we compare the model with the best Bayes factor to the best models chosen
using AIC and BIC. We find that the best model under any of these criteria is not necessarily the most complicated one;
models with an intermediate number of substitution types typically do best. Moreover, almost all of the models that are
chosen as best do not constrain a transition rate to be the same as a transversion rate, suggesting that it is the transition/
transversion rate bias that plays the largest role in determining which models are selected. Importantly, the reversible
jump Markov chain Monte Carlo algorithm described here allows estimation of phylogeny (and other phylogenetic
model parameters) to be performed while accounting for uncertainty in the model of DNA substitution.

Introduction

At present, a universal assumption of model-based
methods of phylogenetic inference is that character change
occurs according to a continuous-time Markov chain. At
the heart of any continuous-time Markov chain is a matrix
of rates, specifying the rate of change from one character
state to another. For many phylogenetic analyses using
DNA sequence data, it is assumed that there are four states
(the nucleotides A, C, G, T/U) with a 43 4 matrix of rates
among the 12 possible nucleotide substitutions. A few
standard models of DNA substitution have been proposed.
These include those first described by Jukes and Cantor
(1969), Kimura (1980, 1981), Felsenstein (1981, 1984),
Hasegawa, Yano, and Kishino (1984, 1985), Tamura and
Nei (1993), and Tavaré (1986). Importantly, the parame-
terizations of the substitution process suggested by these
authors can be directly applied to doublet models (used to
describe the substitution process in stem-paired nucleo-
tides; Schöniger and von Haeseler 1994) and codon
models (used to describe substitutions in the three
nucleotides of a codon; Goldman and Yang 1994, Muse
and Gaut 1994). Moreover, these models are used in a wide
variety of analysis methods, including distance, maximum
likelihood, and Bayesian methods.

One of the challenges facing the biologist is to choose
a model of DNA substitution that best describes the data in
hand. Generally speaking, the aim is to pick a model that
adequately explains the data (in this case an alignment of
DNA sequences) without introducing superfluous param-
eters; one wants to strike a balance between bias avoidance
(achieved by using models with many parameters) and

reduced variance in the parameter estimates (achieved by
using models with few parameters). Fortunately, there are
several methods available that allow the biologist to
choose among substitution models in a statistical frame-
work. When two nested models are compared, one can use
likelihood ratio tests (Goldman 1993). Models are nested
when one model is a special case of a more general model.
For example, the model proposed by Jukes and Cantor
(1969) is a special case of the model proposed by Kimura
(1980), which introduces an additional parameter de-
scribing the transition/transversion rate bias. When the
transition/transversion bias is set to one, then Kimura’s
model is equivalent to the Jukes-Cantor model. In such
nested model comparisons, minus twice the log likelihood
ratio is asymptotically distributed as a v2 distribution,
where the degrees of freedom of the v2 is the difference in
the number of free parameters between the general and
restricted models. Phylogeneticists commonly employ
a series of nested likelihood ratio tests (LRTs) to select
a substitution model, either by calculating likelihood ratios
by hand for a pool of candidate models or by using
Modeltest (Posada and Crandall 1998), which automates
this procedure. This is a reasonable approach because
many of the most familiar substitution models can be
arranged linearly in a nested hierarchy.

Unfortunately, not all of the interesting substitution
model comparisons are between nested models. In these
cases, it may make sense to use a method that does not
assume nesting of models, such as Akaike’s Information
Criterion (AIC; Akaike 1973), which is based on in-
formation theory (specifically, the Kullback-Liebler dis-
tance between models) and introduces a penalty term for
models that have more parameters. The idea is to calculate
the AIC for every candidate model, and choose the model
with the smallest AIC for data analysis. (One might also
consider other models that achieve a low AIC score.)
Methods related to the AIC include the small sample bias
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adjusted AIC proposed by Hurvich and Tsai (1989),
a quasi-likelihood modification (QAIC) suggested by
Lebreton et al. (1992), and the Bayesian information
criterion (BIC; Schwarz 1978). AIC has been commonly
used for choosing among a limited number of candidate
substitution models, and it is implemented in the program
Modeltest (Posada and Crandall 1998).

The criteria described above all work well when
maximum likelihood is the criterion. In a Bayesian
analysis, model choice is often guided by the Bayes factor
(Kass and Raftery 1995; Raftery 1996), which is the ratio
of the marginal likelihoods of two models; instead of
maximizing the likelihood with respect to the parameters,
the parameters are integrated over a prior probability
distribution. Relatively little work has been done on
Bayesian model selection in phylogenetics, with the
notable exception of that by Suchard, Weiss, and
Sinsheimer (2001). Their work showed how Bayes factors
can be calculated for nested models using the Savage-
Dickey ratio (Verdinelli and Wasserman 1995).

In this paper, we extend the pool of candidate
substitution models to all possible time-reversible models.
We develop a new Markov chain Monte Carlo (MCMC)
algorithm that jumps between models, allowing accurate
calculation of the Bayes factor for any of the models. We
also evaluate the possible DNA substitution models using
AIC and BIC. We show that, although the named models
often do a good job of explaining much of the pattern of
substitution for real data sets, (1) many other (unnamed)
models also do quite well, (2) the most complicated time-
reversible model is not universally chosen as best, and (3)
phylogeny estimation can be performed while averaging
over the possible models.

Methods
How Many Nucleotide Substitution Models Are There?

In this article, we restrict our attention to time-
reversible models of DNA substitution. Although we
focus entirely on substitution models with four states (A,
C, G, and T/U), all of the results of this study apply
equally well to doublet and codon models. The most
general time-reversible model, called the GTR model, has
rate matrix

Q ¼ qij
� �

¼

— rACpC rAGpG rATpT

rACpA — rCGpG rCTpT

rAGpA rCGpC — rGTpT

rATpA rCTpC rGTpG —

0
BB@

1
CCAl

and was first described by Tavaré (1986). The entry in the
ith row and jth column of the matrix specifies the rate of
change from nucleotide i to nucleotide j. The diagonal
entries of the matrix, here shown with a dash, are specified
such that each row sums to zero. The frequency of the ith
nucleotide is denoted pi. The commonly used DNA
substitution models all have the unusual feature that the
stationary frequency of the process is built directly into the
rate matrix. The sum of the four base frequencies must, of
course, equal one. We introduce the additional constraint
that the sum of the six rate parameters is equal to six

(rAC 1 rAG 1 rAT 1 rCG 1 rCT 1 rGT ¼ 6) so that their
mean is one. We introduce this constraint for the same
reason that most parameterizations of the GTR model fix
the rate of G $ T to one, measuring the rates of the other
five substitutions relative to the G $ T rate; because the
absolute times on a phylogenetic tree are typically
unknown, it is convenient to measure the branch lengths
of the tree in terms of amount of nucleotide substitution
(specifically, the branch lengths on a tree are in terms of
expected number of substitutions per site). This means that
the substitution rate matrix must be rescaled such that the
mean rate is one. This is achieved by setting l ¼ 21/P

i2(A,C,G,T)piqii. It also means that we cannot estimate the
absolute rates of substitution, but only their relative rates.
It is just as easy to measure the relative rates of the six
substitution types on a scale where they all sum to six as it
is to measure the substitution rates relative to the G $ T
rate.

The models typically used in phylogenetic analysis
are all special cases of the GTR model, involving
constraints on the nucleotide frequencies or on the rate
parameters. For example, the Felsenstein (1981) model
constrains the rates of substitution to be equal (rAC ¼
rAG ¼ rAT ¼ rCG ¼ rCT ¼ rGT), and the Jukes-Cantor
(1969) model has the additional constraint that the
nucleotide frequencies are equal. For the remainder of
this article, we will assume that the base frequencies are
a common parameter across all possible models, and
that they are free to vary. We concentrate our attention
on constraints of the substitution rate parameters. We
also introduce a notation that allows any possible time-
reversible model to be described. We assign index
values to each of the six substitution rates, in the order
AC, AG, AT, CG, CT, GT. If a model has the constraint
that ri ¼ rj, then the index value for those two rates is
the same. Moreover, the index number for the first rate
is always 1, and indices are labeled sequentially. So, for
example, ‘‘111111’’ denotes the Jukes-Cantor (1969) or
Felsenstein (1981) model and ‘‘121121’’ denotes the
Kimura (1980), Hasegawa, Kishino, and Yano (1984,
1985), or Felsenstein (1984) model. There are a total of
203 such models, with the simplest being ‘‘111111’’ and
the most complex being the GTR model, ‘‘123456.’’ All
of the possible models are shown in table 1. Of the 203
models, one of them has one substitution type (111111),
31 of them have two substitution types (e.g., 121121), 90
of them have three substitution types (e.g., 123121), 65 of
them have four substitution types (e.g., 112341), 15 of them
have five substitution types (e.g., 123415), and one of
them has six substitution types (123456). Only a handful
of the 203 models have been named1. These include
111111 (Jukes and Cantor 1969; Felsenstein 1981),
121121 (Kimura 1980; Felsenstein 1984; Hasegawa,
Kishino, and Yano 1984, 1985), 121131 (Tamura and

1 In a talk at the 1995 Evolution meetings held in Montreal, Canada,
D. L. Swofford pointed out the large number of possible substitution
models and named one after his, as it turns out fictional, Aunt Emily.
Unfortunately, everyone involved, including D. L. Swofford, has
forgotten which of the 203 models was named after ‘‘Aunt Emily,’’ so
this model is not included as one of the named ones in this article.
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Nei 1993), 123321 (Kimura 1981), 123341 (Posada
2003), 123425 (Posada 2003), and 123456 (Tavaré
1986).

How is the number of possible substitution models
determined? The answer can be found in the combinatorics
literature. Specifically, the number of ways a set with n
objects can be partitioned into disjoint and non-empty
subsets is described by the Bell numbers (Bell 1934). The
Bell numbers, Bn, are calculated as the sum

Bn ¼
Xn

k¼0

Sðn; kÞ

where S(n, k) is a Stirling number of the second kind. The
Stirling numbers of the second kind, S(n, k), give the
number of ways to partition a set of n objects into k non-
empty sets. The Stirling number of the second kind is

Sðn; kÞ ¼ 1

k!

Xk�1

i¼0

ð�1Þi k
i

� �
ðk � iÞn

Special cases of the Stirling number of the second kind in-
clude S(n, 0)¼0, S(n, 1)¼1, S(n, n)¼1, S(n, 2)¼2n212 1,
and S(n, n 2 1) ¼ (n

2
). The Bell numbers give the

sequence 1, 1, 2, 5, 15, 52, 203, 877, 4140, 21147,
115975, 678570, 4213597, . . . for n¼ 0, 1, 2, 3, 4, 5, 6, 7,
8, 9, 10, 11, 12, . . .. For the problem investigated here, the
Bell number for n¼ 6 objects gives the number of possible
substitution models (B6 ¼ 203) and the Stirling numbers
of the second kind give the number of models with one
[S(6, 1)¼ 1], two [S(6, 2)¼ 31], three [S(6, 3)¼ 90], four
[S(6, 4) ¼ 65], five [S(6, 5) ¼ 15], and six [S(6, 6) ¼ 1]
substitution types.

To improve understanding of the remainder of this
article, we introduce the following additional notation

Table 1
All Possible Time-Reversible Models of DNA Substitution

K Models

1 M1 ¼ 111111

2 M2 ¼ 122222 M3 ¼ 121111 M4 ¼ 112111 M5 ¼ 111211 M6 ¼ 111121
M7 ¼ 111112 M8 ¼ 112222 M9 ¼ 121222 M10 ¼ 122122 M11 ¼ 122212
M12 ¼ 122221 M13 ¼ 122111 M14 ¼ 121211 M15 ¼ 121121 M16 ¼ 121112
M17 ¼ 112211 M18 ¼ 112121 M19 ¼ 112112 M20 ¼ 111221 M21 ¼ 111212
M22 ¼ 111122 M23 ¼ 111222 M24 ¼ 112122 M25 ¼ 112212 M26 ¼ 112221
M27 ¼ 121122 M28 ¼ 121212 M29 ¼ 121221 M30 ¼ 122112 M31 ¼ 122121
M32 ¼ 122211

3 M33 ¼ 123333 M34 ¼ 123222 M35 ¼ 122322 M36 ¼ 122232 M37 ¼ 122223
M38 ¼ 123111 M39 ¼ 121311 M40 ¼ 121131 M41 ¼ 121113 M42 ¼ 112311
M43 ¼ 112131 M44 ¼ 112113 M45 ¼ 111231 M46 ¼ 111213 M47 ¼ 111123
M48 ¼ 122333 M49 ¼ 123233 M50 ¼ 123323 M51 ¼ 123332 M52 ¼ 123322
M53 ¼ 123232 M54 ¼ 123223 M55 ¼ 122332 M56 ¼ 122323 M57 ¼ 122233
M58 ¼ 121333 M59 ¼ 123133 M60 ¼ 123313 M61 ¼ 123331 M62 ¼ 112333
M63 ¼ 112322 M64 ¼ 112232 M65 ¼ 112223 M66 ¼ 123122 M67 ¼ 123212
M68 ¼ 123221 M69 ¼ 121322 M70 ¼ 121232 M71 ¼ 121223 M72 ¼ 122312
M73 ¼ 122321 M74 ¼ 122132 M75 ¼ 122123 M76 ¼ 122231 M77 ¼ 122213
M78 ¼ 123311 M79 ¼ 123131 M80 ¼ 123113 M81 ¼ 121331 M82 ¼ 121313
M83 ¼ 121133 M84 ¼ 123211 M85 ¼ 123121 M86 ¼ 123112 M87 ¼ 122311
M88 ¼ 122131 M89 ¼ 122113 M90 ¼ 121321 M91 ¼ 121312 M92 ¼ 121231
M93 ¼ 121213 M94 ¼ 121132 M95 ¼ 121123 M96 ¼ 112331 M97 ¼ 112313
M98 ¼ 112133 M99 ¼ 112321 M100 ¼ 112312 M101 ¼ 112231 M102 ¼ 112213
M103 ¼ 112132 M104 ¼ 112123 M105 ¼ 111233 M106 ¼ 111232 M107 ¼ 111223
M108 ¼ 112233 M109 ¼ 112323 M110 ¼ 112332 M111 ¼ 121233 M112 ¼ 121323
M113 ¼ 121332 M114 ¼ 122133 M115 ¼ 122313 M116 ¼ 122331 M117 ¼ 123123
M118 ¼ 123132 M119 ¼ 123213 M120 ¼ 123231 M121 ¼ 123312 M122 ¼ 123321

4 M123 ¼ 123444 M124 ¼ 123433 M125 ¼ 123343 M126 ¼ 123334 M127 ¼ 123422
M128 ¼ 123242 M129 ¼ 123224 M130 ¼ 122342 M131 ¼ 122324 M132 ¼ 122234
M133 ¼ 123411 M134 ¼ 123141 M135 ¼ 123114 M136 ¼ 121341 M137 ¼ 121314
M138 ¼ 121134 M139 ¼ 112341 M140 ¼ 112314 M141 ¼ 112134 M142 ¼ 111234
M143 ¼ 123344 M144 ¼ 123434 M145 ¼ 123443 M146 ¼ 123244 M147 ¼ 123424
M148 ¼ 123442 M149 ¼ 122344 M150 ¼ 122343 M151 ¼ 122334 M152 ¼ 123423
M153 ¼ 123432 M154 ¼ 123243 M155 ¼ 123234 M156 ¼ 123342 M157 ¼ 123324
M158 ¼ 123144 M159 ¼ 123414 M160 ¼ 123441 M161 ¼ 121344 M162 ¼ 121343
M163 ¼ 121334 M164 ¼ 123413 M165 ¼ 123431 M166 ¼ 123143 M167 ¼ 123134
M168 ¼ 123341 M169 ¼ 123314 M170 ¼ 112344 M171 ¼ 112343 M172 ¼ 112334
M173 ¼ 112342 M174 ¼ 112324 M175 ¼ 112234 M176 ¼ 123412 M177 ¼ 123421
M178 ¼ 123142 M179 ¼ 123124 M180 ¼ 123241 M181 ¼ 123214 M182 ¼ 121342
M183 ¼ 121324 M184 ¼ 121234 M185 ¼ 122341 M186 ¼ 122314 M187 ¼ 122134

5 M188 ¼ 123455 M189 ¼ 123454 M190 ¼ 123445 M191 ¼ 123453 M192 ¼ 123435
M193 ¼ 123345 M194 ¼ 123452 M195 ¼ 123425 M196 ¼ 123245 M197 ¼ 122345
M198 ¼ 123451 M199 ¼ 123415 M200 ¼ 123145 M201 ¼ 121345 M202 ¼ 112345

6 M203 ¼ 123456

NoTE.—K is the number of substitution types. The named models are M1, M15, M40, M122, M168, M195, and M203.
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describing the substitution models. Each substitution
model has K groups of substitution types. The member-
ship of the ith group is contained in the vector ki. For
example, model M101 (112231) has a total of K ¼ 3
substitution groups: k1 ¼ (AC, AG, GT), k2 ¼ (AT, CG),
and k3¼ (CT). The number of substitution types in the ith
substitution group is denoted ni and the rate for the ith
substitution group is denoted ri. For model M101, n1 ¼ 3,
n2 ¼ 2, and n3 ¼ 1. Finally, N(M) is the number of
substitution groups in model M with ni . 1. For model
number 101, N(M101) ¼ 2; the GTR model (123456) has
N(M203) ¼ 0.

Choosing Among the Possible Substitution Models

A number of criteria can be used to choose among
a set of d candidate models, where the candidate models
are labeledM1,M2, . . . ,Md. Here we review a few of these
methods. However, we mainly concentrate on the
Bayesian framework for choosing models, showing how
Bayes factors can be calculated for substitution models of
interest. We will also point out how AIC and BIC can be
used to choose among all possible substitution models
when using maximum likelihood.

Likelihood Ratio Testing

The likelihood ratio

� ¼ max½‘ðM1Þ�
max½‘ðM2Þ�

measures the relative tenability of two competing models.
(The likelihood, ‘(Mi), is maximized over all the
parameters.) Model M1 is favored when the likelihood
ratio is greater than one, whereas the opposite is true for
likelihood ratios less than one. When the models are
nested, with M1 being a special case of M2, � � 1 and
22 loge � is asymptotically distributed as a v2 distribution
with the degrees of freedom being the difference in the
number of free parameters between M2 and M1.

Likelihood ratio tests have proven very useful in
molecular phylogenetics (see review by Huelsenbeck and
Rannala 1997), where they have been used to examine
questions ranging from the molecular clock hypothesis to
cospeciation in hosts and parasites. However, to use the v2

approximation of the null distribution, the requirement that
the models are nested restricts the hypotheses that can be
compared. With non-nested models, one can use the Cox
test (Cox 1962), but in these cases it is not clear which
hypothesis the null distribution should be generated under.
In this article, where many of the models of interest are not
nested (e.g., 111222 vs. 112211), likelihood ratio tests are
of only limited value.

Information Criteria

Another approach to model choice is to attempt to
find a model that in some sense minimizes the distance
to the ‘‘true’’ model. A number of methods attempt to
estimate the Kullback-Liebler information, which is
a measure of the distance between models. The Akaike
Information Criterion (AIC; Akaike 1973) is based on the

maximum likelihood score and the number of parameters
for a model, and it represents an attempt to estimate the
Kullback-Liebler information (distance) between the true
model and the fitted model. The AIC for model i is
calculated as

AICi ¼ �23 max½loge ‘ðMiÞ� þ 2p

where max[loge ‘(Mi)] is the maximum likelihood and p is
the number of free parameters in the model. A Bayesian
variant of the AIC is the Bayesian Information Criterion
(BIC; Schwarz 1978) which assumes equal priors on each
model and vague priors on the parameters. The BIC for
model i is calculated as

BICi ¼ �23 max½loge ‘ðMiÞ� þ p logeðnÞ

where n is the number of observations. For both AIC and
BIC, the first term can be interpreted as a penalty for using
too simple a model; the maximum likelihood is lower for
models that fail to include important parameters. The
second term, on the other hand, is a penalty against
overfitting. The second term in AIC and BIC favors more
parsimonious models.

Model selection using AIC or BIC works by
calculating the AIC/BIC scores for each candidate model
and selecting the model with the lowest AIC/BIC as best.
AIC and BIC have been used previously to choose among
a handful of competing phylogenetic models (e.g., Posada
and Crandall 1998; Yang et al. 2000).

Bayes Factors

The Bayes factor for a comparison of model M1 to
model M2 is

BF12 ¼
f ðX j M1Þ
f ðX j M2Þ

where the observations are denoted X (in this case, an
alignment of DNA sequences) and f(X jMi) is the
marginal likelihood of model i. The Bayes factor has
the same intuitive meaning as the likelihood ratio,
described above; values for the Bayes factor greater than
one support M1, whereas a Bayes factor less than one
supports M2. The marginal likelihoods are calculated by
integrating (marginalizing) over the other parameters of
the model. Say that model Mi has parameters hi. The
marginal likelihood is calculated by integrating the
likelihood over a prior probability distribution, f(hi jMi):
f(X jMi)¼

R
hi
f(X j hi, Mi)f(hi jMi)dhi. Note that in contrast

to the likelihood ratio test statistic in which the ratio of
the maximum likelihood scores is used, for the Bayes
factor the ratio of the average likelihoods is used
instead. Importantly, the Bayes factor accounts for
uncertainty in the parameters of the model, hi. Also
note that the Bayes factor does not rely on nesting of
the models. In fact, the parameters of the two compared
models need not be the same. That is, the parameters of
model M1 (h1) are not necessarily the same parameters
as those in model M2 (h2).

The Bayes factor can also be calculated as the ratio of
the posterior odds to the prior odds of the models:
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BF12 ¼
f ðX j M1Þ
f ðX j M2Þ

¼ f ðM1 j XÞ=f ðM2 j XÞ
f ðM1Þ=f ðM2Þ

;

where f(Mi jX) is the posterior probability and f(Mi) is the
prior probability of model i. Often the Bayes factor can be
approximated using the output of a MCMC analysis. This
is the approach that will be taken in this article, with the
details of the MCMC algorithm described in the next
section. Suchard, Weiss, and Sinsheimer (2001) calculated
the Bayes factor for the special case where the compared
models are nested. Specifically, they used the Savage-
Dickey ratio to approximate the Bayes factor, where the
Savage-Dickey ratio is

BF21 ¼
1

BF12

¼ f ðh ¼ h0 j M2;XÞ
f ðh ¼ h0 j M2Þ

:

Model M1 is a special case of M2. Specifically, M2 is
the same as M1 when the parameter h ¼ h0. For example,
the Jukes-Cantor (1969) and Kimura (1980) models are the
same when the parameter j of the Kimura model is set to
one (j¼1). The Bayes factor could be calculated using the
Savage-Dickey ratio for a comparison of the Jukes-Cantor
(M1) to the Kimura (M2) models as

BF21 ¼
f ðj ¼ 1 j M2;XÞ
f ðj ¼ 1 j M2Þ

:

This involves performing a Bayesian analysis under the
more general, Kimura (1980), model and evaluating the
posterior and prior probability densities of the parameter j
at one.

Reversible Jump MCMC for Model Selection

We do not pursue calculation of Bayes factors using
the Savage-Dickey ratio for the same reason that we do not
examine likelihood ratio tests; many of the comparisons of
interest involve non-nested models. Instead, we calculate
Bayes factors for all possible substitution models by
constructing a Markov chain that visits substitution models
in proportion to their posterior probability. The joint
posterior probability of all the model parameters is
calculated using Bayes’ theorem as

f ðs; v; a; p; hi;Mi j XÞ

¼ f ðX j s; v; a; p; hi;MiÞf ðs; v; a; p; hi;MiÞ
f ðXÞ ;

where s is the unrooted tree topology, v is the vector of
branch lengths for the tree, a is the gamma shape pa-
rameter describing the amount of among-site rate vari-
ation, p is a vector of nucleotide frequencies, hi is the
vector of substitution rates, and Mi is the substitution
model. The posterior probability, f(� jX), is equal to the
likelihood, f(X j �), times the prior probability distribution,
f(�), divided by a normalizing constant, f(X). In this section,
we describe the modeling assumptions we make in
calculating posterior probabilities of models.

Likelihood

We calculate the likelihood (probability of observing
the DNA sequence alignment conditional on a specific

model) under the GTR 1 � model of DNA substitution, or
submodels of the GTR 1 �. We approximate the
continuous gamma distribution for among-site rate varia-
tion using the discrete approximation of Yang (1994). We
use four categories to approximate the gamma distribution.
The pruning algorithm of Felsenstein (1981) was used to
calculate the likelihood for a tree.

Prior

We assume that all 203 substitution models have
equal prior probability. Moreover, we assume a uniform
prior on unrooted tree topologies, an exponential (10) prior
on branch lengths, a flat Dirichlet distribution on
nucleotide frequencies, and a uniform (0, 50) prior on
the gamma shape parameter for among-site rate variation.
We assume that the K rates of the substitution model are
a linear transformation of a flat Dirichlet prior. In
particular, if Y1, . . . , YK have a flat Dirichlet distribution
we let ri¼ 6Yi/ni for i¼ 1, . . . , K. The prior density of the
rates is

�ðKÞ
QK

i¼1 ni
6K

; 0 � ri �
6

ni
;

XK
i¼1

niri ¼ 6; for i ¼ 1; . . . ;K:

(The standard flat Dirichlet distribution has a normalizing
constant of �(K). Our linear transformation of the flat
Dirichlet requires a different normalizing constant.)

Markov Chain Monte Carlo

The posterior probability distribution of the phyloge-
netic model parameters cannot be calculated analytically.
We use MCMC (Metropolis et al. 1953; Hastings 1970;
Green 1995) to approximate the posterior probability
distribution of the phylogenetic model parameters. MCMC
for phylogeny inference has been described elsewhere (see
Larget and Simon 1999; Huelsenbeck et al. 2002). The
general idea is to construct a Markov chain that has as its
state space the parameters of the phylogenetic model and
a stationary distribution that is the posterior probability
distribution of the parameters. The sequence of parameter
states visited by the Markov chain forms a valid, albeit
dependent, sample from the posterior probability distribu-
tion of interest (Tierney 1994). In this article, we are
interested in the posterior probabilities of alternative
substitution models. We construct a Markov chain that,
in addition to exploring the other model parameters such
as the phylogenetic tree, visits alternative substitution
models. The posterior probability of the ith model is
approximated as the proportion of the time the Markov
chain visited model i.

In each iteration of the MCMC algorithm, we pick
a parameter at random to update. We update the tree and
branch lengths simultaneously using the LOCAL mecha-
nism described in Larget and Simon (1999). We update the
nucleotide frequencies and substitution model parameters
using a Dirichlet proposal mechanism, and we update the
gamma shape parameter using a sliding window mecha-
nism. Each of these proposal mechanisms has been
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described elsewhere, and we will not go into any more
detail about them here. However, two of the proposal
mechanisms are unique to the problem of exploring
substitution models. Specifically, we have proposal
mechanisms that explore the different possible substitution
models by merging or splitting groups of substitution
types. The main complication is that moves from one
substitution model to another involve changes in the
dimension of the parameter space, and the normal MCMC
theory does not apply. Instead, we construct a Markov
chain that jumps dimensions, using the theory described in
Green (1995).

The current substitution model will be denotedM.We
attempt a merge of two substitution groups with prob-
ability pM(M) and attempt a split of a substitution group
into two groups with probability pS(M). When the current
model is the Jukes-Cantor (111111), then the probability
of attempting a merge is zero and the probability of
attempting a split is set to one. When the current model is
GTR (123456) the probability of attempting a split is set to
zero, and the probability of a merge is set to one.

A merge move works as follows. Two of K
substitution groups of the current model, M, are chosen
at random. These groups are denoted ki and kj. The new
group that results from the merging of these two groups is
denoted k9. For example, consider a merge of the model
111222. There are only two substitution groups that can be
merged: k1 ¼ (AC, AG, AT) and k2 ¼ (CG, CT, GT). The
group that results from the merging of these two groups is
k9 ¼ (AC, AG, AT, CG, CT, GT). Of course, this is the
model 111111. The rates of substitution must also be
chosen for the new, merged, group. For the merge move,
the new rate is deterministically chosen. The rates of
substitution for the two merged groups are denoted ri and
rj. The new rate, r9 is

r9 ¼ niri þ njrj
ni þ nj

:

The new group size is ni 1 nj. Remember that we
constrain the sum of the rates to be 6 (

P
iniri¼ 6), so that

�rr ¼ 1. Notice that (ni 1 nj)r9 ¼ niri 1 njrj: the sum of all
rates remains unchanged.

A split move works by picking one of the N(M)
groups with at least two substitution types at random. The
group to be split will be designated k. The substitution
types in that group are then divided randomly, with the
constraint that there is at least one item in each group. This
results in two groups, k9i and k9j. For example, if the current
model, M, is 112334, then only two groups are available
that could be potentially split: the groups with substitutions
AC and AG or with substitution types CG and CT. One of
these two groups would be chosen at random (with each
having an equal probability of being chosen), and the
substitution types in the group randomly divided into two
new groups. In this case, if k ¼ (AC, AG), then the
resulting groups would be k9i¼ (AC) and k9j¼ (AG). To find
the new rates for the two new groups, r9i and r9j, we first
generate a uniform random variable on the interval (2nir,
njr), denoted u, where r is the rate of the group to be split.
The new rates are then

r9i ¼ r þ u

ni

and

r9j ¼ r � u

nj
:

Notice as well that nir9i 1 njr9j¼ (ni 1 nj)r, so that the sum
of all the rates remains unchanged.

The probability of accepting a merge or split move,
R, is

R ¼ minð1; Likelihood Ratio3 Prior Ratio

3 Proposal Ratio3 JacobianÞ

For a merge move, the prior ratio is

Prior Ratio

¼
ð1=203Þ3�ðK � 1Þ3 ðni þ njÞ

Q
a 6¼ i; j na

� �
=6K�1

ð1=203Þ3�ðKÞ3 ninj
Q

a 6¼ i; j na

� �
=6K

;

the proposal ratio is

Proposal Ratio

¼ pSðM9Þ3ð1=NðM9ÞÞ3ð1=ð2niþnj�1 � 1ÞÞ3ð1=ðrðni þ njÞÞÞ
pMðMÞ31=

�
K

2

� ;

and the Jacobian is

Jacobian ¼ ninj
ni þ nj

:

The acceptance probability for a merge move is then

R ¼min 1; Likelihood Ratio3
pSðM9Þ
pMðMÞ

�

3
6K

NðM9Þð2niþnj � 2Þrðni þ njÞ

�
:

For a split move from current model M with K 2 1
rates to amodelM9withK rates the acceptance probability is

R ¼ min 1; Likelihood Ratio3
pMðM9Þ
pSðMÞ

�

3
NðMÞð2niþnj � 2Þrðni þ njÞ

6K

�
;

where r is the rate of the group to be split and ni and nj are
the sizes of the new groups.

Data

We examined 16 alignments of DNA sequences.
Table 2 summarizes the characteristics of the data sets
examined. The posterior probabilities of substitution
models (and other phylogenetic model parameters) were
approximated using the MCMC algorithm described
above as implemented in a program written by J.P.H.
PAUP* (Swofford 2002) was used to calculate the
maximum likelihood scores of the 203 models for each
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data set. All of the data sets were analyzed using the same
model: the GTR 1 � model of DNA substitution, and
submodels thereof. The MCMC algorithm was run for
10,000,000 cycles for each data set, and sampled every
1,000th cycle. Each data set was analyzed three times. For
each chain, we excluded samples taken during the first
million cycles as the ‘‘burn in,’’ basing inferences on the last
9,000 samples taken in each analysis. All probabilities were
based on the pooled post-burn in samples from the three
chains.

Results and Discussion

For most of the data sets analyzed in this study, the
posterior probability is spread out among a handful of
models. Table 3 shows the best models selected for each
analysis. The posterior probability was concentrated on
only a few substitution models for the mammal and
Parrotfish data set, where two and three models, re-
spectively, accounted for 95% of the posterior probability.
For some of the smaller alignments, however, there was
considerable model uncertainty. For example, for the HIV-
env alignment 22 models accounted for 95% of the
posterior probability. Another interesting finding is that the
most complicated model (GTR: 123456) was not found to
be best in any of the analyses; in fact, it was chosen with
a high probability only in the mammalian mitochondrial
data set, where it had a posterior probability of 0.36.

The Bayes factors for the best models found for each
alignment ranged from 52 to 481. Jeffreys (1961) provided
a table to help interpret Bayes factors, that was modified by
Raftery (1996). Generally speaking, Bayes factors in the
range 12 to 150 are considered ‘‘strong’’ evidence in favor of
a model, whereas Bayes factors greater than 150 are
considered ‘‘very strong’’ evidence in favor of a model.
Another way of interpreting the Bayes factor is as a mea-
sure of how one changes belief in a hypothesis in the light
of new evidence. Lavine and Schervisch (1999:120) argue
that the Bayes factor should be interpreted as measuring
‘‘the change in the odds in favor of the hypothesis when
going from the prior to the posterior.’’ For either inter-

pretation, the large Bayes factors indicate that the align-
ments contained considerable information about the
substitution model.

Generally speaking, substitution models with two to
five substitution types did best. Table 4 shows the Bayes
factors for the number of substitution types (K), and figure
1 shows the posterior probability of the number of
substitution types. The Jukes-Cantor (1969) and Felsen-
stein (1981) model (111111) did poorly for all of the data
sets examined in this study. The seven named models did
well for 10 of the data sets, having a Bayes factor greater
than one, meaning there was more posterior probability
associated with the named models than there was prior
probability. However, the Bayes factor for the named
models was never greater than 115, and it was less than
one for four of the data sets.

The results for model choice using AIC and BIC are
largely concordant with the results from Bayes factors.
Table 3 also shows the best models chosen using the AIC
and BIC. For five of the alignments, AIC, BIC, and
posterior probabilities were in agreement, choosing pre-
cisely the same model as best. For many of the other cases,
AIC or BIC chose models that were still in the credible set
of models, calculated using the reversible jump MCMC
algorithm. In only one instance did AIC/BIC not choose
a model that was at least in the credible set of models; for
the butterfly alignment of wingless sequences, BIC chose
model 193, which was not in the credible set of models.
(Model 125, chosen by AIC for the butterfly data set was
in the 95% credible set of models.)

In this study, we ran the Markov chains assuming
a uniform prior probability on all models, and Bayes
factors were calculated as the ratio of the posterior odds to
the prior odds in favor of the model. The posterior
probabilities of the best models happened to be of
intermediate value for all 16 data sets examined, so that
it was straight-forward to calculate the Bayes factor for the
best model. However, it is possible that the posterior
probability for the best model would be approximated to
be 1.0 under a uniform prior on models, or alternatively,
the biologist might be interested in the Bayes factor for

Table 2
The DNA Sequence Alignments Examined in This Study

Name Gene No. of Taxa No. of Sites Reference

Angiosperms phyA & phyC 46 1,104 Matthews and Donoghue (1999)
Archaea rRNA 64 1,620 Barns et al. (1996)
Bats IRBP 13 1,255 Van Den Bussche et al. (1998)
Butterflies wingless 106 378 Brower (2000)
Crocodiles c-myc 68 818 Harshman et al. (2003)
Gophers mtDNA: COI 15 379 Hafner et al. (1994)
HIV-I env 13 273 Yang et al. (2000)
HIV-I pol 23 2,841 Yang et al. (2000)
Lice mtDNA: COI 17 379 Hafner et al. (1994)
Lizards mtDNA: ND2 1 5 tRNAs 30 1,456 Losos et al. (1998),

Jackman et al. (1999)
Mammals mtDNA 23 9,741 Arnason, Gullberg, and Janke (1997)
Parrotfish 12S, 16S, cyt b, Timo-4C4 18 1,689 Streelman et al. (2002)
Primates Partial mtDNA: 3 tRNA’s, ND2, ND5 12 898 Hayasaka, Gojobori, and Horai (1988)
Vertebrates b-globin 17 432 Yang et al. (2000)
Water snakes mtDNA: cyt b, ND2, 12S rDNA 34 2,866 Alfaro and Arnold (2001)
Whales mtDNA: cyt b 31 1,140 Adachi and Hasegawa (1995)
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a model that does a very poor job of explaining the data,
having a posterior probability that is approximated using
MCMC to be 0.0. However, in both cases, the true
posterior probability is neither 1.0 nor 0.0, but rather
a number very close to 1.0 or 0.0. How does one
accurately approximate the Bayes factors for very good or
very poor substitution models? One solution involves
seeding the prior, giving more weight to a poor model for
which one wants to approximate a Bayes factor, or giving
less prior weight to a good model. One then runs the

MCMC algorithm using the non-uniform prior, calculating
the posterior probabilities for the model of interest as the
fraction of the time that the Markov chain visited that
model. One can then calculate what the posterior
probability of model i would have been had the analysis
been performed using a uniform prior. The posterior
probability of model i is

f 9ðMi j XÞ ¼
f ðMi j XÞ3 f 9ðMiÞ

f ðMiÞP
j f ðMj j XÞ3 f 9ðMjÞ

f ðMjÞ

;

where f9(M jX) is the posterior probability and f9(M) is the
prior probability one is interested in calculating, and
f(M jX) and f(M) are the posterior probability and prior
probability, respectively, actually used when performing
the MCMC analysis.

Application of likelihood ratio tests to a small subset
of hierarchically nested models would often lead to
different conclusions about the optimal model than were
reached here, when considering all possible time-
reversible models. For example, consider the following
three nested model comparisons: Test 1, M1 (111111)
versus M15 (121121); Test 2, M15 versus M40 (121131);
and Test 3,M40 versusM203 (123456). Here, the likelihood
ratio test statistic is asymptotically distributed as a v2 with
one (tests 1 and 2) or three (test 3) degrees of freedom. At
the 5% level, the null (simple) model is rejected all of the
time for Test 1, half of the time for Test 2, and 13 of the 16
times for Test 3. Importantly, the most complicated model
considered (M203) would often be chosen as the best model
when looking at only a small subset of all possible models.
A similar conclusion would be reached if one only
considered the subset of models that have one, two, or
six substitution types. Phylogeneticists often concentrate
on only these models, probably because the models are

Table 3
The best models for each data set

Name AIC BIC PP BF 95% Credible Set of Models

Angiosperms 189 189 189 (0.41) 142.7 (189, 193, 125, 147, 203)
Archaea 198 198 198 (0.70) 472.1 (198, 168, 203)
Bats 50 50 112 (0.32) 95.0 (112, 50, 162, 147, 125, 152, 90,

183, 157, 122, 15, 189)
Butterflies 125 193 136 (0.32) 93.7 (136, 162, 112, 90, 168, 40, 125,

191, 201, 183, 198, 152, 189)
Crocodiles 134 134 40 (0.27) 74.2 (40, 125, 166, 134, 168, 189, 191, 162, 193)
Gophers 162 162 112 (0.28) 77.5 (112 ,162, 15, 50, 40, 189, 125, 147, 95, 90,

138, 201, 183, 136, 117, 152, 122, 191)
HIV-1 (env) 25 25 25 (0.29) 83.0 (25, 60, 50, 64, 100, 125, 102, 97, 164, 169, 152, 159,

173, 157, 175, 147, 171, 191, 193, 189, 140, 117)
HIV-1 (pol) 157 52 50 (0.62) 335.2 (50, 125, 157, 152, 147, 193)
Lice 15 15 15 (0.56) 260.0 (15, 40, 117, 90, 50, 122,136, 95, 166, 112, 125)
Lizards 193 203 193 (0.70) 481.1 (193, 138, 200, 203)
Mammals 203 203 193 (0.64) 364.3 (193, 203)
Parrotfish 189 189 162 (0.56) 258.0 (162, 189, 201)
Primates 112 112 15 (0.31) 91.0 (15, 40, 112, 95, 138, 162, 90, 136, 50, 125,

168, 122, 166, 117, 134)
Vertebrates 125 125 125 (0.21) 52.3 (125, 40, 168, 64, 134, 189, 166, 193, 191, 162,

136, 171, 198, 138, 50, 175, 173)
Water snakes 191 191 166 (0.55) 242.9 (166, 191, 117, 152, 134, 200, 198, 177)
Whales 162 162 15 (0.60) 300.1 (15, 40, 117, 95, 85, 122, 112, 90, 134, 50, 166)

NoTE.—AIC, the best model using the Akaike Information Criterion; BIC, the best model using the Bayesian Information Criterion; PP, the model with the highest

posterior probability, with its corresponding probability; BF, the Bayes factor for the best model.

Table 4
The Bayes factors for K, the number of
substitution types

K

Name 1 2 3 4 5 6

Angiosperms — — 0.02 0.71 27.9 8.90
Archaea — — — 0.61 33.5 10.4
Bats — 0.07 2.59 0.79 0.52 0.43
Butterflies — 0.02 0.46 3.28 1.64 0.69
Crocodiles — — 0.46 3.88 1.11 0.37
Gophers — 0.54 1.01 1.32 1.06 0.61
HIV-1 (env) — 2.31 0.95 0.62 0.59 0.60
HIV-1 (pol) — — 2.19 0.94 0.73 0.40
Lice — 7.14 0.68 0.19 0.04 0.02
Lizards — — 0.01 0.37 48.3 11.0
Mammals — — — — 22.6 112.0
Parrotfish — — — 2.73 8.58 6.48
Primates — 2.50 1.09 0.55 0.24 0.09
Vertebrates — 0.04 0.48 2.66 2.28 1.56
Water snakes — — 0.11 4.53 3.58 2.46
Whales — 8.24 0.59 0.18 0.05 0.01

NoTE.—Some entries in the table are blank because the Bayes factor is too

small to be accurately measured when running the MCMC algorithm with a uniform

prior on models. They can be accurately calculated, but only by giving models with

small K more prior weight, and then calculating what the posterior probability

would have been if a uniform prior had been assumed.
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easily implemented using the program PAUP* (Swofford
2002) and are the only possible models in the program
MrBayes (Huelsenbeck and Ronquist 2001).

The models chosen as best in the 16 DNA sequence
alignments examined here were all similar in one respect:
virtually all of them allowed the transition rates to differ
from the transversion rates. That is to say, one rarely saw
a model chosen that constrained a transition rate to be the
same as a transversion rate (e.g., M60 where the sub-
stitution pattern is 123313). In fact, with only two
exceptions, every model in the 95% credible sets of
models allowed the transition rates to be different from the
transversion rates. The exceptions included the HIV-env
and the vertebrate b-globin alignments, where the best
models included M25 (112212), M60 (123313), M64

(112232), M100 (112312), and M171 (112343), among

others. Clearly, in almost all of the sequence alignments
examined in this study, the predominant pattern is that
transitions occur at a different rate than transversions, and
this fact determines which models are chosen as best; the
best models all appear to be minor variants of the model
proposed by Kimura (1980) and Hasegawa, Kishino, and
Yano (1984, 1985).

The models currently used in molecular phyloge-
netics are quite complicated, and are likely to become
more so as biologists add parameters to the models. For
example, one strategy that is used to allow a phylogenetic
model to better explain a DNA sequence alignment is to
partition the data, perhaps according to codon or some
other biologically relevant criterion, and to allow the
parameters of the model to be independently estimated for
each partition (Ronquist and Huelsenbeck 2003). This

FIG. 1.—The posterior probability of K, the number of substitution types, for each DNA sequence alignment. The first figure shows the prior prob-
ability distribution of K, calculated as the number of models with K substitution parameters divided by the total number of substitution models (203).
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strategy, although it allows the phylogenetic model to
better explain the data, also adds many parameters, and it
is unclear how the biologist is to sort out which
partitioning scheme is best; is it best to constrain
a parameter, such as the gamma shape parameter that
describes among-site rate variation, to be the same for all
of the data partitions, or should one allow the parameter to
be different? If it is to be potentially different, should the
parameter be independently estimated for all partitions, or
should this parameter be constrained to be the same for
some but not all of the partitions? Questions such as these
are likely to become more prevalent in the future as models
become more complicated and biologists become more
concerned with using any knowledge about a gene to tailor
the assumptions of the analysis to specific gene regions.
The automated procedure described in this article has the
advantage that it allows the screening of a large number of
possible models when performing a phylogenetic analysis.
In principle, one could set up a very complicated general
model, such as one that allows parameters to be in-
dependently estimated for each data partition, and then
allow the MCMC procedure to explore the different
possible sub-models in proportion to their probability.
Formally, the inference of phylogeny would not depend on
any specific model, but would be integrated over un-
certainty in the model parameters. Moreover, one would
learn how the pattern of substitution differs among data
partitions from the output of such an analysis.
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