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Genome arrangements are a potentially powerful source of information to infer evolutionary relationships among
distantly related taxa. Mitochondrial genome arrangements may be especially informative about metazoan evolutionary
relationships because (1) nearly all animals have the same set of definitively homologous mitochondrial genes, (2)
mitochondrial genome rearrangement events are rare relative to changes in sequences, and (3) the number of possible
mitochondrial genome arrangements is huge, making convergent evolution of genome arrangements appear highly
unlikely. In previous studies, phylogenetic evidence in genome arrangement data is nearly always used in a qualitative
fashion—the support in favor of clades with similar or identical genome arrangements is considered to be quite strong,
but is not quantified. The purpose of this article is to quantify the uncertainty among the relationships of metazoan phyla
on the basis of mitochondrial genome arrangements while incorporating prior knowledge of the monophyly of various
groups from other sources. The work we present here differs from our previous work in the statistics literature in that (1)
we incorporate prior information on classifications of metazoans at the phylum level, (2) we describe several advances
in our computational approach, and (3) we analyze a much larger data set (87 taxa) that consists of each unique, complete
mitochondrial genome arrangement with a full complement of 37 genes that were present in the NCBI (National Center
for Biotechnology Information) database at a recent date. In addition, we analyze a subset of 28 of these 87 taxa for which
the non-tRNA mitochondrial genomes are unique where the assumption of our inversion-only model of rearrangement
is more plausible. We present summaries of Bayesian posterior distributions of tree topology on the basis of these two
data sets.

Introduction

The relationships among several major groups of
animals is uncertain. Authors relying on different data and
different methods of analysis often reach quite disparate
conclusions about evolutionary hypotheses. For example,
the trees showing relationships among various metazoan
phyla on page 4 of Nielsen (2001) and on page 849 of De
Rosa (2001) contain significant inconsistencies, especially
in the placement of the phyla Brachiopoda and Arthro-
poda. Nielsen supports his conclusions primarily on the
basis of morphology, whereas De Rosa justifies his con-
clusions through genomic arrangements of the Hox and
mitochondrial genes.

Several additional authors have argued that genome
arrangement data are potentially highly informative for
inferring deep evolutionary relationships. (See Smith et al.
1993; Boore et al. 1995; Boore and Brown 1998, for
example.) These papers make inferences from genome
arrangement data in an informal manner. They argue that
since the number of possible arrangements is so large and
the rate of rearrangement so slow, common parts of genome
arrangements in different species are much more likely
to be present because of a lack of rearrangement since
the time of the common ancestor rather than because of
the common partial arrangement arising more than once
independently.

Other researchers have developed quantitative meth-
ods to determine phylogenies from genome arrangements.
In these methods, genome arrangements are represented
mathematically as signed permutations. One represents

circular genome arrangements of n 1 1 genes and linear
genome arrangements of n genes as signed permutations
of size n. The permutation describes the relative posi-
tions of the genes, while the sign indicates the strand.
Biological events that rearrange genomes correspond to
operations that modify permutations. For example, a gene
inversion corresponds to the reversal of a portion of
a permutation where both the order and the signs of
the affected permutation elements are switched. A single
reversal on elements two through four changes the
permutation 1, 2, 3, 4, 5, 6 to 1, 24, 23, 22, 5, 6
whereas the change from 1, 2, 3, 4, 5, 6 to 1, 4, 2, 3, 5, 6
can be explained by either three reversals or a single
transposition.

A Parsimony Approach

Algorithms to find the minimal number of gene in-
versions to explain a rearrangement history for two-taxon
trees have been known since the mid 1990s. (See Pevzner
[2000, chapter 10 and references therein].) Several authors
have extended this maximum parsimony approach to trees
with more than two taxa, although there is no tractable
algorithm guaranteed to find the correct solution even in
the three-taxon tree case. Sankoff and Blanchette (1998),
Cosner et al. (2000), Moret et al. (2002), Tang and Moret
(2003), and Bourque and Pevzner (2002) have used a
parsimony approach and cite references to several other
articles that do the same. The software GRAPPA (Bader
et al. 2002) searches for most parsimonious solutions and
is freely available.

The authors of these articles frame the problem as one
of optimization, where the objective is to design algorithms
that find most parsimonious solutions efficiently. How-
ever, these authors do not consider the statistical question
of uncertainty assessment. How strong is the evidence that
the relationships in the optimal tree are, in fact, correct?
The conventional method of assessing reliability of trees
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estimated by parsimony from aligned sequences is the
bootstrap, relying on the assumption of independence
among sites. However, sites in genome arrangements are
highly dependent, so it is unclear how the bootstrap could
be applied.

A Bayesian Approach

In contrast to the parsimony approach, a Bayesian
approach to the problem of estimating phylogenies from
genome arrangement data offers a complete statistical
framework for evaluating evolutionary hypotheses. In
previous work (Larget, Simon, and Kadane 2002), we
described a method to quantify the uncertainty in evolu-
tionary hypotheses on the basis of genome arrangements.
Larget, Simon, and Kadane (2002) examine the complete
mitochondrial genome arrangements known at the time.
We concluded that the data were consistent with the
Lophotrochozoa/Ecdysozoa hypothesis (that brachipods
are protostomes and that molting animals are a mono-
phyletic group) and that there was overwhelming evidence
against the placement of brachiopods and arthropods in a
tree such as that in Nielsen (2001). The analysis in Larget,
Simon, and Kadane (2002), however, was weakened by its
reliance on a non-informative prior distribution that placed
prior odds of the correct classification of the 19 taxa
analyzed into their respective eight phyla at about 300
billion to one against. The result was a posterior distribution
with most weight on biologically implausible trees. We
were able to draw conclusions only by pruning taxa whose
placement was highly inconsistent with widely held belief.
We included only rudimentary summaries of the posterior
distribution.

In this article we improve upon our previous ap-
proach by incorporating a limited amount of prior infor-
mation, essentially by restricting attention to trees that
maintain several monophyletic groups for which there is
strong support in the literature. In the time since publica-
tion of our previous work, there has been an increase in the
number of known complete mitochondrial genome arrange-
ments. We use this additional information in the calcula-
tions reported here. Furthermore, we have made substantial
software improvements so that we are able to analyze much
larger data sets. We briefly describe the computational
innovations in this article.

Ultimately, we are interested in quantifying the un-
certainty in phylogenetic relationships using all available
molecular data, including both genome arrangements and
molecular sequences, while also incorporating morpho-
logical information through a prior distribution. This ap-
proach would require the joint modeling of all of the
mechanisms of molecular evolution. We have several
technical challenges to overcome before we can carry out
such an analysis. One challenge is to model jointly several
simultaneous methods of genome rearrangement, such as
gene inversion, gene transposition, and gene duplication
and random deletion. The success of other authors in
developing models for two-taxon trees that incorporate
alternative rearrangement mechanisms (York, Durrett, and
Nielsen 2002; Miklós 2003) makes us optimistic that
similar approaches will work on larger trees.

Mechanisms of Genome Rearrangement

Boore and Brown (1998) describe several mecha-
nisms of genome rearrangement and Smith et al. (1993)
provide evidence that multiple rearrangements might have
acted to rearrange the tRNA genes in metazoan mitochon-
drial genomes. Despite this evidence, in this article we will
restrict attention to gene inversion as the sole mechanism
of genome rearrangement. If gene inversion is the primary
mechanism of metazoan mitochondrial genome rearrange-
ment, our model will yield reasonable results, but we must
be cautious in interpretation of our findings because of
unknown effects of model misspecification.

NCBI Data Sets

The National Center for Biotechnology Information
(NCBI) maintains a list of sequenced complete mitochon-
drial genomes. On a recent date (April 20, 2004), this list
contained sequences from 443 metazoan taxa. We created
our first data set by first eliminating metazoan genomes
that did not contain the typical collection of 37 genes
(leaving 385 taxa), and then eliminated duplicates, result-
ing in 87 complete mitochondrial genome arrangements
from a total of eight metazoan phyla. Counts of species
per phylum are as follows: Annelida (2), Arthropoda
(28), Brachiopoda (3), Chordata (40). Echinodermata (4),
Hemichordata (1), Mollusca (8), and Nematoda (1).

Because mechanisms other than gene inversion might
affect tRNAs more readily than the much larger 13 protein-
coding and two-ribosomal genes, we also consider a subset
of this data set where we ignore the positions of the tRNAs.
Elimination of the 22 tRNA genes reduces the number of
unique arrangements within each phylum to the following:
Annelida (1), Arthropoda (8), Brachiopoda (3), Chordata
(4). Echinodermata (4), Hemichordata (1), Mollusca (6),
and Nematoda (1). We will refer to the first data set as
meta87 and the second as meta28. The mitochondrial
genome arrangements and the accession numbers for the
files from which we obtained this information are included
with the Supplementary Material.

Materials and Methods
Bayesian Inference

The nature of Bayesian inference is to describe
uncertainty with a probability distribution which changes
in response to new information. Early papers in this
area include those by Yang and Rannala (1997), Mau,
Newton, and Larget (1999), and Larget and Simon (1999).
Huelsenbeck et al. (2001) and Holder and Lewis (2003)
provide more recent reviews of Bayesian phylogenetic
methods.

Bayesian estimation of phylogeny on the basis of
genome arrangement data is fundamentally similar to the
now familiar case of aligned sequence data.Wewill describe
a model for genome rearrangement, analogous to a model of
nucleotide substitution, and amethod of employingMarkov
chain Monte Carlo (MCMC) to sample from the posterior
distribution of tree topologies. However, genome arrange-
ment data differ from aligned sequence data in important
ways so that the models and the subsequent techniques of
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computation are substantially different. The major differ-
ence is that in the case of sequence data, we can assume
independence between sites and explicitly compute the
Markov transition probabilities from one nucleotide (or
amino acid or codon) to another along a single edge.

The model for sequence change is nicely decomposed
into a collection of models for nucleotide substitution at
each site. The likelihood sums over all possible histories of
nucleotide substitution that are consistent with the ob-
served data. The same basic approaches extend to models
for amino acids or codons. With genome arrangements,
however, we cannot assume such independence among
sites. As a consequence, we are not able to model rear-
rangement of genomes as a collection of independent,
smaller models. The vast number of possible arrangements
(in metazoan mitochondrial genomes, 236 3 36! which is
much, much larger than 4, or 20, or 61) makes it practically
impossible to compute rapidly the transition probabilities
between any two different arrangements. To overcome
this computational difficulty, we compute likelihoods of
specific histories of genome rearrangement and rely on
MCMC to sum over the various possible histories.

In Larget, Simon, and Kadane (2002) we described an
MCMC method that cycled through three different update
methods. This computational approach was wholly in-
adequate to correctly compute posterior probabilities for
the meta87 data set. To overcome the poor mixing of our
old computational method on this new large data set, we
have incorporated several major changes to the MCMC
approach including adding three novel MCMC update
procedures to our previous three, creating variants for
several of the updates, and using Metropolis-coupled
MCMC (MCMCMC) to speed mixing through running
several chains simultaneously. Our software Bayesian
Analysis toDescribe Genomic Evolution byRearrangement
(BADGER), includes all of the improvements. The
Appendix provides a detailed description of each update
method and a summary of the respective acceptance prob-
abilities. Updates 4–6 and variants for all methods are new.

Model for Genome Rearrangement

The likelihood model we describe here is nearly
identical to the model in Larget, Simon, and Kadane (2002),
although we introduce new notation to describe the distri-
bution of the number of gene inversions per edge. Simply
stated, the model we adopt selects a tree topology uniformly
from a set of unrooted tree topologies, adds independent and
identically distributed edge lengths, places gene inversion
events on the tree according to a Poisson process, and selects
the realized gene inversions independently and uniformly at
random from all possible gene inversions. We find it useful
to describe further thismodel with a step-by-step description
of how we could simulate data with it.

1. Select a tree topology s uniformly at random from a set
T n of unrooted tree topologies with n taxa.

2. Select independent edge lengths t ¼ ftig, i ¼ 1,. . ., E,
from a Gamma distribution with shape parameter a and
scale parameter k where E ¼ 2n 2 3 is the number of
edges in the tree.

3. Select independent counts of realized gene inversions
x¼ fxig, i¼ 1,. . ., E, from Poisson distributions where
the mean of the ith distribution is ti.

4. For each edge, independently and uniformly at random
select a set of xi reversals ri ¼ frijg, j ¼ 1,. . ., xi, from
the set of all possible reversals. If there are g genes in
a circular genome, the size of this set is R¼ g(g 2 1)/2.
Let r¼ frig, i¼ 1,. . ., E, be the collection of reversals
from all the edges.

5. Place these reversals on the corresponding edge at
locations si¼ fsijg, j¼ 1,. . ., xi, that are independently
and uniformly distributed and let s¼ fsig, i¼ 1,. . ., E,
be the collection of reversal locations on each edge.

6. Give an arbitrary node on the tree an arbitrary labeling
(such as the identity) for its arrangement. Determine the
arrangements of the leaf nodes to be consistent with the
complete generated arrangement history.

The unnormalized posterior distribution of the param-
eters given observed arrangements y takes this form, account-
ing for various conditional independence relationships:

Pðs; t; x; r; s j y; a; kÞ} Pðy j s; x; rÞPðsÞPðt j a; kÞPðx j tÞ
Pðr j xÞPðs j t; xÞ: ð1Þ

We are able to integrate out the continuous nuisance
parameters t and s, leaving this expression:

Pðs; x; r; j y; a; kÞ} Pðy j s; x; rÞPðsÞ
Pðx j a; kÞPðr j xÞ: ð2Þ

On the right hand side of equation (2), the first factor is one
when the observed leaf arrangements y are consistent with
the reversal history. Since we assume a uniform distribution
over tree topologies in the set T n, the second factor is a
constant. The third factor is a product of negative binomial
probabilities, each of which arises from the gamma mixture
of Poisson distributions, and is expressed as

Pðx j a; kÞ ¼
Y
i

�ðaþ xiÞ
xi!�ðaÞ

� �
k

1þ k

� �a
1

1þ k

� �xi� �
ð3Þ

¼ k
1þ k

� �Ea
1

1þ k

� �P
i
xi Y

i

�ðaþ xiÞ
xi!�ðaÞ

� �
;ð4Þ

where i indexes the E edges in the unrooted tree topology.
The uniform distribution on the R possible reversals
implies that the fourth factor on the right-hand side of
equation (2) is R2�i xi.

The Poisson distribution has equal mean and variance.
The effect of sampling edge lengths from a distribution
and then sampling a realized number of inversions with
a Poisson distribution whose mean is the edge length is
to create a distribution for the number of inversions per
edge that is over-dispersed relative to the Poisson. Our
choice of the conjugate gamma prior leads to the negative
binomial distribution whose mean is a/k and variance is
(a/k)(1 1 1/k). Because we find it easier to specify and
interpret a prior distribution on the number of inversions per
edge in terms of the mean and the over-dispersion relative to
the Poisson distribution we re-parameterize the hyper-
parameters with l¼a/k and w¼ (11 1/k) so that the mean
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and variance of the distribution of inversions per edge are l
and wl, respectively. With this re-parameterization, the
equations above can be restated by letting a ¼ l/(w 2 1)
and k ¼ 1/(w 2 1) so that the prior distribution for the
number of inversions is

Pðx j l;wÞ ¼ 1

w

� �El=ðw�1Þ w� 1

w

� �P
i
xi

3
Y
i

�ððl=ðw� 1ÞÞ þ xiÞ
xi!�ðl=ðw� 1ÞÞ

� �
: ð5Þ

Prior Distributions on Tree Topology

The formulas that count the number of rooted and
unrooted binary tree topologies with n taxa are well known
(Felsenstein 1978). The number of unrooted binary trees is

uðnÞ¼ 1 if n=1or n=2
ð2n�5Þ!!¼1333 ���3ð2n�5Þ if n� 3

;

�

ð6Þ
and the number of rooted binary trees is r(n)¼u(n1 1). In
light of prior information, we might also consider restrict-
ing attention to trees that maintain certain groups. If the
n taxa are partitioned into k groups of sizes n1, n2,. . ., nk,
where

Pk
i¼1ni ¼ n, the number of tree topologies with

these groups as unrooted clades is

uðkÞ3
Yk
i¼1

rðniÞ: ð7Þ

In this article, we will make the assumption that the
partitioning of the taxa into their respective phyla with
respect to the other taxa in the analysis is correct. This
restricted prior distribution on tree topology distinguishes
the model in this paper from the model in our earlier work
(Larget, Simon, and Kadane 2002).

Were we instead to place a uniform prior distribution
on all unrooted trees, the prior odds of trees that grouped
animals into their respective phyla would be about
6.6 3 1049 against in the case of data set meta87 and
about 3.3 3 1018 against for data set meta28. We have
a much stronger belief than this that grouping the animals
in this study into phyla on the basis of morphology and
other considerations is correct. BADGER allows grouping
structure to be set as a run control. The MCMC updates
that change the tree topology consider only those changes
to tree topology which retain the grouping structure.

We also note that the prior probability on clades
induced by a uniform prior probability on unrooted tree
topology depends both on the number of taxa and the size
of the clade. The prior for a specific edge that partitions an
unrooted binary tree topology with n taxa into two groups
of size j and n 2 j is

rðjÞrðn� jÞ=uðnÞ: ð8Þ
In both data sets we consider in this article, our primary
interest centers on the 10,395 possible unrooted trees that
relate the eight metazoan phyla for which we have data.
Any single 8-taxon binary unrooted tree topology has

exactly five internal edges, each of which splits the taxa
into two groups, of size 2/6, 3/5, or 4/4. There are 28
possible 2/6-splits, each with a prior probability of 1/11
¼: 0.0909, 56 possible 3/5-splits with prior probabilities
1/33 ¼: 0.0303 each, and 70 possible 4/4-splits with prior
probabilities 5/232 ¼: 0.0216 each.

Clades for which the posterior probabilities exceed
the prior probabilities have at least some level of support in
the data, even if this support might be weak.

Prior Distribution on Edge Lengths

The posterior probability of tree topology given the
likelihood model, observed arrangement data, and a uni-
form prior on tree topology is a function of the hyper-
parameters l and w that determine the prior distribution of
the number of gene inversions per edge. In the absence of
information other than the data on reasonable values to use
for these hyper-parameters, we elect to take an empirical
approach and use data-derived estimates. For each pair of
taxa we can compute the observed inversion distance be-
tween their genomes (Pevzner 2000) using an improved
algorithm (Bader, Moret, and Yan 2001). From this pair-
wise distance matrix we compute the Neighbor-Joining
tree and then calculate the mean and variance of the edge
lengths to estimate l and wl, respectively. The total dis-
tance of the Neighbor-Joining tree is a lower bound on the
total number of inversions necessary to reconstruct a com-
plete inversion history consistent with the data, because
the calculated pairwise distances are themselves minimum
estimates. Furthermore, the edge lengths of the Neighbor-
Joining tree are potentially continuous, whereas recon-
structed histories must necessarily have integer-valued
lengths per edge. Consequently, the prior we adopt has a
bias toward most parsimonious reconstructions. If we find
posterior distributions of total numbers of inversions with
low probabilities on most parsimonious solutions, this will
be due to the data and the likelihood model and not the
prior distribution. The estimation of the hyper-parameters
using edge lengths of a Neighbor-Joining tree is a small
change from the approach we used in Larget, Simon, and
Kadane (2002).

Calculation Details

BADGER allows a number of settings to control the
running of the program. The meta87 data set required
substantially greater computational effort to produce the
results we present here than did the meta28 data set. For
each data set, we began at randomly selected starting trees
and inversion histories using a variation on the Neighbor-
Joining algorithm. At each stage we use the Neighbor-
Joining rule to connect the next two nodes, but select
a random point on a random path between the two joined
nodes to create an actual genome arrangement for the new
internal node. We update the pairwise distance matrix
using this arrangement rather than the usual Neighbor-
Joining rule and iterate until the tree and inversion histories
are complete. We do this first for each predetermined
group of taxa, select a root for each, and then continue the
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process using the roots of the group trees to select an initial
tree.

These initial trees tend to have some very long edges.
We begin by cycling through all of the update methods
ignoring the Hastings ratio correction for a number of pre-
burn-in updates that rapidly drives the initial inversion
history and tree closer to most parsimonious solutions
where the posterior distribution is higher. We then use
correct acceptance probabilities and cycle through all of
our updates for very long runs, discarding the initial por-
tion of these runs as burn-in.

For each data set we run ten simultaneous chains and
swap states using MCMCMC. We repeat these analyses
20 times each, using different streams of pseudo-random
numbers and compare the estimated probabilities for con-
sistency. The posterior probabilities we report are averages
over the 20 runs. The meta28 data set used about 4 hours
of computational time on a 2.8 GHz Pentium machine
running Linux for each of the 20 independent analyses,
whereas we ran the meta87 data set for over 16 days of
computational time per run on a set of similar machines.
(We did the 20 separate runs in parallel, so the nearly one
year of cumulative computational effort took one twentieth
of the actual time to complete.) All calculated clade prob-
abilities have Monte Carlo standard errors less than one
percent. More details on run settings for these simulations
are included in the supplementary material.

Results

Gene order information provides very little resolution
at the individual taxon level for these data sets. The sub-
sampled set of trees we analyze do not select the same
exact tree topology twice for the meta87 data set, for
example. We do, however, find substantial posterior prob-
abilities for relationships among animal phyla. The major-
ity rule consensus tree summary of the meta87 sample
from the posterior is completely resolved at the phylum
level, although there is considerable uncertainty remain-
ing. Figure 1 compares the most probable relationships
among metazoan phyla using each data set. Posterior
probabilities for the meta87 data set are higher, but the
results might be more questionable because of the potential

for serious model bias. The meta28 data set is more poorly
resolved, with only three phylum level splits having pos-
terior probabilities greater than one half. Table 1 tabulates
the posterior probabilities for all clades in each data set for
which the posterior probabilities exceed the priors.

Discussion
Phylum-Level Relationships

In figure 1, we root the trees at a break between deu-
terostomes (Echinoderms, Hemichordates, and Chordates
here) and protostomes. This is the most strongly supported
split in the meta87 data set. Both data sets support the
group Lophotrochozoa (Annelida, Brachipoda, and Mol-
lusca in this data set). It is interesting to note that marginal
support for Ecdysozoa (Nematoda and Arthropoda in the
present analysis) is stronger in the meta28 analysis
(probability equals 0.36) than it is in the meta87 data set
(probability equals 0.006). The placement of Arthropoda
as outgroup to a group consisting of Nematoda and Lopho-
trochozoa with high posterior support in the meta87 data
set may very well be an artifact of model misspecification.
There are 28 unique genome arrangements in Arthropoda
in meta87, but only eight in meta28, where tRNA gene
placement is ignored. The tRNA genes appear to be much
more mobile and are highly likely to rearrange by mecha-
nisms other than gene inversion, as we assume here.

It is apparent that complete mitochondrial genomes
are far more informative than partial arrangements that
ignore placement of tRNA genes. However, for this infor-
mation to be used most effectively for phylogenetic in-
ference leading to statistical estimates of uncertainty will
require further development of models of genome re-
arrangement.

Limitations on Information in Gene Order

We note that the results of the analyses of both data
sets are rather inconclusive as many possible trees retain
non-neglible posterior probability. It is interesting to ask
if mitochondrial gene order information alone is sufficient
to resolve evolutionary realtionships among animals at
the phylum level. The use of models that come closer to

Echinodermata

Chordata

Hemichordata

Mollusca

Brachiopoda

Annelida

Nematoda

Arthropoda

0.87

0.99

0.98

0.68

1

87−taxon results

0.74

0.57

0.36

0.6

0.39

28−taxon results

FIG. 1.—Posterior summaries of tree topology. The majority-rule consensus tree of the meta87 data set appears on the left. The right tree
summarizes the meta28 posterior distribution showing the tree that contains the highest probability splits that do not conflict with splits with larger
posterior probability.
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describing the actual mechanisms of mitochondrial
genome rearrangement will help, as will the collection of
more data, but there is reason to question whether these
efforts alone will suffice. Clearly, an analysis that uses
both arrangement data as well as sequence data has the
potential to be far more informative. There are at least two
avenues to pursue an analysis of combined sequence and
arrangement data. One would be to develop an MCMC
approach that models the two types of data simultaneously.
A second possible approach would be to use the posterior
of an analysis using one data type as an informative prior
on trees for an analysis using the second data type. Doing
this effectively might require changes in the standard
software programs for Bayesian phylogenetics where prior
specification is fairly limited.

The Restricted Prior Distribution

The results we present in this article are better than
the quantitative results in Larget, Simon, and Kadane
(2002), in which we did not sample any biologically
plausible trees at all, in part because here we use a prior
distribution that incorporates genuine biological prior
information, albeit in a very simple way. The phylogenetic
signal in genome arrangement data alone (observed with
our present model) is fairly weak relative to what we have
come to expect with sequence data, where the sequence
data are often able to reject most biologically implausible
trees without the aid of a restrictive prior on tree topology.
On the other hand, posterior probabilities in analyses of
distantly related taxa using sequence data rarely account
for the uncertainty in alignment. We expect that genome
arrangements will play an important and useful role in

phylogenetic analyses, especially in situations where se-
quence alignment is highly uncertain.

Model Criticism

A limitation of the approach described in this article
is the assumption that gene inversion is the sole mecha-
nism of genome rearrangement. Although we have not
carried out any formal goodness-of-fit tests on the suit-
ability of the model, we expect that real data look different
from data we could simulate under our model in important
ways. Boore and Brown (1998) and Smith et al. (1993)
describe several mechanisms of genome rearrangement
including gene transposition, inverted gene transposition,
and gene duplication and random deletion, and there may
be others. One way to extend the methods in this article
would be to incorporate several simultaneous mechanisms
of genome rearrangement. Furthermore, our assumption
that all possible gene inversions are equally likely could be
relaxed. There might be important factors due to proximity
to the origins of replication, the size of the affected frag-
ments, and the size of noncoding gaps between genes. We
expect that models that better incorporate biological under-
standing of processes of genomic rearrangement will pro-
vide more accurate quantitative measures of support for
various phylogenetic hypotheses and will even allow us to
make predictions about unseen arrangements. Further-
more, such models would provide a framework for in-
ference about the actual biological mechanisms of genome
rearrangement, which would be interesting in its own right.

A Comparison to Maximum Parsimony Methods

The published papers on a parsimony approach to the
problem of reconstructing phylogenies on the basis of
genome arrangement data have a different focus. From the
perspective of these other authors, finding a tree or a set of
trees with the minimal number of total inversions (or
rearrangement events) is the goal, and the criterion for
evaluating methods is the computational speed of the
algorithms for finding the answers. Our focus is on assess-
ing the uncertainty in the reconstructed trees and provid-
ing the scientist with an easily interpretable means of
quantifying support for scientific questions of interest.

There is a connection between parsimony and
Bayesian approaches to phylogeny reconstruction from
genome arrangements. If we let the prior mean l tend to 0,
the Bayesian posterior distribution will be concentrated on
those tree topologies and inversion histories that achieve
the minimal possible number of total inversions. In this
situation, solutions of the minimal total inversion trees
could be good starting trees for our algorithms. If, on the
other hand, we expect a priori that there may be many
inversions on some edges, the set of most parsimonious
reconstructions may have small posterior probability and
will not be relevant in assessing uncertainty.

The only available software for seeking most parsi-
monious solutions is GRAPPA (Bader et al. 2002).
GRAPPA carries out a branch-and-bound search over the
entire tree space, and as such is limited to fairly small trees.
On a single current desktop PC, analyses of data sets with

Table 1
Posterior Probabilities of Common Clades

Posterior

Splitmeta87 meta28

1 1.000 0.391 fNema,Arth,Ann,Moll,Brachg—fEchi,Hemi,Chorg
2 0.995 0.566 fNema,Arth,Echi,Hemi,Chorg—fAnn,Moll,Brachg
3 0.980 0.083 fArth,Echi,Hemi,Chorg—fNema,Ann,Moll,Brachg
4 0.870 0.737 fNema,Arth,Moll,Echi,Hemi,Chorg—fAnn,Brachg
5 0.681 0.216 fNema,Arth,Ann,Moll,Brach,Hemig—fEchi,Chorg
6 0.176 0.602 fNema,Arth,Ann,Moll,Brach,Echig—fHemi,Chorg
7 0.143 0.050 fNema,Arth,Ann,Moll,Brach,Chorg—fEchi,Hemig
8 0.113 0.163 fNema,Arth,Ann,Echi,Hemi,Chorg—fMoll,Brachg
9 0.006 0.356 fNema,Arthg—fAnn,Moll,Brach,Echi,Hemi,Chorg
10 0.012 0.303 fArth,Ann,Moll,Brachg—fNema,Echi,Hemi,Chorg
11 0.000 0.249 fArth,Ann,Moll,Brach,Hemi,Chorg—fNema,Echig
12 0.000 0.247 fNema,Arth,Echig—fAnn,Moll,Brach,Hemi,Chorg
13 0.113 0.163 fNema,Arth,Ann,Echi,Hemi,Chorg—fMoll,Brachg
14 0.000 0.119 fArth,Ann,Brachg—fNema,Moll,Echi,Hemi,Chorg
15 0.000 0.115 fArth,Mollg—fNema,Ann,Brach,Echi,Hemi,Chorg
16 0.000 0.079 fArth,Ann,Moll,Brach,Hemig—fNema,Echi,Chorg
17 0.000 0.066 fNema,Arth,Ann,Brachg—fMoll,Echi,Hemi,Chorg
18 0.000 0.061 fNema,Arth,Mollg—fAnn,Brach,Echi,Hemi,Chorg
19 0.000 0.060 fNema,Arth,Echi,Chorg—fAnn,Moll,Brach,Hemig
20 0.000 0.055 fArth,Moll,Echi,Hemi,Chorg—fNema,Ann,Brachg
21 0.000 0.039 fArth,Echig—fNema,Ann,Moll,Brach,Hemi,Chorg
22 0.000 0.033 fNema,Arth,Ann,Brach,Echig—fMoll,Hemi,Chorg

NoTE.—The first eight splits are those with posterior probabilities larger than

the prior found in the meta87 data set. The remaining splits all have higher posteriors

than priors in the meta28 data set.
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10 and fewer taxa take a minute or less to complete, but
time requirements increase exponentially and problems
with 15 or more taxa are not practical. Tang and Moret
(2003) describe a method for using the Disc Covering
Method (DCM) to extend GRAPPA to trees with 1000s of
taxa, but this code is not available.

MCMC on Genome Arrangements

Our present MCMC approach to genome arrangement
data is substantially more challenging than the MCMC
methods developed for sequence data such as those in the
program MrBayes (Huelsenbeck and Ronquist 2001). With
sequence data, Felsenstein’s pruning algorithm allows rapid
calculation of the likelihood of the data by summing over all
possible histories of point substitution consistent with the
observed data. A consequence is that the state space of the
Markov chain is the tree space and is wholly separated from
the data.MCMCupdatemethods are independent of the data
except in the computation of likelihood ratios.

In contrast, the Markov chains we describe in this
article for genome arrangements have as their state space
the joint space of the tree and the complete history of
genome rearrangement. The very large number of possible
genome arrangements makes it impossible to compute
complete probability transition matrices, and thus we are
unable to compute the likelihood of the data by summing
over all inversion histories directly. We solve this by
augmenting the state space of the Markov chain with the
genome arrangement history, in essence using MCMC
rather than analysis to compute the likelihood of the data
for a given tree. As a consequence, potential changes in
the likelihood model (such as the incorporation of new
mechanisms of rearrangement) would necessitate the devel-
opment of new update methods for the MCMC approach,
a challenging task that requires creativity, analysis to
compute correct acceptance probabilities, careful imple-
mentation in code, and testing. The success by others in
handling multiple mechanisms of rearrangement on two-
taxon trees (York, Durrett, and Nielsen 2002; Miklós
2003) suggests, but in no way guarantees, that in the future
we will be able to extend similar methods to large trees.

Direction of Future Work

The analytical approach we present here is the first
rigorous statistical approach to phylogenetic inference from
genome arrangement data that is computationally tractable
for fairly large trees. In contrast, the maximum parsimony
approach currently offers no assessment of uncertainty. As
our best current inferences are fairly uncertain, we see
estimation of uncertainty to be critical. We anticipate the
development of more realistic models that include multiple
mechanisms of rearrangement, of ways to do combined
analysis of aligned sequence data with arrangement data
and of more efficient computational approaches to be made
by ourselves and others in the near future.

Supplementary Material

The genome arrangements used in this article are
available as supplementary material in PDF format

(meta87.pdf) and as plain text (meta87.txt and meta28.txt).
The BADGER settings we used are in the file settings.pdf.
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Appendix: Derivation of Acceptance Probabilities

Larget, Simon, and Kadane (2002) describe a pro-
cedure to generate at random a sequence of reversals that
when applied in order to a source signed permutation result
in a given target signed permutation. If the source and
target are identical, the procedure stops with probability
pstop. Otherwise, at each stage the set of possible reversals
is categorized as good, neutral, or bad. Some categories
can be empty. We first pick a category according to the
distribution in table 2 and then pick a reversal within the
category uniformly at random. This reversal is applied to
the source with the result becoming the new source. We
continue this process until we stop with a complete se-
quence of reversals. Every possible sequence of reversals
leading from the source to the target has a positive pro-
bability, and we compute the probability of the sequence
we actually select.

When selecting the next reversal, ideally we would
categorize reversals into those that decrease the inversion
distance between source and target by one, those that leave
the inversion distance unchanged, and those that increase
the inversion distance by one. Instead, we use a categori-
zation that is much faster to compute that is nearly, but not
quite, identical. Please see Kaplan, Shamir, and Tarjan
(1999) for the definitions of the following italicized terms.
Our good category consists of proper reversals and rever-
sals within the same cycle of an unoriented connected
component. The neutral category consists of improper
reversals within the same cycle. The bad category is all
other reversals; namely, reversals that are not part of the
same cycle. The categorization of reversals within the
same cycle of an unoriented connected component as good
rather than neutral is a change from Larget, Simon, and
Kadane (2002).

In each of the following updates, one or two edges
have all or part of their reversal histories replaced by the
method briefly outlined in the preceding paragraph. We
now describe the updates in turn. The first three updates
(without variants) were first described in Larget, Simon,
and Kadane (2002). The last three updates and variants of
all updates are novel.

The state space consists of an unrooted leaf-labeled
tree with n taxa and an associated ordered list of reversals on
each edge that is consistent with the observed data. There
are 2n2 3 edges in total of which n2 3 are internal edges.
There are 2n2 2 nodes, of which n2 2 are internal nodes.

In the following descriptions, values in parentheses are
the probabilities for each step in the proposal. Each proposal
ratio (also called a Hastings ratio) is the probability of
proposing the original state from proposed state divided by
the probability of proposing the proposed state from the
original state. The posterior ratio is the ratio of the posterior
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probability of the proposed state over that of the current
state. The acceptance probability is the minimum of one and
the product of the posterior ratio and the proposal ratio.

Update 1

Select an internal node Z at random (1/(n 2 2)). This
node has three adjacent edges. Select an adjacent edge e3 at
random (1/3). This edge connects node Z to node C. The
other two adjacent edges e1 and e2 connect Z to nodes A and
B, respectively. Let xi be the number of reversals on edge ei.
Pick a random location on the path from A to B (1/(x1 1 x2
1 1)) and move Z to this new location. Edges e1 and e2 now
have x 91 and x 92 reversals, but note that x 91 1 x92 ¼ x1 1 x2.
Node Z has a new signed permutation determined by its new
location on the path from A to B. Erase all reversals on e3
and generate a new list with the new permutation at Z the
source and the permutation at C the target (p1).

To undo this proposal, we need to select the same
internal node Z (1/(n 2 2)) and random adjacent edge e3
(1/3). We must propose the old location (1/(x91 1 x92 1 1))
and generate the old sequence of reversals on e3 (p2). The
proposal ratio is p2/p1.

In the variant Update 1x, everything is the same
except that the target is the permutation at a random
location on e3 (1/(x3 1 1)) rather than the permutation at
node C. We leave the last partial sequence of reversals on
e3 unchanged. The complete length of the proposed history
on e3 is x93. The reverse proposal must update the same
partial history on e3 (1/(x 93 1 1)) and the proposal ratio is
(p2/p1)3 (x3 1 1)/(x93 1 1).

Update 2

Select a random edge (1/(2n 2 3)). Randomly select
one end point to be the source and the other to be the target
(1/2). Replace the sequence from the source to the target
(p1). Compute the probability of having generated the
same sequence of reversals from target to source (p2). The
proposal probability is (p1 1 p2)/(2(2n 2 3)).

To undo this proposal, we need to select the same
edge (1/(2n 2 3)), a random source and target (1/2), and
the old list (p3 or p4, depending on designation of
the source). The probability of the reverse proposal is
(p3 1 p4)/(2(2n 2 3)), and the proposal ratio is (p3 1 p4)/
(p1 1 p2).

In the variant Update 2x, if the selected edge has x
reversals, there are x 1 1 locations. Two locations of the
edge (possibly the same) are selected at random (1/(x1 1)2).
The sequence between these locations is updated as in
Update 2, and the other reversals remain unchanged. (The
case when the two locations are the same is identical to
updating an edgewith no reversals.) If the proposed edge has
a total of x9 reversals, counting both unchanged and newly
proposed reversals, the reverse proposal selects the same
two locations with probability (1/(x91 1)2) and the proposal
ratio is (p3 1 p4)(x 1 1)2/((p1 1 p2)(x9 1 1)2).

Update 3

Select an internal edge at random (1/(n 2 3)). Call
the two internal nodes joined by this edge Y and Z. Select
one of the other edges adjacent to node Y (1/2) and one of
the others adjacent to node Z (1/2) and label them e1 and
e2, respectively. Edge e1 connects node Y to node A while
edge e2 connects node Z to node B. Swap the end nodes of
edges e1 and e2 so that Y is connected to B and Z is
connected to A. Generate new reversals on edges e1 and e2
from source Y to target B (p1) and from source Z to target
A (p2).

The reverse proposal must select the same internal
edge (1/(n 2 3)) and the same two edges to swap (1/4).
We must then also generate the old sequences (p3 and p4).
The proposal ratio is (p3p4)/(p1p2).

Update 4

This update is essentially tree bisection-reconnection
(TBR). Select an internal edge e at random (1/(n 2 3)).
Call the two internal nodes joined by this edge Y and Z.
The other two edges adjacent to Y have x1 and x2 reversals
while the other two edges adjacent to Z have x3 and x4
reversals. Remove edge e and nodes Y and Z from the tree,
combining the two other edges into single edges for each Y
and Z to form two new edges with x1 1 x2 and x3 1 x4
reversals, respectively. There are now two disconnected
unrooted trees with n1 and n2 nodes. Pick a random edge e5
on the first tree (1/(2n1 2 3)) and a random edge e6 on the
second tree (1/(2n2 2 3)). The number of reversals on
these edges are x5 and x6. Pick a random location on each
of these selected edges (1/(x5 1 1) and 1/(x6 1 1)), put
new nodes at these locations, and connect them with a new
edge. Pick a random direction (1/2) to generate new

Table 2
Reversal Generation Probabilities

#good #neutral #bad P(good)

Category Probability

P(neutral) P(bad)

1 1 1 pgood (1 2 pgood)pneutral (1 2 pgood)(1 2 pneutral)
1 1 0 pgood (1 2 pgood) 0
1 0 1 pgood 0 (1 2 pgood)
1 0 0 1 0 0
0 1 1 0 pneutral (1 2 pneutral)
0 1 0 0 1 0
0 0 1 0 0 1

NoTE.—At each stage in generating a sequence of reversals, all possible reversals are partitioned into three groups, good,

neutral, and bad. The first three columns specify the possible cases where 1 indicates the category is not empty and 0 indicates

the category is empty. Columns 4–6 are the probabilities of picking each category for each case.
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reversals on this edge (p1). The probability of generating
the reversals in the other direction is (p2).

To propose the original state, we must select the new
edge to delete (1/(n 2 3)), select the right edge from each
subtree (1/(2n1 2 3) and 1/(2n2 2 3)), select the right
locations on each of these edges (1/(x1 1 x2 1 1) and
1/(x3 1 x4 1 1)), pick a direction (1/2) to generate the
original sequence (p3), and compute the probability of
generating the sequence in the other direction (p4). The
proposal ratio is (p3 1 p4)(x5 1 1)(x6 1 1)/((p1 1 p2)
(x1 1 x2 1 1)(x3 1 x4 1 1)).

Update 5

Update 5 begins like Update 3 with the selection at
random of an internal edge (1/(n 2 3)) and one additional
edge from each end point (1/4). Label the middle edge
selected first e2 and label one of the other edges e1 and the
other e3 with each possibility equally likely (1/2). Edge ei
has xi reversals for i ¼ 1, 2, 3. Call the node adjacent to
both edges e1 and e2 node Y, let e4 be the other edge
adjacent to node Y, and label the other node adjacent to
e4 node A. Pick a random location on e3 (1/(x3 1 1)) and
move node Y to that location. Edges e1 and e2 are joined to
become a common edge e91 while edge e3 is split into two
edges e92 and e93. Node Y now has a new permutation
determined by its new location. Generate a new sequence
of reversals on e4 with the new permutation at Y the source
and the permutation at A the target (p1).

The reverse proposal must select edge e92 as the initial
internal edge (1/(n 2 3)) and then select edges e91 in the
role as e3 and e93 in the role as e1 (1/8). The same node Y is
then moved to its initial location (1/(x1 1 x2 1 1)) and the
original sequence of reversals on edge e4 is generated from
node Y to node A (p2). The proposal ratio is p2(x3 1 1)/
(p1(x1 1 x2 1 1)).

The variant Update 5x is identical except that the
target is a randomly selected location on edge e4 (1/(x4 1
1)) rather than at node A. The reversal sequence from the
selected location to node A remains the same. If the new
reversal sequence length is x94, the reverse proposal must
select the same location (1/(x94 1 1)). The proposal ratio is
p2(x3 1 1)(x94 1 1)/(p1(x1 1 x2 1 1)(x4 1 1)).

Update 6

Pick two distinct leaves, A and B, of the tree uniformly
at random (2/(n(n 2 1))). There are k internal nodes on the
path between these two leaves. Pick one of these internal
nodes (1/k) at random and call it Z. Two edges adjacent to Z
are on the path; the other edge e is not on the path and
connects Z to node C. Let y be the number of reversals on
the path from A to B. This path also has k2 1 other internal
nodes so that there are y 1 k possible locations on the path
to place node Z, including its current location. Pick one of
these locations at random (1/(y 1 k)) and move node Z to
this location. Node Z now has a new permutation. Generate
a new sequence of reversals for edge e using node Z as the
source and node C as the target (p1).

The reverse proposal picks the same two leaves
(2/(n(n 2 1))), the same node Z (1/k), and the original

location (1/(y 1 k)). We generate the original reversal
sequence on edge e (p2). The proposal ratio is p2/p1.

The variantUpdate 6x is identical except that we only
regenerate part of the reversals on edge e. If edge e begins
with x reversals and the proposed edge has x9 reversals,
the proposal ratio would be p2(x 1 1)/(p1(x9 1 1)).

BADGER cycles through updates 1, 1x, 2, 2x, 3, 4,
5, 5x, 6, and 6x in order. Updates 3, 4, 5, 5x, 6, and 6x
can change the tree topology. In each of these cases, if we
are using a restricted prior, we never propose a tree with
prior probability zero. The proposal ratios are adjusted
accordingly.
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