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Abstract.— The main limiting factor in Bayesian MCMC analysis of phylogeny is typically the efficiency with which topology
proposals sample tree space. Here we evaluate the performance of seven different proposal mechanisms, including most
of those used in current Bayesian phylogenetics software. We sampled 12 empirical nucleotide data sets—ranging in size
from 27 to 71 taxa and from 378 to 2,520 sites—under difficult conditions: short runs, no Metropolis-coupling, and an
oversimplified substitution model producing difficult tree spaces (Jukes Cantor with equal site rates). Convergence was
assessed by comparison to reference samples obtained from multiple Metropolis-coupled runs. We find that proposals
producing topology changes as a side effect of branch length changes (LOCAL and Continuous Change) consistently
perform worse than those involving stochastic branch rearrangements (nearest neighbor interchange, subtree pruning and
regrafting, tree bisection and reconnection, or subtree swapping). Among the latter, moves that use an extension mechanism
to mix local with more distant rearrangements show better overall performance than those involving only local or only
random rearrangements. Moves with only local rearrangements tend to mix well but have long burn-in periods, whereas
moves with random rearrangements often show the reverse pattern. Combinations of moves tend to perform better than
single moves. The time to convergence can be shortened considerably by starting with a good tree, but this comes at the cost
of compromising convergence diagnostics based on overdispersed starting points. Our results have important implications
for developers of Bayesian MCMC implementations and for the large group of users of Bayesian phylogenetics software.
[Bayesian inference, Hastings ratio, Markov chain Monte Carlo, topology proposals.]

Bayesian inference was introduced to phylogenetics
in the last years of the 20th century (Li, 1996; Mau, 1996;
Rannala and Yang, 1996; Mau and Newton, 1997; Yang
and Rannala, 1997; Larget and Simon, 1999; Newton
et al., 1999; Huelsenbeck et al., 2000; Li et al., 2000) and
has become widely adopted since then (for reviews see
Huelsenbeck et al., 2001, 2002; Lewis 2001; Holder and
Lewis 2003. For a general discussion of Bayesian data
analysis, see, for instance, Gelman et al., 2003). Typically,
Markov chain Monte Carlo (MCMC) approaches based
on the Metropolis-Hastings algorithm (Metropolis et al.,
1953; Hastings, 1970) are used to approximate the pos-
terior distribution. A number of different MCMC pro-
posal strategies have been applied but the efficiency of
the different mechanisms has never been tested rigor-
ously. Felsenstein (2004) appositely stated: “At the mo-
ment the choice of a good proposal distribution involves
the burning of incense, casting of chicken bones, magical
incantations and invoking the opinions of more presti-
gious colleagues.” In this article, we suggest a framework
for testing the efficiency of tree proposals and apply it to
seven mechanisms, including commonly used ones as
well as some that have not been considered in the litera-
ture before.

In Bayesian phylogenetics, all inference is based on
the joint posterior distribution of evolutionary trees and
substitution model parameters. Let ψ = {τ, v} denote a
phylogenetic tree with topology τ and an associated set
of branch lengths v and let � denote the set of all possi-
ble phylogenies on N taxa. Furthermore, let � = {�, �}
denote the parameter space containing all phylogenetic
trees and all possible attributions of values to the substi-
tution model parameters (�). We focus here on the Jukes-
Cantor model (Jukes and Cantor, 1969) without rate vari-
ation among sites (JC), for which only the joint posterior

probability distribution of τ and v needs to be approxi-
mated since � is empty. The joint posterior distribution
for JC can formally be written as

f (τ, v|X) = f (X|τ, v) f (τ, v)∑
τ

∫
v

f (X|τ, v) f (τ, v) dv

where X denotes observed data.
Calculating this distribution analytically would in-

volve summation over all possible trees and for each
tree integrating over all possible combinations of branch
lengths (and usually also model parameters). This can-
not be accomplished except for very small trees. In-
stead, the posterior is typically estimated using a Markov
chain, which generates dependent samples from the
distribution.

In practice, efficient proposal mechanisms are vital for
the chain to produce an adequate sample of the poste-
rior probability distribution within the time constraints
faced by most users. This is particularly true for complex
multimodal distributions, such as the distributions on
tree space that result from most phylogenetic problems.
In the latter, we can expect multiple posterior probability
peaks for each topology, corresponding to different com-
binations of branch lengths, and—even worse—there is
no obvious way of jumping between branch length peaks
of different topologies. Several isolated areas of topology
space with high probability mass, known as tree islands,
may also have to be visited before an adequate sample
of the posterior is obtained. In phylogenetics, Markov
chains that mix well move quickly among all the good
trees, whereas chains that mix poorly tend to get stuck in
tree space. Markov chains that mix well may also be ex-
pected to have shorter burn-in periods. However, bold
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proposals that tend to be rejected in later stages of an
MCMC run may be advantageous during the burn-in
phase because they may help the chain quickly explore
large portions of the parameter space. More modest pro-
posals generally have higher acceptance rates but are
slower in providing adequate coverage and in moving
between modes, resulting in longer burn-in periods and
poor mixing. Generally, proposals with intermediate ac-
ceptance rates are considered optimal.

We focus here mostly on proposals that change
topology and branch lengths simultaneously. With JC,
such proposals are sufficient for a working Markov
chain, allowing us to test their performance individ-
ually. The proposals we examine can be divided into
two different classes: the branch-change proposals and
the branch-rearrangement proposals. The branch-change
proposals modify branch lengths or branch attachment
points continuously in a way that produces topol-
ogy changes in some cases. Of this type, we con-
sider the Continuous Change proposal (CC; Jow et al.,
2002) and the LOCAL proposal (Larget and Simon,
1999), used in the software packages PHASE (http://
www.bioinf.manchester.ac.uk/resources/phase/) and
BAMBE (Simon and Larget, 1998), respectively. The pro-
grams MrBayes (Huelsenbeck and Ronquist, 2001; Ron-
quist and Huelsenbeck, 2003) and PhyloBayes (Lartillot
et al., 2007) also implement the LOCAL move.

The branch-rearrangement proposals—used in BEAST
(Drummond and Rambaut, 2003), BADGER (Simon and
Larget, 2004), MrBayes, PHASE, PhyloBayes, and also
in Li et al. (2000) and Suchard et al. (2001)—can be di-
vided into two subtypes: the pruning-regrafting moves
and the swapping moves. In a pruning-regrafting move,
a subtree is pruned from the rest of the tree and regrafted
somewhere else. We test two different strategies for se-
lecting the regrafting point: (1) the point is chosen ran-
domly; and (2) the attachment point is moved one branch
at a time according to an extension probability, which re-
sults in local rearrangements being favored. The moves
we consider are Random Subtree Pruning and Regraft-
ing (rSPR), Extending Subtree Pruning and Regrafting
(eSPR), and Extending Tree Bisection and Reconnection
(eTBR).

In the second type of branch-rearrangement moves,
which we refer to as the swapping moves, two subtrees

TABLE 1. Data sets used for the experiments.

No. of No. of TreeBASE
Data set taxa sites Type of data matrix accession no.

1 27 1949 rRNA, 18s M336
2 29 2520 rDNA, 18s M501
3 36 1812 mtDNA, COII (1–678), cytb (679–1812) M1510
4 41 1137 rDNA, 18s M1366
5 43 1660 rDNA, 18s M932
6 50 378 Nuclear protein coding, wingless M3475
7 50 1133 rDNA, 18s M1044
8 59 1824 mtDNA, COII and cytb M1809
9 64 1008 rDNA, 28S M755

10 67 955 Plastid ribosomal protein, s16 (rps16) M1748
11 67 1098 rDNA, 18s M520
12 71 1082 rDNA, internal transcribed spacer (ITS) M767

simply trade places. The moves we consider are Stochas-
tic Nearest Neighbor Interchange (stNNI) and Extending
Subtree Swapping (eSTS). We excluded random subtree
swapping from our comparison because preliminary
data indicated it was too bold to compete successfully
with the other moves. There is no meaningful way in
which an extension mechanism can be applied to stNNI
because its topology changes are always local. The stNNI
move links the two subtypes of branch-rearrangements
because it can be understood both as a subtree swap and
as a special case of subtree pruning and regrafting. All the
tested proposals are available in the most recent source
code release of MrBayes (Ronquist and Huelsenbeck,
2003, http://sourceforge.net/projects/mrbayes).

We assess the efficiency of the proposals using
12 empirical DNA data sets selected from TreeBASE
(http://www.treebase.org) and ranging in size from 27
to 71 taxa and from 378 to 2520 sites (Table 1). The tree
proposals are used to repeatedly sample the posteriors
of these data sets under difficult conditions, which al-
lows us to challenge the proposals with relatively small
data sets. In order to separately assess convergence and
mixing behavior of the different proposals, we compare
runs that are started from two sets of starting points:
overdispersed trees and from trees that were sampled
from the target distribution. We also try to eliminate
other factors so that we can focus on the performance
of the tree proposals. Specifically, we use a fixed, rather
small number of generations and we do not employ
Metropolis-coupling, a general technique for improv-
ing mixing behavior in Bayesian MCMC phylogenetics
(Geyer, 1991; Huelsenbeck et al. 2001). Finally, we use
the JC model to eliminate substitution model parame-
ters and to make the posterior more difficult to sample
from (Nylander, 2004). Convergence is assessed by com-
parison to reference samples obtained using at least six
independent Metropolis-coupled MCMC runs (Table 2).

METHODS

All analyses were conducted with a developer’s ver-
sion of MrBayes 3.1.2, available from C.L. upon request.
The parallel version of the program (Altekar et al., 2004)
was used for the reference runs (see below). MCMC runs
were deployed on a cluster of 57 dual AMD Athlon MP
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TABLE 2. Summary of the reference runs and number of generations for the test runs. The samples from the reference runs, which used
Metropolis-coupling and were run until the standard deviation of split frequencies was 0.005, were assumed to be accurate representations of
the posterior probability distribution.

No. of trees in credible set
No. of generations No. of generations

Data set Proposal ratio until convergence 50% 90% 95% for the test runs

1 10 eTBR : 1 LOCAL : 1 stNNI 6,975,000 3 24 42 8 × 106

2 1 LOCAL 1,131,000 2 4 5 1 × 106

1 eTBR 323,000
3 1 LOCAL 2,914,000 2 6 15 2 × 106

1 eTBR 1,683,000
4 5 eTBR : 1 LOCAL 6,183,000 4 78 189 7 × 106

5 5 eTBR : 1 LOCAL 610,000 2 15 28 1 × 106

6 5 eTBR : 1 LOCAL 4,305,000 7929 62,938 72,624 6 × 106

7 8 eTBR : 1 LOCAL : 1 stNNI 6,771,000 7944 72,739 87,974 8 × 106

8 5 eTBR : 1 LOCAL 3,940,000 26 417 778 5 × 106

9 5 eTBR : 1 LOCAL 5,513,000 37 1273 3,105 6 × 106

10 5 eTBR : 1 LOCAL 3,898,000 87,535 157,700 166,471 1 × 106

11 5 eTBR : 1 LOCAL 8,547,000 17,081 122,217 141,448 9 × 106

12 5 eTBR : 1 LOCAL 3,450,000 77,608 139,709 147,472 5 × 106

2400+ processors running LINUX and a cluster of 64 dual
G5 2.0 Ghz processors running Macintosh OS X at the
School of Computational Science at Florida State Uni-
versity. Jobs were distributed over the network cluster
using Condor version 6.7.1 (Litzkow et al., 1988).

The performance of the topology proposals was tested
on 12 empirical DNA data sets (Table 1). Data set 6 was
taken from the literature (Brower, 2000) and submitted
to TreeBASE as part of this study; the remaining data sets
were obtained from previous submissions to TreeBASE.

All analyses were performed under the Jukes
Cantor model with no rate variation across sites
[MrBayes commands: lset nst=1 rates=equal; prset
statefreqpr=fixed(equal)]. A uniform prior (all labeled
topologies equally likely) was used on topologies and
an unconstrained, exponential prior with mean 0.1 was
used on branch lengths [prset topologypr=uniform
brlenspr=unconstrained:exponential(10)].

Convergence Diagnostic

To diagnose convergence among tree samples, we used
the average standard deviation of split frequencies (the
estimated posterior probabilities of splits or taxon bipar-
titions). Only splits that occurred in more than 10% of
the samples in at least one of the runs were included in
the calculations because the frequency of the rare splits
is more difficult to estimate accurately and the rare splits
are less important in characterizing the tree sample.

Qualitatively similar results were obtained when
other cutoff levels and convergence-diagnostic statis-
tics were used (maximum standard deviation and
maximum absolute difference of split frequencies; see on-
line Supplementary Materials, available at http://www.
systematicbiology.org).

Reference Runs

To obtain a reference sample of the posterior proba-
bility distribution for each data set, we ran six parallel
runs, each using four Metropolis-coupled chains under
the default MrBayes heating schema (incremental heat-

ing with the temperature of chain i being 1/(1 + λi),
with i ∈ {0, 1, 2, . . . } and the tuning parameter λ = 0.2).
In every generation, a single swap was attempted be-
tween a randomly drawn pair of chains. The runs were
started from different random topologies and were sam-
pled every 100 generations until the average standard
deviation of split frequencies fell below 0.005 for the last
75% of the tree samples. In general, a mixture of topol-
ogy proposals was used (Table 2). For data sets 2 and
3, however, we used only the LOCAL update for three
runs and only the eTBR update for three runs. In both
cases, the LOCAL and eTBR runs converged to the same
stationary distribution. The tuning parameter settings
for all reference runs were as follows: eTBR extension
probability 0.8, branch length multiplier 2 ln(1.6), LO-
CAL λ = 2 ln(1.1), and stNNI branch length multiplier
2 ln(1.6).

Test Runs

For each data set, we generated 100 good starting trees
and 100 overdispersed random starting trees. The good
starting trees were randomly drawn from the reference
sample, whereas the overdispersed trees were generated
as follows: First, 10,000 random topologies were con-
structed for each data set and for each pair of topologies,
the Robinson-Foulds distance (Robinson and Foulds,
1981) was calculated. Using a minimax and maximin dis-
tance design algorithm (Johnson et al., 1990) a subset of
100 topologies was determined to optimally fill the tree
space. Finally, the branch lengths were all arbitrarily set
to 0.1.

We tested three different tuning parameter settings
for each proposal (Table 3). Setting I generated the most
modest proposals, setting II intermediate proposals, and
setting III the boldest proposals. For the eTBR, eSPR, and
eSTS proposals, we changed the extension probability
rather than the branch length multiplier tuning param-
eter, because the former has more effect on the behavior
of the proposal than the latter. For the rSPR move, we
changed the probability of proposing a topology change,
which is likely to be of overriding importance when
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TABLE 3. The tuning parameter settings tested for each tree proposal.

Tuning parameter settings for test runs

Proposal Tuning parameter Data seta I Data seta II Data seta III

rSPR Probability of topology change (Pr ) 0.8 0.9 0.95
Multiplier (λ) 2 ln(1.6) 2 ln(1.6) 2 ln(1.6)

eTBR Extension probability Pe 0.5 0.8 0.9
λ 2 ln(1.6) 2 ln(1.6) 2 ln(1.6)

eSPR Pe 0.5 0.8 0.9
λ 2 ln(1.6) 2 ln(1.6) 2 ln(1.6)

eSTS Pe 0.5 0.8 0.9
λ 2 ln(1.6) 2 ln(1.6) 2 ln(1.6)

stNNI λ 2 ln(1.2) 2 ln(1.6) 2 ln(2.0)
LOCAL λ 2 ln(1.05) 2 ln(1.1) 2 ln(1.3)
CC Standard deviation (σ ) 1, 10 0.015 1, 10 0.02 1, 10 0.03

2, 3, 4 0.04 2, 4 0.06 2, 3, 4 0.08
5, 8, 9 0.03 3, 5, 8, 9 0.05 5, 8, 9 0.06

6 0.08 6 0.11 6 0.15
7 0.02 7, 11, 12 0.03 7, 11, 12 0.05

11, 12 0.021

aIf not applied to all data sets.

rSPR is used as the only proposal mechanism. For the
stNNI and LOCAL moves, we varied the tuning param-
eters that determine the boldness of the branch length
modifications. For the continuous change proposal, we
followed the procedure used by Jow et al. (Vivek Gowri-
Shankar, personal communication): the tuning param-
eter (the standard deviation of the normal distribution
used by the proposal) was adjusted beforehand for each
data set to obtain an acceptance probability of approxi-
mately 20%.

Each tuning parameter setting was run for a fixed
number of generations, using only a single chain (no
Metropolis-coupling), on each of the 100 overdispersed
and 100 good starting trees. The number of generations
for these test runs was determined separately for each
data set using the time to convergence for the refer-
ence runs as a guide. Because the reference runs used
Metropolis-coupling and the test runs did not, we ex-
pected a significant fraction of the test runs not to reach
convergence within the chosen number of generations.
A test run was deemed to have converged if the average
standard deviation of split frequencies, when the topol-
ogy sample was compared to that of the reference run,
was below 0.01 at the end of the run. The time to con-
vergence was determined as the number of generations
the chain was run before the the standard deviation of
split frequencies first fell below 0.01. The computational
complexity of the tested proposals is similar, so that the
wall-clock time used per generation is essentially con-
stant across the experiments.

In a separate experiment, we tested some of the pro-
posals used above, which all change topology and branch
lengths simultaneously, against comparable mixtures of
separate topology and branch length proposals. The cho-
sen proposals were rSPR (tuning parameter II, Table 3),
eTBR (tuning parameter II), eSPR (tuning parameter II),
and stNNI (tuning parameter I). To make the mixtures as
similar as possible to the corresponding joint proposals,
we used the same algorithm for the mixtures and only
modified it such that when a topology change was pro-

posed, branch lengths were left unmodified, with old
branch lengths mapping into new ones as suggested
in the description of the proposals below. The mixtures
were only tested on the overdispersed starting trees. For
both the mixtures and the joint proposals, we collected
information about the number of proposed and accepted
topology changes.

Because most implementations use a combination of
several topology and branch length moves, we also
tested a mixture of all seven proposals and a mixture
of the five branch-rearrangement moves. In both cases,
the proposals were chosen with equal probability at ev-
ery step of the Markov chain. The tuning parameters for
these runs were adjusted to the best performing settings
from the individual runs.

Dependence of convergence success on the starting
tree was assessed in several different ways. First, we
used a χ2 test of independence to examine whether sig-
nificantly more runs converged for certain starting trees
than for others (P < 0.05). Second, to test whether runs
started from random trees close to the good trees were
more likely to converge than others, the random trees
were ordered according to their likelihoods and accord-
ing to their average Robinson-Foulds distances from a
sample of 1000 trees from the posterior (the post-burn-in
sample of the reference runs). The number of runs that
had reached convergence for each tree was summed over
all proposals.

Finally, we graphically compared the variance in time
to convergence for runs started from the 100 overdis-
persed trees with that for 100 runs started from the same
tree (a randomly selected tree from the 100).

Topology Proposals

The tested tree proposals can be roughly sorted from
bold to modest by first focusing on the expected NNI
distance between the candidate tree and the current tree
(the minimum number of nearest neighbor interchanges
required to go from one tree to the other). Among the



90 SYSTEMATIC BIOLOGY VOL. 57

branch-rearrangement moves, the expected NNI dis-
tance gives the rough sequence (from bold to modest)
rSPR > eSTS > eTBR > eSPR > stNNI. For small trees,
eSTS may actually be bolder than rSPR because the maxi-
mum distance of the rSPR move is limited by the number
of branches in the tree, and subtree pruning and regraft-
ing is, in itself, a more modest topology change than
a subtree swap. Given the same extension probability,
eTBR is typically more bold than eSPR since two attach-
ment points are moved in eTBR and only one in eSPR.
However, the distribution of topology changes is also dif-
ferent. While the proposal distribution of eSPR has a long
tail of rather distant rearrangements, the eTBR distribu-
tion is more focused on less dramatic changes. Specif-
ically, if d is the NNI distance and pe is the extension
probability, the distribution is f (d) = (d + 1)pd

e (1 − pe )2

for TBR and f (d) = pd
e (1 − pe ) for SPR, in both cases as-

suming that the moves are not limited by the size of
the tree. The stNNI move is the least bold because it
only involves one NNI rearrangement. The two branch-
change moves (CC and LOCAL) may arguably be consid-
ered more modest than all branch-rearrangement moves
because they result in topological changes more rarely
and, when they do, the distance between the candidate
tree and the current tree is always one NNI rearrange-
ment. The CC move can be considered more modest in
that it makes less dramatic branch length changes than
LOCAL.

All seven tested tree proposals are briefly described
below. A more detailed description including the deriva-
tion of the Hastings ratios can be found in the Appendix.
The moves fall into two classes: (1) branch-change pro-
posals (LOCAL and CC), which modify branch lengths
or branch attachment points in a way that sometimes
leads to topology changes; and (2) branch-rearrangement
proposals, which either prune and regraft subtrees
(eSPR, eTBR, rSPR) or swap subtrees (stNNI, eSTS). The
branch-rearrangement proposals either choose pruning
and regrafting points or subtrees to swap using an ex-
tension mechanism (eSPR, eTBR, eSTS), which favors
local rearrangements, or at random (rSPR). The excep-
tion is stNNI, which always involves minimal topology
changes.

LOCAL.—This update mechanism was introduced by
Larget and Simon (1999) and first used in their soft-
ware package Bayesian Analysis in Molecular Biology
and Evolution (BAMBE). It consists of two independent
steps that could form separate update mechanisms. The
first step changes a subtree attachment point, the second
changes three branch lengths. For detailed descriptions
of the move see Larget and Simon (1999), Larget (2005),
and Holder et al. (2005).

Continuous change (CC).—Introduced by Jow et al.
(2002), CC is primarily a branch length proposal. It first
picks a branch b at random, whose length is v. A value
u is drawn from N(0, σ ), where σ is a tuning parame-
ter, and we propose the new branch length v∗ = |v + u|.
If v + u < 0 and b is internal, then, with equal probabil-
ity, the topology is changed to one of the two alternative
NNI rearrangements centered on b and v∗ becomes the

length of the new branch. In all other cases, the topology
remains unchanged. The proposal ratio of the CC move
is 1 (Appendix).

Stochastic nearest neighbor interchange (stNNI).—The
stochastic nearest neighbor interchange we implemented
first picks a random interior branch bx with the length
vx. This branch has four subtrees attached to its ends.
Randomly label the two subtrees at one end A and B
and the two subtrees at the other end C and D. Sub-
tree A sits on a branch with the length va , etc., so that
the five branches affected by this move can be collected
in the local branch length vector v = (va , vb , vc , vd , vx).
Now, with probability 1/3 swap A and C ; with probabil-
ity 1/3 swap B and C ; and with probability 1/3 leave the
topology unchanged. Finally, propose the new branch
lengths v∗ = {mava , mbvb , mcvc , mdvd , mxvx}, where each
mi represents an independent application of the multi-
plier move described in the Appendix. The proposal ratio
for the topology part of this move is 1; for the factor of
the multiplier part see the Appendix.

Extending subtree pruning and regrafting (eSPR).—The
eSPR proposal first picks a random interior branch ba
of length va (Figure 6a). Randomly label the subtrees at-
tached to that branch A and B. Consider B as rooted at
ba and arbitrarily label each pair of descendant branches
in B as left and right descendants. Now prune A from B
and choose a regrafting point for A on B using the fol-
lowing mechanism (see Fig. 6b). With probability 1/2, try
to move the regrafting point left in B, and with probabil-
ity 1/2 try to move it right. With probability pe , which is
a tuning parameter called the extension probability, move
the regrafting point across one node to either the left
or right descendant branch with equal probability. With
probability 1 − pe , choose the current branch as the re-
grafting point. If the current branch is a terminal branch,
the extension mechanism stops and the current branch
is called a constrained regrafting point. If the extension
mechanism could have proceeded at least one step far-
ther, the regrafting point is unconstrained.

Label the two branches at the pruning point bx and b p,
where bx is the branch in the chosen movement direction
and b p is the other branch (the pruning branch). Label the
branch chosen for regrafting br (the regrafting branch)
and the branches traversed during the extension phase
(b1, b2, . . . , bn; see Fig. 6). In the new topology, branches
b p, br , ba can be mapped together with their lengths
(vp, vr , va ) into branches that define the same splits,
whereas the branches in the vector (b1, b2, . . . bn) and their
lengths can be mapped into equivalent branches that dif-
fer only in the placement of the leaves in A. This leaves
us with bx and vx, which are mapped into the regrafting
point in the direction of the reverse move (see Fig. 6c).

After completing these branch length transfers, we ap-
ply the multiplier move independently to the branch
lengths v = (va , vx) to give the new branch lengths v∗ =
(mava , mxvx). See the Appendix for the derivation of the
Hastings ratio.

In clock trees, the subtree A cannot be picked ran-
domly; it will always have to be from the younger (non-
root) end of the chosen interior branch. In standard
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unrooted trees, however, it is probably suboptimal to
enforce a consistent rooting such that SPR moves always
change one of the two attachment points of a given inte-
rior branch. This is because the rooted version of the SPR
produces a topology space that is less well connected
and presumably more difficult to traverse than that of
the unrooted version we used here.

Extending tree bisection and reconnection (eTBR).—This is
the same move as eSPR except that the extension mecha-
nism is applied to both ends of the picked interior branch
ba . Also, when the pruning and regrafting points are the
same, we always modify the lengths va and vx, never
vp.

Extending subtree swapper (eSTS).—This move is simi-
lar to the stNNI move in that it involves a swap of two
subtrees. However, the swapped subtrees need not be
nearest neighbors; they are chosen by an extension mech-
anism and can be arbitrarily distant (Appendix).

Random subtree pruning and regrafting (rSPR).—This
move is similar to eSPR except that the regrafting branch
is picked randomly from the branches in subtree B. Be-
cause an extension mechanism is not used, the proposal
ratio for the topological change is always 1 and the ra-
tio for the branch length change is identical to the one
for eSPR. To increase the frequency of branch length
changes without topology modifications, which is im-
portant when rSPR is used as the only tree proposal, we
introduced a tuning parameter pr , the rearrangement prob-
ability. With probability pr , we selected a regrafting point
among the branches in B other than the pruning point.
With probability 1 − pr , we would force the regrafting
point to be the same as the pruning point.

Visualizing Tree Space

The Mesquite (Maddison and Maddison, 2005) Tree
Set Visualization Module (TSV; Hillis et al., 2005,
http://comet.lehman.cuny.edu/treeviz/) was used to il-
lustrate tree space via multidimensional scaling on a
topology sample using unweighted Robinson-Foulds
distances. The topology sample consisted of 5000 sam-
ples drawn from the posterior (i.e., from the reference
runs) and 500 samples from each of the chain paths that
we wanted to plot in the space. The x- and y-coordinates
of each topology were extracted from the postscript file
generated by TSV. These coordinates were used to plot
the posterior probability of each topology and the chain
paths in the resulting space.

RESULTS

For each proposal, we tested three different sets of tun-
ing parameters (Table 3), where the first set (I) gave more
modest proposals, the second set (II) intermediate pro-
posals, and the third set (III) bolder proposals. The time
to convergence and the convergence success rate were
measured under two different scenarios. First, we started
from 100 overdispersed random starting trees (Fig. 1a). In
this situation (random starting trees), we expect the time to
convergence to reflect both the burn-in time and the mix-
ing efficiency. Second, we started from 100 trees drawn

from the posterior distribution (i.e., the reference sam-
ple; Fig. 1b). In this case (good starting trees), the time to
convergence should be determined solely by the mixing
behavior since the burn-in period is negligible.

Our most striking result is that the branch length
moves (CC and LOCAL) do very poorly compared to
the branch-rearrangement moves (Fig. 1). This is ap-
parently due primarily to long burn-in times for CC
and LOCAL, but mixing is also slow, in particular for
CC (Fig. 1b). Among the branch-rearrangement moves,
eTBR and eSPR do particularly well. Their superior
performance is the result of both short burn-in times
and rapid mixing. The more modest stNNI move mixes
slightly better for some data sets than both eTBR and
eSPR (Fig. 1 b) but its burn-in time is considerably longer
(Fig. 1a). The boldest proposals, rSPR and eSTS, occasion-
ally do well but their performance is unpredictable. The
rSPR move might be expected to perform poorly on large
trees, because the rejection rate presumably increases
with tree size, but we could not detect such a trend in our
data.

Focusing on the success rate (the percentage of runs
that converged within the predefined number of gener-
ations) instead of the time to convergence, the picture
changes slightly (Fig. 2). We show these data only for the
runs starting from overdispersed trees, because the suc-
cess rate was uniformly high when starting from good
trees. The boldest proposal, rSPR, does much better when
judged by this criterion than by the time to convergence.
On average, the rSPR move achieves convergence much
slower than eTBR and eSPR (Fig. 1), but it succeeds with
a similar number of runs within a fixed number of gener-
ations (Fig. 2). For some data sets (5 and 9), it actually suc-
ceeds with more runs than eTBR and eSPR. Thus, rSPR
can be described as a safe but slow proposal mechanism.
The same thing cannot be said for eSTS; its success rate
is considerably lower than that of eTBR and eSPR even
though it is a bolder proposal.

To illustrate the effect of changing the tuning param-
eters, we also give the success rates for all three tuning
parameter settings (Table 4). The tuning parameters tend
to have a distinct but not dramatic effect, with the inter-
mediate settings (II) often doing better than the two ex-
treme settings. An obvious exception is LOCAL, where
the success rate was very similar for all tuning parameter
settings.

The overall acceptance rate was not a good indicator
of convergence success (see online Supplementary Ma-
terials). Convergence success correlated better with the
number of accepted topology changes and the average
NNI distance of the accepted proposals, but the correla-
tion was far from perfect. For data set 12, for instance,
rSPR(II) always converged, whereas eTBR(III) was do-
ing considerably worse at 87%. Yet the overall accep-
tance rate was similar, and the number and topological
distance of accepted topological changes were roughly
the same as well. A possible explanation is that a few
successful distant topology changes helped shorten the
burn-in or improve the mixing significantly for the rSPR
move on this data set.
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FIGURE 1. The average time to convergence (10 equal-sized inter-
vals from best to worst for each data set) for the random starting trees
(a) and for the good starting trees (b) for seven tree proposals. In the
first case, convergence time reflects both the burn-in and the mixing
behavior; in the second case, it reflects only mixing. The proposals are
represented by their best tuning parameter settings for each data set
and are sorted from the boldest (rSPR) to the most modest (CC). Branch-
rearrangement algorithms (rSPR, eSTS, eTBR, eSPR, and stNNI) tend
to converge much faster than branch-change proposals (LOCAL and
CC), primarily due to shorter burn-in periods.

←−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
FIGURE 2. The success rate (percentage of runs starting from ran-

dom trees that converged within a fixed number of generations) for
seven tree proposals. The proposals are represented by their best tun-
ing parameter settings for each data set, and are sorted from the boldest
(rSPR) to the most modest (CC). In general, the intermediate proposals
(eTBR and eSPR) do best.
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TABLE 4. Convergence success (percentage of runs that reached convergence) for runs started from overdispersed random trees (bold: best
value for the data set; shaded cells: significantly worse than best value).

Percentage of converged runs

rSPR eTBR eSPR eSTS stNNI LOCAL CC

Data set I II III I II III I II III I II III I II III I II III I II III

1 32 30 27 32 46 43 14 30 16 6 4 4 12 10 9 8 8 7 4 6 2
2 73 66 69 60 60 55 47 70 63 59 67 51 57 49 37 38 29 32 29 34 37
3 78 71 83 85 89 93 86 83 92 72 81 84 81 74 72 65 57 57 55 47 60
4 59 65 62 72 67 59 63 68 70 51 55 51 52 47 28 30 20 21 16 7 8
5 81 90 85 57 75 72 46 89 87 25 39 35 16 11 16 5 3 3 3 6 6
6 68 67 73 86 80 69 70 80 83 43 40 40 66 61 43 42 42 37 13 6 5
7 80 70 78 88 79 69 85 80 80 80 82 75 80 83 78 69 73 62 57 64 41
8 74 81 73 81 87 86 82 87 88 71 82 85 70 65 35 39 29 30 29 22 18
9 96 97 95 76 89 80 70 83 89 49 58 61 70 61 51 43 45 41 37 26 17

10 82 79 100 95 84 51 78 87 61 52 50 31 95 97 90 68 76 75 0 0 0
11 60 49 43 78 80 55 84 85 84 86 82 86 81 82 76 65 62 58 20 8 1
12 100 100 100 95 95 87 88 95 97 73 73 70 83 85 83 74 73 75 46 37 15

Across all data sets, the stNNI(I) move stood out in
terms of its success in modifying the topology. For data
set 2, for instance, stNNI(I) had more than 11,000 ac-
cepted topology changes; the closest competitors had
little more than 3000. Whereas the best LOCAL move,
LOCAL(I), succeeded with only 0.4% of its attempts to
change the topology for this data set, stNNI(I) succeeded
more than four times as often (1.7%). A high number of
accepted topology changes correlated to some degree
with rapid mixing (Fig. 1b) but not at all with burn-
in times (Fig. 1b). Short burn-in times were more often
associated with a large distance of accepted topology
changes. The obvious exception was eSTS, which often
had long burn-in times despite making radical topology
modifications.

For the proposals using the extension mechanism,
increasing the extension probability resulted in bolder
topology rearrangements and fewer accepted proposals.
The number of accepted topology changes, however, was
less affected than the overall acceptance rate. In some
cases, the number of accepted topology changes actually
increased when going from the lowest (0.5) to the inter-
mediate (0.8) extension probability. The boldness of the
accepted topology changes also often peaked at an exten-
sion probability of 0.8. It is possible that this contributed
to the intermediate tuning parameter settings (II) of these
moves (eSTS, eTBR, eSPR) converging so well (Table 4).

When comparing different moves, it is clear that bolder
moves had lower acceptance probabilities than more
modest moves (filled circles, Fig. 3). For instance, stNNI
topology changes were, on average, more than three
times as likely as rSPR changes to be accepted. The ac-
ceptance rates also correlated strongly with the topolog-
ical variance of the posterior distribution. The highest
acceptance rates were observed for data sets with large
numbers of trees in their 95% credibility sets, such as
data sets 6, 7, 10, and 12 (Table 2). The three data sets (2,
3, and 5) with the smallest number of trees in their credi-
ble sets also had the lowest acceptance rates for topology
changes. In other words, the more informative the data
are about the topology, the more difficult it is for topology
proposals to get accepted.

The branch-rearrangement proposals we studied all
modify branch lengths in the neighborhood of an at-
tempted topology change by using the multiplier move
(see Methods). An alternative possibility is to map old
branch lengths into the new tree without changing their
values at all. We did not use such proposal mechanisms
in the main experiment because their performance can-
not be evaluated separately; they must be combined with
branch length proposals to produce a working Markov
chain, and this would have complicated the compari-
son with the branch-change moves, CC and LOCAL.
However, we did evaluate mixtures of separate topol-
ogy and branch length proposals against our combined
approach in a separate experiment. In this experiment,
the normal stNNI, eSPR, eTBR, and rSPR moves were
contrasted with moves that were programmed identi-
cally except that the branch lengths were modified only
when the proposed topology was the same as the current
one.

In this experiment, we found that the probability of
accepting a proposed topology change was higher when
topology and branch lengths were updated separately
(open circles, Fig. 3) than when they were updated si-
multaneously (filled circles). The difference was small
for many data sets but rather pronounced for the ones
with many trees in their credible sets (data sets 10 and 12
in particular). Despite the success of the separate propos-
als in modifying topology, the convergence success and
the times to convergence were roughly comparable to
that of the corresponding combined proposals (Table 5).
Thus, the higher rate of accepted topology changes for
separate proposals (Fig. 3) was not reflected in significant
improvements in the convergence behavior.

For most data sets, combinations of the moves per-
formed better when branch-change proposals were ex-
cluded (Table 6). With respect to time to convergence, the
combined approach often outperformed the single pro-
posal approach, especially in the runs that were started
from overdispersed trees.

By visualizing tree space using multidimensional scal-
ing and by following the chain paths through this space,
it is possible to illustrate the mixing behavior of the
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FIGURE 3. The number of proposed and accepted topology changes for four different tree proposals. Each data point is the average over
100 runs started from random trees. Error bars indicate standard deviations. Filled circles represent runs in which topology and branch lengths
were updated simultaneously (the standard version of the tree proposals); empty circles represent runs where branch lengths and topology were
changed separately. The overall frequency of accepted topology changes increases in the sequence stNNI > eSPR > eTBR > rSPR. The data sets
with diffuse topology posteriors (data sets 10 and 12) also have a higher frequency of accepted topology changes. Proposing topology and branch
length changes separately increases the frequency of successful topology modifications.

TABLE 5. Convergence success and time to convergence for independent updates of topology and branch lengths (bold: better than or same
as best value in Tables 7 and 4; shaded cells: significantly worse than best value in Table 4; Conv.: converged).

rSPR (II) eTBR (I) eSPR (II) stNNI (I)

Data set % Conv. Time % Conv. Time % Conv. Time % Conv. Time

1 25 7,700,000 45 7,300,000 24 7,700,000 15 7,850,000
2 69 350,000 54 500,000 69 350,000 54 550,000
3 76 550,000 82 400,000 86 350,000 79 500,000
4 56 5,300,000 76 3,900,000 73 4,050,000 47 5,100,000
5 93 350,000 85 350,000 78 450,000 22 850,000
6 88 3,500,000 79 3,200,000 86 800,000 70 4,000,000
7 82 3,900,000 75 3,900,000 87 3,000,000 77 3,400,000
8 85 1,700,000 84 1,550,000 92 1,100,000 66 2,550,000
9 95 1,800,000 84 2,500,000 82 2,500,000 64 3,600,000
10 89 700,000 100 700,000 100 750,000 90 650,000
11 63 7,250,000 79 6,450,000 92 4,750,000 90 5,300,000
12 100 500,000 99 850,000 96 1,100,000 87 1,400,000
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TABLE 6. Convergence success and time to convergence for combinations of proposals (bold: better than or same as best value in Tables 7
and 4; shaded cells: significantly worse than best value in Table 4; Conv.: converged).

All moves Branch-rearrangement moves

Data set % Conv.a Time 1a Time 2b % Conv.a Time 1a Time 2b

1 24 7,750,000 2,308,555 36 7,550,000 1,943,480
2 68 350,000 6,395 73 300,000 5,425
3 79 500,000 14,585 85 400,000 13,220
4 66 4,350,000 538,990 68 4,150,000 520,680
5 84 400,000 31,765 81 400,000 29,760
6 88 2,750,000 965,780 88 2,750,000 1,019,650
7 87 2,600,000 969,225 84 3,050,000 997,165
8 77 1,900,000 214,615 81 1,550,000 186,490
9 86 2,200,000 235,690 94 2,100,000 354,690

10 100 550,000 402,310 100 550,000 384,125
11 89 5,000,000 1,847,570 94 4,850,000 1,923,095
12 100 600,000 306,475 100 650,000 306,000

aRuns started from overdispersed starting trees.
bRuns started from trees with high posterior probability.

different proposals in more detail. For this purpose, we
chose our smallest and most difficult data set (data set
1), which has only three topologies in its 50% credible
set (1, 2, and 3), whereas some topologies in its 90%
credible set (exemplified by topology 4) are separated
from these by a broad valley (Fig. 4). Clearly, the suc-
cess of sampling the posterior depends on having the
right proportion of trees sampled from the space around
topologies 1 to 3 and from the space around topology
4, on opposite sides of the valley. The more times the
chain can cross that valley, the more likely it should be to
get the proportions right. On average, eTBR outperforms
LOCAL on this data set and it also crosses the valley
more often, as evidenced by both short and long runs
(Fig. 4). In the subsample of 500 trees used to generate
the plots, the eTBR crossed the valley multiple times be-
tween adjacent sampling points (Fig. 4a and c), whereas
the LOCAL crossed the valley only once (Fig. 4b) or twice
(Fig. 4d).

Because we used the same set of starting trees for
all proposals, we could examine the effect of the start-
ing point on the convergence behavior across proposals.
Among the overdispersed trees, some should offer better
chances of rapid convergence than others because they
are closer to the good trees. Among the good trees, some
trees might be better starting points than others because
they are situated in the middle of the posterior distri-
bution rather than at some extreme. However, we could
find no such effects (see Methods for details). Among the
100 starting trees, whether overdispersed or drawn from
the posterior, it was not true that particular trees were
more often associated with successful runs than other
trees. Similarly, closeness to the good trees in topology
space did not predict convergence success, nor did start-
ing trees with a high initial likelihood result more often
in convergence than other trees.

To illustrate the lack of starting-point dependence, we
compared 100 runs started from different overdispersed
trees with 100 runs started from the same tree (this tree
being one of the 100). For this experiment we used the
LOCAL and eTBR moves. As expected, the distribution

of convergence times was essentially identical regardless
of whether the starting points were different or the same
(Fig. 5). This was true both for the LOCAL move and for
eTBR, even though the mixing behaviors of these two
moves are quite different, and hence also their distribu-
tions of convergence times.

The starting-point independence among random trees
and among good trees contrasts starkly with the differ-
ence between them. When the runs were started from
good trees, convergence was reached much faster than
if the runs were started from random trees. The differ-
ence in convergence time was an order of magnitude for
many data sets (Tables 7 and 8).

Finally, some general patterns are worth pointing out.
Despite expectations to the contrary, we could not detect
any correlation between the difficulty of sampling the
posterior and the number of taxa, the number of charac-
ters, or the number of trees in the 50% credible set (Tables
1 and 2, Fig. 1). Overall, the most difficult data set was
data set 1, which had the smallest number of taxa and
among the smallest number of trees in its credible set.
The two data sets with the smallest number of characters
(6 and 10) were more difficult than average and the two
data sets with the largest number of characters (1 and
2) were among the most difficult (Fig. 1a). Apparently,
the exact shape of the posterior distribution was more
important in determining the sampling difficulty of our
data sets than factors such as tree size, number of char-
acters, or number of trees in the credible set. It should
be pointed out, however, that the variation in tree size
and number of characters of the tested data sets is rather
small.

DISCUSSION

To evaluate the efficiency of different tree proposals
in sampling the true posterior probability distribution,
it is necessary to know the latter. Typically, it is difficult
to calculate this distribution, even for simulated data,
unless the tree is very small. Our approach relies on us-
ing Metropolis-coupling and several independent, long
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FIGURE 4. The mixing behavior of the eTBR (a and c) and LOCAL (b and d) proposals on data set 1. For each proposal, one run that converged
within approximately 350,000 generations is shown (a and b), as well as one run that had not converged within 10 million generations (c and
d). All four runs were started from trees sampled from the posterior probability distribution. For data set 1, the three most probable topologies
(1, 2, and 3) are similar to each other but some other topologies (exemplified by 4) in the 90% credible set are separated from these by a distinct
valley in topology space (a and b). Following the chain path through an evenly spaced subsample of 500 points from each run shows that the
eTBR move crosses the valley much more frequently (a and c) than the LOCAL move (b and d). Gray dots indicate trees from the reference run.
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FIGURE 5. Comparison of the distributions of time to convergence for 100 runs started from different random trees (a and c) and 100 runs
started from the same random tree (b and d). The plot shows the results for the LOCAL move (a and b) and the eTBR move (c and d) for data
set 3. The distributions are very similar, showing that the time to convergence is not determined by the starting point.

runs to obtain a sample of the posterior that is so pre-
cise that it can be considered the true posterior. We are
confident that this approach was successful in our case
based, among other things, on the fact that most test runs,
regardless of the proposal mechanism, eventually con-
verged to our estimated “true” posterior.

Perhaps the most important result of our experiments
is that the branch-change moves (LOCAL and CC) do
not sample topology space very efficiently compared to
branch-rearrangement moves. The CC move in particu-
lar had long burn-in times and mixed poorly but also the
LOCAL move took a long time to burn in and it mixed
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TABLE 7. Average time to convergence for runs started from overdispersed random trees (bold: best value for the data set; only values for
the best tuning parameter settings are shown).

Average number of generations until convergence

Data set rSPR eTBR eSPR eSTS stNNI LOCAL CC

1 7,600,000 7,250,000 7,750,000 8,000,000 7,850,000 7,900,000 8,000,000
2 400,000 450,000 350,000 450,000 550,000 750,000 700,000
3 550,000 350,000 200,000 450,000 450,000 1,300,000 950,000
4 4,900,000 4,200,000 4,350,000 4,850,000 4,800,000 6,400,000 6,700,000
5 450,000 500,000 350,000 800,000 900,000 1,000,000 1,000,000
6 4,250,000 3,150,000 3,050,000 5,300,000 4,050,000 5,050,000 5,900,000
7 4,300,000 2,650,000 3,200,000 4,450,000 2,800,000 3,800,000 5,850,000
8 2,450,000 1,650,000 1,550,000 1,300,000 2,400,000 4,450,000 4,550,000
9 2,100,000 2,150,000 2,250,000 3,700,000 3,200,000 4,550,000 5,050,000

10 750,000 600,000 700,000 900,000 550,000 800,000 1,050,000
11 7,350,000 5,800,000 5,450,000 5,450,000 5,400,000 6,900,000 8,800,000
12 650,000 1,300,000 1,150,000 2,400,000 1,750,000 2,250,000 4,000,000

well only for the largest trees. We do not think that these
results are due to suboptimal tuning parameter settings
in our experiments. The LOCAL tuning parameter has
little influence on performance and the CC tuning pa-
rameter was optimized for each data set according to the
suggestions by Jow et al. (2002). One could argue that
the LOCAL move, for instance, is inefficient solely be-
cause it proposes topology changes less often than the
most similar branch-rearrangement move, stNNI. How-
ever, even if we restrict our attention to the proposed
topology changes, stNNI still succeeded better than LO-
CAL at getting these accepted. This was true for all our
data sets, the difference usually being significant. In con-
clusion, we recommend that CC and LOCAL be used
only in combination with branch-rearrangement moves.
In general, stNNI should perhaps also be combined with
other branch-rearrangement proposals.

The rSPR move is commonly used in phylogenet-
ics MCMC software, but we found its performance to
be unpredictable. In some cases where the move was
successful (data sets 2, 5, and 9), the reason appears to be
that it found a very small set of good trees in a large tree
space more effectively than other moves. It is character-
istic for these data sets that the good overall performance
of rSPR is due entirely to short burn-in times because its
mixing is poor (Fig. 1a and b).

TABLE 8. Average time to convergence for runs started from trees with high posterior probability (good trees; bold: best value for the data
set; only values for the best tuning parameter settings are shown).

Average number of generations until convergence

Data set rSPR eTBR eSPR eSTS stNNI LOCAL CC

1 1,841,250 1,224,560 2,833,390 6,602,330 3,829,935 5,370,930 7,264,890
2 16,270 8,155 6,940 12,675 3,905 24,400 17,175
3 24,840 17,450 11,605 22,660 5,080 149,390 28,710
4 957,695 660,725 618,935 1,132,205 827,015 1,548,300 2,917,415
5 97,020 37,820 35,540 57,020 18,350 69,435 78,740
6 2,290,465 1,144,960 1,109,165 3,430,320 1,211,845 2,178,805 5,392,490
7 1,433,180 759,750 1,107,670 1,655,070 1,071,670 1,184,080 2,943,680
8 630,205 313,860 296,760 147,710 207,485 1,805,050 2,929,400
9 740,560 287,395 362,585 462,105 250,405 336,775 1,181,925
10 599,050 489,500 592,880 876,940 393,220 686,470 4,151,135
11 4,127,870 1,951,790 2,359,795 2,535,100 1,744,760 3,262,490 7,507,360
12 493,225 403,780 429,145 378,080 235,065 393,755 2,598,430

In general, one might expect rSPR to do worse as the
trees get larger, because the proportion of local topol-
ogy changes decreases rapidly with increasing tree size
for this move. This could possibly contribute to the
poor performance of rSPR on data sets 10 and 11. It is
more difficult to explain its good performance on data
set 12. Possibly, this data set has its good trees more
spread out in topology space so that a random branch-
rearrangement is more likely to pick up an improved
topology.

Mossel and Vigoda (2005) recently gave an example of
a type of tree space that is difficult to sample from us-
ing pruning and regrafting moves because such moves
have to pass through very poor intermediate topologies
to walk between good ones. An interesting property of
these tree spaces is that they should be easy to sample
from using subtree swapping moves, because the tree
islands are separated by only a single such move. We
have argued elsewhere that the extreme Mossel-Vigoda
tree spaces are unlikely to be encountered in real data
(Ronquist et al., 2006); but if they do occur, they should be
detectable because of the improved performance of sub-
tree swapping over pruning-regrafting moves. In gen-
eral, we failed to see such an effect. The single subtree
swapping move we examined, eSTS, typically was rather
inefficient in sampling the posterior, but there were a
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FIGURE 6. The eSPR update mechanism, also illustrating the eTBR, rSPR, and eSTS updates. First, a random interior branch with length va

is picked at random (a). Randomly label the two subtrees attached to that branch A and B. Prune A from B and choose an initial move direction
with probability 1/2. With probability pe , the extension probability, move the regrafting point across one node, choosing one of the two possible
adjacent branches with equal probability. With probability 1 − pe , select the current branch as the regrafting point (b). The pruning point is
on a branch with length vp and the regrafting point is on a branch with length vr . The first branch in the moving direction has length vx and
the following branches the lengths (v1, v2, . . . , vn). Map these lengths into the new tree as shown (c). The rSPR move is similar except that the
regrafting branch is chosen randomly in B after A has been pruned away. The eTBR move prunes and regrafts both ends of the chosen branch,
whereas eSTS swaps the subtrees A and C , the latter sitting at the distal end of the regrafting branch.

couple of data sets (8 and 11) where eSTS did well. It is
possible that these data sets are characterized by some
valleys in the pruning-regrafting topology space that
disappeared or became less prominent in the subtree-
swapping space.

One might expect topology updates without branch
length changes to be ineffective because they would tend
to be trapped by situations where their deterministic
mapping of branch lengths persistently resulted in poor
branch lengths on the new tree. Some random modifica-
tions of the branch lengths should help the chain to avoid
such situations. However, our comparison of separate
topology and branch length updates with combined up-
dates (Fig. 3) indicates that the separate approach in gen-
eral produces a higher rate of accepted topology changes.
This should lead to faster and more reliable convergence
even though we were unable to show this with our data;
at least the difference was not dramatic (Table 5). It is
possible that improved branch length update strategies
may support combined proposals.

The increased acceptance rate for the separate ap-
proach could potentially be due to the fact that the branch
lengths converged more slowly under this approach (be-
cause branch lengths are changed more rarely, and poor
branch lengths tend to increase the acceptance rates of
topology changes). However, because topology changes
are generally accepted infrequently, they contribute lit-
tle to branch length convergence. The acceptance rates of
topology changes also stabilized early in our runs, again
suggesting that slower branch length convergence did
not significantly affect the acceptance rates for the sep-
arate updates. Thus, separate updates do appear to be

more efficient. This is also supported by the fact that the
higher acceptance rates for the separate approach were
observed at equilibrium. It appears worthwhile to ex-
amine whether this can be associated with a significant
performance advantage in more extensive experiments
than ours.

As expected, our results indicate that the details of
the posterior probability distribution may affect the suc-
cess of different tree proposals. However, an empiricist
is typically faced with the problem of choosing a tree
proposal without knowing anything about the true pos-
terior distribution. Thus, there is considerable interest
in identifying a single proposal or a mix of proposals
that will do well over most types of data sets. In our re-
sults, the eTBR stands out as the obvious choice from
this perspective. It mixes extremely well over most pos-
teriors (Fig. 1b) and its convergence success rate is high
throughout (Fig. 2). When it is not the best proposal,
it is never far behind. Perhaps the weakest aspect of
the eTBR is that its burn-in phase can be significantly
longer than for the best move (Fig. 1a). However, the
move with the shortest burn-in is different for each
data set, so that it appears impossible to select one
that always does better during the burn-in than eTBR.
It may even seem doubtful whether the efficiency of
eTBR can be improved much by combining it with other
moves. However, we did not test proposal mixtures and
some mixtures definitely deserve further exploration,
such as eTBR/rSPR, eTBR/eSPR, eTBR/eSTS/rSPR, or
eTBR/eSTS/eSPR. Another interesting idea that our re-
sults point to is to let the Markov chain shift during the
run from bolder to more modest proposals. One could,
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for instance, start with an rSPR/eSTS/eSPR mixture and
then gradually shift over to an eTBR/stNNI mixture ac-
cording to a predetermined schema.

The fact that we could not detect any starting-point de-
pendence among the random trees or among the good
trees, but a striking difference in convergence times be-
tween them, suggests to us that the posterior distribution
on tree space is accurately described by the witch’s hat
analogy (Geyer, 1992; Polson, 1992). Most of the poste-
rior probability is concentrated in a tiny subspace and
the remainder is distributed rather evenly across the rest
of the space. The time it takes to find the tiny subspace—
the good trees—from a random starting point is largely
dependent on chance and walking speed, not on the dis-
tance to the subspace. Thus, it appears that the bolder
topology proposals have an advantage during this burn-
in phase because they tend to cover more ground in a
smaller number of generations. However, the brim of
the hat apparently also has a lot of local structure, so that
it is not only the boldness of the proposal that matters
but also the precise relation between the current and pro-
posed topologies. For instance, the eSTS move proposes
very bold topology changes but that does not help in
cutting down its burn-in time, presumably because the
topology neighbors separated from the current tree by a
subtree swap typically have significantly lower posterior
probabilities.

Because of the size and shape of most tree spaces, it is
obvious that a strategy of systematically trying a large
number of starting trees spread out over tree space us-
ing some space-filling algorithm is not likely to be very
productive. The chance of finding a tree that is suffi-
ciently close to the good trees to significantly speed up
convergence is simply too small. A better strategy may
be to find a good starting tree using a quick and dirty
algorithm, such as neighbor-joining or parsimony with-
out branch swapping. This will undoubtedly speed up
convergence considerably but it comes at the cost of in-
validating commonly used convergence diagnostics that
rely on overdispersed starting points, such as the av-
erage standard deviation of split frequencies. A com-
promise solution would be to start independent runs
from different trees obtained by randomly perturbing
the same neighbor-joining or parsimony tree. Given an
appropriate number of NNI perturbations, for instance,
one should be able to obtain an overdispersed mixture
of starting trees while still preserving some of the con-
vergence speed-up. An alternative approach would be
to use a space-filling algorithm to select starting trees
among a set of trees produced using a partly stochas-
tic procedure, such as stepwise addition with random
addition sequences. However, the starting trees could
never be guaranteed to be overdispersed with respect to
the posterior distribution with these approaches, so some
of the power of the topological convergence diagnostics
would inevitably be lost.

We think that our results also apply to larger trees and
more realistic substitution models, in particular because
of the relatively consistent performance differences we
observed between moves across data sets. However, it

would of course be valuable to have experimental con-
firmation of this. In particular, we think it would be
interesting to look at data sets with more characters and
more taxa than the ones we studied.

A related question is how the heating used in
Metropolis-coupling affects the efficiency of different
topology moves. In general, one might expect bolder pro-
posals to do better in heated chains than in the cold chain,
but it is unclear how significant this effect is and whether
it might be productive to run cold and heated chains
with different tree proposals. The two reference samples
that we obtained repeatedly with different moves (for
data sets 2 and 3; Table 2) indicate that the general per-
formance differences we observed between eTBR and
LOCAL in the test runs generalize well to Metropolis-
coupling with the same tree proposal applied to all
chains.

Our study focused entirely on tree proposals for stan-
dard nonclock trees. Clock trees impose constraints on
node depths that have important consequences for tree
proposals. For instance, tree bisection and reconnection
is not feasible for clock trees because the attachment point
in the crown part of the tree cannot be moved to another
branch, at least not without great difficulty. Similarly,
both the LOCAL and CC moves need to be modified
so extensively to work with clock trees that it is hardly
justifiable to use the same name for them in that context
(Larget and Simon, 1999). The remaining four moves that
we examined (rSPR, eSPR, eSTS, and stNNI) are all rela-
tively easy to adapt to clock trees. However, it is still an
open question to what extent the performance data we
collected for these moves in the nonclock context extend
to clock trees.

Although random branch-rearrangement proposals
are commonly used today, we think our results clearly
show that it is advantageous to use an extension mecha-
nism instead. The extending proposals can be viewed as
random proposals with a bias in the proposed topologies,
such that local rearrangements are favored over more
distant ones. Local rearrangements are more likely to be
accepted because their posterior probability is more of-
ten comparable to that of the current tree, and the higher
acceptance rate for topology changes tends to speed up
convergence. However, the extension mechanism we use
is a rather primitive way of generating a proposal bias.
We are currently in the process of examining more so-
phisticated mechanisms, such as favoring new topolo-
gies that have good parsimony or likelihood scores. Such
proposals range from true likelihood-based Gibbs sam-
plers, which are likely to be slow, to faster parsimony or
likelihood-based Metropolis samplers. If necessary, it is
quite feasible to test that the latter are correctly balanced
by using them, with the bias, to sample from the prior,
even though they are likely to mix poorly in this setting.
In contrast, they should mix very well when sampling
from the posterior. Another possibility is to improve
the proposed branch lengths. Many new topologies pro-
posed by the current moves are rejected not because the
new topology has a low posterior probability but because
the proposed branch lengths fit that topology poorly.
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However, improving proposed topologies and branch
lengths is difficult. One reason is the unavoidable trade-
off between precision and computational complexity. For
instance, an increased acceptance rate due to better preci-
sion in proposed branch lengths may be completely offset
by an increase in the time needed to compute each pro-
posal. Another difficulty is the unfavorable proposal ra-
tios that result from strongly biased proposals. Generally
speaking, a strongly biased proposal is favorable only if
it is matched by an equally strong response in posterior
probabilities. Nevertheless, topology and branch lengths
are currently the most difficult parameters to sample
from in most Bayesian MCMC phylogenetics problems,
so the potential payoff is significant and further research
in this area should be a high priority.
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APPENDIX

Tree Proposals
We derive the proposal ratios for each of the tree update mechanisms

below following the approach suggested by Green (2003), in which
the proposal ratio is broken into a jump-probability ratio, a random-
variable-density ratio, and a Jacobian. Suppose that we draw a vector
of random values u and use them to deterministically transform the
current parameter vector x to the new parameter vector x∗. The vector u
is drawn from a distribution with the density function g(u). To make the
reverse move, we need to draw the vector of values u∗ from the density
function g∗(u∗) (we will assume here that g∗ = g). We pick the move
with probability jm(x) for the forward proposal and with probability
jm(x∗) for the reverse proposal. Now, the proposal ratio is

f (x|x∗)
f (x∗|x)

= jm(x∗)
jm(x)

g∗(u∗)
g(u)

|J |

where the last factor is the absolute value of the the Jacobian determi-
nant, J, which is defined as

J =
∣∣∣∣ ∂(x∗, u∗)

∂(x, u)

∣∣∣∣
We simplify the calculation of the proposal ratio by breaking the

moves into independent steps, if possible. Sometimes, computational
elements involved in a move can be considered either as part of the
deterministic transformation of x or as part of the density function for u.
For example, random variables are typically generated in the computer
by some transformation of a uniform random variable generated on
the interval [0, 1). In such cases we prefer to reduce the complexity of
the transformation of x by choosing a random variable u from a more
complex density function. Finally, it is worth noting that the relevant
Jacobian is on the random variables and the model parameters. If a
move is described in terms of auxiliary variables, then the Jacobian of
the transformation from the model space to the auxiliary space must
be considered as well.

It is not obvious how branch lengths on one topology should be
mapped into branch lengths on another. In principle, the marginal
posteriors of all branch length parameters change when the topology
changes, so topologies could be considered different models with com-
pletely separate branch length parameters. However, it is commonly
assumed that branches that define the same splits (taxon bipartitions)
are identical even if they belong to different topologies, and we follow
this convention here. Thus, unless otherwise stated, if both the new
and the old tree have a branch defining the same split, it is assumed
that the old branch length is simply transferred to the new branch
defining the same split. This transfer of branch lengths has a proposal
ratio of 1 because it is deterministic and does not involve a change
in model dimensionality (we only consider bifurcating topologies
here).

Most of the tree proposals use the same multiplier mechanism to
change branch lengths. Because this can always be described as an
independent step and is sometimes used as a separate proposal mech-
anism, we describe it and derive its proposal ratio first. This is followed
by descriptions of the proper tree proposals.

Multiplier.—The multiplier is essentially a sliding window on
the log scale. Draw a multiplier value m from the distribution g(m) =
1/(λm) in the interval (1/eλ/2, eλ/2), where λ is a tuning parameter. If
the tuning parameter is given in the form λ = 2 ln a , then m will be
in the interval (1/a, a ). In a computer program, m would typically be
generated by drawing a uniform random value u on [0,1) and then
applying the transformation m = eλ(u−0.5), but the simulation procedure
need not be considered in deriving the proposal ratio. Assume we apply
the multiplier to a single branch length v to get the proposed branch
length v∗ = mv. For the reverse move, we need to draw the multiplier
value m∗ = 1/m. This gives us the Jacobian

J =

∣∣∣∣∣∣
∂m∗

∂m
∂m∗

∂v

∂v∗

∂m
∂v∗

∂v

∣∣∣∣∣∣ =
∣∣∣∣∣
−1
m2

0

v m

∣∣∣∣∣ = −m
m2

Thus, the Jacobian simplifies to the product of the stretching factor
for m, which is −1/m2, and the stretching factor for v, which is m.

The proposal ratio using Green’s method is then (ignoring jm, which
is the same for the forward and backward moves)

f (v|v∗)
f (v∗|v)

= g(m∗)
g(m)

|J |

= 1/λ(1/m)
1/(λm)

∣∣∣∣−m
m2

∣∣∣∣
= m2 m

m2
= m

Note that the part of the Jacobian that is the stretching factor for m
cancels the density ratio g(m∗)/g(m), whereas the Jacobian is multiplied
by m for any branch length to which the multiplier is applied. Thus,
if the same multiplier m is applied to n branch lengths, the overall
proposal ratio is mn. If n different multipliers m = {m1, m2, m3, ..., mn}
are applied to different branch lengths, the proposal ratio is simply
their product,

∏
i
mi .

LOCAL.—The proposal ratio for the LOCAL was initially re-
ported to be m2 but was later corrected to m3 by Holder et al. (2005)
and by Larget (2005). Both of the latter papers derive the proposal ra-
tio by considering the entire move (multiplier and topology change)
and a modified parameter space. The Hastings ratio can be derived
more easily for this move by considering it as two separate proposals,
one a branch length multiplier move affecting three branches and one
a topology proposal that does not affect branch lengths. It is easy to
show that the Hastings ratio is m3 for the first move and 1 for the latter.

Continuous change (CC).—To reverse the move we need to
draw the value u∗ = −u from N(0, σ ) as well as the right topology if
there was a topology change in the forward move. Clearly, g(−u) =
g(u), and we also have jm(τ ∗, v∗) = jm(τ, v) and J = −1 so the proposal
ratio is 1.

Stochastic nearest neighbor interchange (stNNI).—The pro-
posal ratio for the multiplier part of the stNNI is

f (τ, v|τ ∗, v∗)
f (τ ∗, v∗|τ, v)

= ma mbmcmd mx =
∏

i

mi .

Extending Subtree Pruning and Regrafting (eSPR).—We
first derive the proposal ratio of the topology change part of the pro-
posal. Consider each pair of pruning and regrafting points, (b p, br ), as a
separate move. Then we have that the probability of a particular move,
given that b p �= br (Fig. 6) and that they are separated by n + 1 branches
and that we choose to move the right end of the right internal branch
in the right direction, is:

jm(τ ) =
(

1
2

pe

)n+1

(1 − pe )

when br is unconstrained and

jm(τ ) =
(

1
2

pe

)n+1

when br is constrained. This means that the probability ratio of the
backward move to the forward move is

jm(τ ∗)
jm(τ )

=
(

1
2 pe

)n+1
(1 − pe )(

1
2 pe

)n+1

= 1 − pe
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when the forward move is constrained and the backward move is
not, while it is 1/(1 − pe ) in the reverse case. When both the forward
and backward moves are constrained or both are unconstrained, the
ratio is 1. Without branch length changes, it is trivial to show that
the other factors of the proposal ratio are 1. Adding in the branch
length changes, the proposal ratio is multiplied by

∏
i
mi as shown

above.
When the regrafting point is the same as the pruning point, we just

randomly choose to apply the branch length multiplier either to (va , vx)
or to (va , vp). The proposal ratio in this case is the same as the proposal
ratio of the multiplier.

Extending Subtree Swapping (eSTS).—First pick a random
branch ba , a subtree A, a pruning branch b p , and a regrafting branch br

using the same procedure as the eSPR proposal except that the branch ba

is picked from the set of all branches, internal and terminal (otherwise
the move would not always be reversible). Label the subtree rooted at
the distant end of the regrafting branch, br , C (Fig. 6). Now swap the

subtrees A and C along with the branches they sit on, ba and br . Note
that the subtrees A and C will consist of only a tip node in some cases.

Map old branches and branch lengths into the new tree as follows.
The branches (ba , b p, br ) all map to branches defining identical splits
in the new tree. The branches (b1, b2, . . . , bn) and bx map to branches in
the new tree that define splits that are identical except that the taxa in
subtrees A and C have traded places.

Finally, we apply the multiplier independently to the branch lengths
(va , vp, vr , vx) and to (v1, v2, . . . , vn) by drawing n + 4 different multi-
pliers. If no topology change is made, then we apply the multiplier
separately to va and vx .

The proposal ratio for eSTS is simply the product of the length mul-
tipliers,

∏
i
mi . The proposal ratio is 1 for the topology part of the

proposal because each subtree swap can be arrived at in two different
ways, either starting at A and going to C or starting at C and going
to A. Thus, the probability of choosing a particular subtree swap is
necessarily the same for the forward and backward moves.


