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Abstract

Amplified Fragment Length Polymorphism (AFLP) markers are formed by selective amplifi-
cation of DNA fragments from digested total genomic DNA. The technique is popular because it
is a relatively inexpensive way to produce large numbers of reproducible genetic markers. In this
paper, we describe a Bayesian approach to modeling AFLP marker evolution by nucleotide substi-
tution and an MCMC approach to estimate phylogeny from AFLP marker data. We demonstrate
the method on species in Carex section Ovales, a group of sedges common in North America. We
compare the results of our analysis with a clustering method based on Nei and Li’s restriction-site
distance and a two-state Bayesian analysis using MrBayes.
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INTRODUCTION

The amplified fragment-length polymorphism (AFLP) technique, first devel-
oped by Vos et al. (1995), is a powerful tool to produce DNA fingerprints of
organismal genomes. The generation of AFLP markers involves breaking the
whole genome into fragments with restriction enzymes. A small fraction of
the fragments, selected by a specific primer pair, are amplified using PCR and
visualized using gel electrophoresis. The fragments are measurable in units of
nucleotides. Bands for which there is some variability among the separate indi-
viduals under study are the genetic markers. A single primer pair can produce
twenty to one hundred or more separate markers in a single individual, and
several times this number in a population sample of individuals. Additional
markers can be found using different primer pairs. While the method has been
calibrated in some well studied organisms to distinguish individuals that are
heterozygous at a given locus, the resulting data are usually recorded as a 0/1
matrix—allele absent or allele present, with no information about whether the
individual is homozygous or heterozygous—with a row for each individual in the
study and a column for each marker. The specific primer pair and fragment
length associated with each marker are known with relative certainty (though
see discussion below).

One increasingly common use of AFLP marker data is as a source of ge-
netic information for phylogenetic inference, the estimation of evolutionary
trees from genetic data. In addition to low cost, there are additional charac-
teristics of AFLP markers that make them suitable for phylogenetic inference
in many situations. AFLP markers are highly reproducible (Powell et al., 1996;
Jones et al., 1997) and easily detected using automated sequencers and soft-
ware. They are less prone to homology problems than are other anonymous
DNA fragment methods such as randomly amplified polymorphic DNA frag-
ments (RAPD) or inter-simple sequence repeat (ISSR) polymorphisms (Wolfe
and Liston, 1998). Moreover, as a multilocus method, AFLPs have the ben-
efit of integrating phylogenetic signals from loci distributed throughout the
genome, reducing the degree to which lineage sorting and reticulate evolution
(hybridization) are expected to confound efforts to reconstruct phylogenies
among rapidly radiating taxa (Albertson et al., 1996). Because of these qual-
ities, AFLPs have come into increasingly frequent use in phylogenetic studies
among closely-related species.

The most common method of inferring phylogenetic relationships from
AFLP and other anonymous molecular fragment data (Landry and Lapointe,
1996) is to convert the binary data matrix into a pairwise distance matrix
using one of several possible distance measures and then to construct a tree
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using a clustering algorithm such as neighbor joining (Saitou and Nei, 1987)
or the unweighted pair-group method using arithmetic average (UPGMA). A
more rigorous but less frequently used method uses the same pairwise distance
matrix, but searches for an optimal tree using a least-squares or minimum evo-
lution criterion (Rzhetsky and Nei, 1992). Innan et al. (1999) have developed
likelihood-based distance methods to estimate genetic divergence between two
individuals from AFLP marker data, based on the Jukes-Cantor nucleotide
substitution model (Jukes and Cantor, 1969), which assumes equal base com-
position and equal rates of substitution specifically. Vekemans et al. (2002)
extend this approach for general genomic GC content. These methods both
build on Nei and Li (1979)’s work on inferring nucleotide diversity from re-
striction fragment polymorphism (RFLP) data.

Distance methods are generally considered to be less desirable than character-
based methods because reduction of discrete characters to pairwise distances
entails the loss of information. Maximum parsimony, a character-based method
that specifies that the optimal tree is that which requires the least changes in
character states, can be used to infer phylogenetic trees from a wide range of
quantitative or categorical characters. Parsimony, however, poses several prob-
lems for AFLP data. First, because the presence of an AFLP band depends
on the presence of two specific recognition sites (Mueller and Wolfenbarger,
1999), parallel losses of a band should be more common than parallel gains.
This asymmetry violates the reversibility assumption of Wagner parsimony.
This asymmetry cannot be altogether gotten around using Dollo or weighted
parsimony, because parsimony also does not account for the expectation that
parallel gains should be more frequent in closely-related taxa than in distantly-
related taxa.

Mau and Newton (1997) present a Bayesian model for phylogenetic in-
ference from binary data. A similar model is implemented in the software
MrBayes (Huelsenbeck and Ronquist, 2001). This two-state Markov model for
marker presence and absence is an over-simplification of the underlying biolog-
ical process by which AFLP fragments come into and out of existence. Stated
another way, a Markov process acting on the hidden genetic states would not,
in general, result in a Markovian observable process.

Felsenstein (1992) describes a model of restriction site evolution that more
closely approximates the evolution of AFLP fragments (Smouse and Li, 1987;
Felsenstein, 2004). However, the evolution of a given AFLP fragment is likely
to be more complex than the evolution of the restriction sites that flank it.
For example, in the typical double-digest AFLP method with a fluorescent
label on only one of the primer pairs, the presence of a band is contingent
on the presence of either of two combinations of restriction sites. Moreover,
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mutations, insertions, and deletions within the band itself can cause that band
to “disappear” from one generation to the next, even if no mutations affect the
restriction sites on each side of it. Accurate phylogenetic inference based on
AFLP data is likely to benefit from the development of more accurate models
of AFLP evolution.

In this paper, we develop an explicit likelihood model for AFLP marker evo-
lution based on the underlying genetic changes that cause marker gain and loss.
The second section of the paper provides a detailed description of the molec-
ular basis of AFLP marker measurement and the model on which it is based.
In the third section we describe novel Markov chain Monte Carlo methodol-
ogy specifically tailored for our model to implement a Bayesian approach to
phylogenetic inference from AFLP marker data. We conclude the paper with
an application of the new methodology to analyze AFLPs from several taxa
in Carer section Quales, a group of sedges common in North America, with
a comparison of our method with alternative methods of analysis, and with a
discussion of the computational issues and modeling assumptions associated
with our method.

MODEL FOR AFLP MARKER EVOLUTION

Genetic Background of AFLPs

The model we present for AFLP marker evolution is based on the explicit
mechanism through which nucleotide sequence data leads to observable marker
data. While previously published papers such as Vos et al. (1995) describe the
experimental method thoroughly, we expect most statistical readers will be
unfamiliar with the details. Furthermore, to better understand the basis of
our model, we need to present a more thorough description of the underlying
genetic processes associated with AFLP markers to show how specific genomic
sequences are related to the presence of AFLP markers of specific lengths, a
connection that is not at all clear in the literature.

The process of generating AFLP marker data begins by digesting whole
genomic DNA, typically with two restriction enzymes. The original proto-
col (Vos et al., 1995) uses EcoRI, which cleaves DNA whenever the sequence
“GAATTC” appears in the 5’ to 3’ direction, and Msel, which cleaves DNA at
the four-base recognition sequence “T'TAA”. (Notice that each of these recog-
nition sequences is a complementary palindrome, so that the recognition se-
quence on the opposite strand read in the opposite direction is identical.) We
will describe our method assuming these are the two restriction enzymes, but
our method is easily modified to accommodate other choices. The cleaved
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Msel cut EcoRI cut
5l|||lllll:llllIIIIIIIIIII:IIIIIIIIIIB'
7777777 TTAAXXX XXXGAATTCZZ22777
77277777ZAATTXXX XXXCTTAA@ZZZZZ

3-IIIIIIIIII:IIIIIIIIIIIIIIIIIIIIIIII5-

Figure 1: The restriction of genomic DNA. In the typical application of
the AFLP method (and in the application as described by Vos et al. (1995)),
total genomic DNA is digested with two restriction enzymes, FcoRI and Msel,
which cleave the DNA at recognition sequences 5’-GAATTC-3" and 5-TTAA-
3’, respectively, along the red dashed line. In the figure, the DNA bases de-
noted with Xs and Ys are arbitrary as long as there are no additional restriction
sites between the two sites shown. The Xs are important in a later step. The
DNA bases marked Z extend in each direction. These bases will become parts
of different fragments, which may or may not be detected in the final analysis.

DNA fragments have jagged edges with the 5 end of one strand overhang-
ing the 3’ end of the other. Each fragment cleaved by EcoRI has a four-base
single-strand extension with bases “AATT” and the fragments cleaved by Msel
have two-base single-strand extensions with bases “TA”. (See Figure 1.)

The second step is adaptor ligation, in which double-stranded adaptors
specific to each restriction enzyme attach to the end of each fragment, forming
caps. Each adaptor is designed so that ligation of a fragment to an adaptor
does not reconstitute the restriction site. Here only the EcoRI adaptors are
fluorescently labelled to make the fragments visible. After digestion and liga-
tion, the complete genomic DNA has been partitioned into many fragments of
differing lengths. Each fragment consists of two adaptor end caps and a cen-
tral portion from the original DNA. Fragments may have identical end caps of
either type or one end cap of each type. (See Figure 2.)

The next step is selective DNA amplification using polymerase chain re-
action (PCR). The reaction uses a primer pair, one for each adaptor, that
matches a portion of the corresponding adaptor and restriction site plus three
additional bases (specified by Xs in Figure 2). Fragments that complement one
of the two primers on each end double in number in each PCR cycle (Hartl
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TAAXXXYYYYYXXXGAATTGEEEEE

:TXXXYYYYYXXXCTTAAECEEEEE
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Msel Adaptor - EcoRI Adaptor

Figure 2: The ligation of adaptors complimentary to the restriction
sites. Fragments are capped with adaptors specific to the restriction sites on
each end. The end sequences of each adapted fragment now consist of the
adaptor sequence and the remaining part of the restriction sequence. Adaptor
sequences do not recreate the restriction site (e.g., in this case the EcoRI re-
striction site 5-GAATTC-3" becomes 5-GAATTG-3’ after adaptor ligation).

and Jones, 1998). Using primers that require matching three additional bases
adjacent to each restriction site causes only a small fraction (approximately
1/4% = 1/4096) of fragments to be amplified. (Depending on genome size,
using primers that match other numbers of additional bases can be prefer-
able to achieve appropriate numbers of markers.) The amplified fragments
are run through denaturing polyacrylamide gels by electrophoresis, separating
the fragments by length. The length of each amplified fragment is the sum of
the lengths of the primers plus the length of the sequence in between. Fur-
thermore, as only the FcoRI adaptors are fluorescently labelled, the fragments
between neighboring Msel restriction sites do not form visible bands. As Msel
restriction sites match only four sites instead of six, they are approximately 16
times as frequent. Thus, roughly (16/17)? or 88.6% of all amplified fragments
do not form visible bands.

In the applied example we consider, each primer is 19 base pairs long, so
the length of the intermediate region (the Ys in Figures 1, 2, and 3) would be
38 less than the measured fragment length. However, with the commonly used
Taqg DNA polymerase, PCR fragments typically also have an extra adenine
(A) appended to the 3" end. To account for this PCR artifact, we subtract 39
from each measured length to find the length of the intermediate region. In
limited testing, our inferences appear to be robust to small changes in length
adjustments.
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Msel Adaptor EcoRI Adaptor

Figure 3: Selective amplification. Only a subset of the adapted fragments is
amplified by selecting primers which match three bases beyond the restriction
site on each end of the fragment. In this case, the end of the Msel primer is
complementary to “CAT” and the end of the EcoRI primer is complementary
to “TCG”, from 5 to 3'.

In addition, only fragments with lengths between 50 and about 600 bases
can be sized reliably using most equipment and sizing standards in common
use, so only fragments with 11 or more bases in the intermediate region have
the possibility of being measured. The fragment in Figure 3 would amplify
but would not be scored in the data matrix, because it is too short to size
reliably using sizing standards composed of fragments ranging from 50 to 625
nucleotides in length.

Several genetic changes can cause gain or loss of AFLP markers. Nucleotide
substitution can eliminate a marker for a specific primer pair by either remov-
ing a restriction site or changing one of the six additional bases necessary for
amplification. A substitution that creates a new restriction site in the inte-
rior of a fragment will also cause a marker loss. Mutational processes other
than nucleotide substitution, such as insertion, deletion, and inversion, can
also result in sequence changes that affect AFLP markers. Specifically, indel
processes could either cause the loss of a marker through removing part of
a restriction site or the neighboring amplification sites. Indel events in the
intermediate region have the potential to cause a single homologous locus to
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result in two or more markers of different lengths. In this paper, we concen-
trate on AFLP marker evolution by nucleotide substitution only and consider
additional genetic processes in future work.

Model Assumptions

For the purposes of the model developed in this paper, we partition a typical
fragment into three parts (see Figure 4). The first and third parts include
bases necessary for each end of the fragment to be cut plus additional bases
necessary for amplification. We call these two parts together the end region.
The second part is an intermediate region where the specific sequence is unim-
portant provided no additional restriction sites are present and assuming the
Jukes-Cantor model for nucleotide substitution.

Assuming only nucleotide substitution as a mutational process, band loss
is due either to mutation in the end region or by gain of a restriction site in the
intermediate region. In particular, nucleotide substitution at the end region
causes either loss of one of the restriction sites at one end of the fragment
merging it with a neighboring fragment or causes a change in the recognition
sites causing the fragment not to be amplified. A nucleotide substitution in
the intermediate region usually has no effect, but can create a new restriction
site resulting in the marker fragment being broken into two smaller fragments.
We will model these two processes in the paper.

The basic model of AFLP evolution in this paper rests on the following
assumptions: (1) each AFLP marker is associated with a single genetic locus
in each individual; (2) the loci in different individuals corresponding to the
same AFLP marker are homologous (derived from a single locus in a common
ancestor); (3) loci associated with visible markers are mutually independent;
(4) bands are appropriately scored as present or absent; (5) each locus is
represented by a band that is flanked either by an Msel and an FcoRI site
(with prior probability 32/33) or by two EcoRI sites (with prior probability
1/33); (6) a band is present for an Msel/EcoRI fragment if there are zero
mismatches among the 16 necessary bases and no restriction sites between the
restriction sites corresponding to the fragment ends; (7) a band is present for
an EcoRI/FEcoRI fragment if there are zero mismatches among the 18 necessary
bases and no restriction sites between the restriction sites corresponding to the
fragment ends; and (8) all sites evolve independently with the same rate ac-
cording to a Jukes-Cantor model (Jukes and Cantor, 1969). In a Jukes-Cantor
model, all base pairs are equally likely, and given that a substitution occurs,
the new base pair is equally likely to be any of the other three bases. Un-
der these model assumptions, marker gain/loss due to changes at recognition
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TTAAXXXYYYYYYYYYYXXXGAATTC

Figure 4: The partition of a DNA fragment. A typical fragment corre-
sponding to an AFLP marker is partitioned into three parts. The first and
third parts must match specific sequences exactly to be restricted, amplified,
and measured. We refer to these sites as the end region. The sequence in the
intermediate region, can vary provided that there are no restriction sites in
the sequence.

sites is independent of fragment length, but changes due to the introduction of
new restriction sites in the interior of a fragment depend on fragment length.
Assumptions (1)-(3) are reasonable if indel rates are low compared to the
substitution rate and if the chance of genomes containing multiple loci pro-
ducing markers at the same lengths is small. Assumptions (4)—(7) will follow
if the actual measurement process is accurate and consistent with the mecha-
nism we described earlier. Assumption (8) deals with the likelihood model for
nucleotide sequence evolution by substitution.

Notation

Let z;; denote the AFLP marker value for the i-th taxon and the j-th band:
x;; = 1 indicates the presence of marker j in taxon 4, and z;; = 0 indicates the
absence. The measured amplified fragment length (including lengths of the
adaptors) is denoted as L; for the j-th band. We let R; be the length of the
end region: R; = 16 for Msel/EcoRI fragments and R; = 18 for EcoRIl/EcoRI
fragments. In addition, we let N; be the number of nucleotide bases in the
intermediate region where N; = L; — 39 if the sum of the primer lengths is 38
and Taqg DNA polymerase is used.

Modeling AFLPs in a Single Lineage

Consider now the evolution in time in a single lineage of an AFLP marker
corresponding to a locus with R bases in the end region and N intermediate
bases. From the previous discussion, nucleotide substitution can lead to an
AFLP marker loss either by producing a mismatch in the end region or by
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producing a new restriction site in the intermediate region. To measure these
two genetic causes of marker loss by substitution, we introduce two processes.
At time ¢, let M(t) be the number of mismatches among the R recognition
bases and let C(t) be the number of cutters among the N middle bases, where
we define a cutter to be an additional restriction site of either four or six
bases in the intermediate region of a marker. The marker indicator X (t) = 1
when M (t) = C(t) = 0 and is zero otherwise. The process M (t) is a function
of a Markov chain on the state space of all possible sequences of R bases.
Under our model assumptions (Jukes-Cantor, independent bases), M(t) itself
is a continuous-time Markov process on the state space 0,1,2,..., R where
the only positive infinitesimal transition rates are between states that differ by
exactly one. C(t) is also a function of a Markov chain on the state space of all
possible sequences of N bases and is independent of M (t), but C(t) is not itself
a Markov process due to the overlap of possible restrictions sites. However,
we can approximate the process Z(t) = lic)so0} that indicates presence of at
least one cutter accurately with a two-state continuous-time Markov chain.

First consider the process for M(t). This part of the model is identical
to the model for restriction sites in Felsenstein (1992) except that we have a
larger number of states. Under the Jukes-Cantor model, the probability that
the base at a single site is different at time ¢ than the base at time 0 is

pitu) = 5 (1- i) ()

where u is the rate of substitutions per unit time.

If there are R = r bases, the probability of changing from ¢ mismatches to
7 mismatches in time ¢ can be computed as a sum of a product of two binomial
probabilities, summing over the number of matches that become mismatches,
as in Felsenstein (1992):

where p = p(t|u). The stationary probability of ¢ mismatches among r inde-

pendent sites is .
- r\ 3
n) = (Z)Z . 2)

The infinitesimal transition rate from state i to state j for the M (t) process
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conditional on r is:

iu/3 ifj=i—1
Qij=1< (r—iu ifj=i+1 for 0 <i,j <r
0 otherwise

and P(t) = 9.

Now consider the process C(t) that counts the number of restriction sites
in the intermediate region. We let Z(t) = Lic)>0} indicate the presence of
interior Msel or EcoRI cutters. For a fragment with /N bases in the interme-
diate region, there are N —4 4+ 1 and N — 6 + 1 possible locations for Msel
and FcoRI sites, cutting at sequences “TTAA” and “GAATTC”, respectively.
Each potential interior restriction site corresponds to an indicator variable,
and Z(t) = 1 if any one of the 2N — 8 indicator variables equals one. The
exact stochastic process for Z(t) is complicated due to the overlap in potential
restriction sites and corresponding lack of independence. However, an approx-
imation of Z(t) with a two-state Markov process on state space {0, 1} is very
accurate. Intuitively, this is the case because each individual indicator variable
has quite small success probability and most pairs of potential sites are inde-
pendent as they do not overlap. Furthermore, we show that the dependence
among overlapping sites is weak.

In a fragment with N nucleotides in the intermediate region, there are
N — 6 + 1 possible 6 bp sequences and N — 4 + 1 possible 4 bp sequences.
Consider the former first and let [i(ﬁ) indicate the presence of the sequence
“GAATTC” for the six bases starting at position ¢ for i =1,2,--- N —6+ 1.
For some location away from the left end where ¢ > 5, we will calculate the
probability of a restriction site given that the previous overlapping 6 bp regions
do not contain restriction sites.

P (10 =119, = 0,10 = 0,.... 1% = 0)

71—

P (1@ =1,19 =0,1%=0,...,1° = o)

Q
=
—
S

2
I
~—
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The final approximation holds since
6 6 6
P (Ii_)l =0,19 =0,...,10 = 0)
= 1—]P’<at least one of[l-(f)j =1,5= 1,...,5>
5

So the indicator variables {I, i(G)} are weakly dependent for different i. A similar
argument shows that {11(4)} are also weakly dependent, and we argue as well

that {Ii(ﬁ)} and {]i(4)} are mutually weakly dependent. This is a theoretical
argument that a two-state approximation can be expected to be accurate. We
note that Innan et al. (1999) gives the distribution of N under the assumption
that the indicator random variables above are independent.

We tested this approximation by simulating the true distribution of Z(t),
which is a function of a 4" state Markov chain, by simultaneous simulation of
N independent nucleotide bases under the Jukes-Cantor model. Specifically,
we began with an initial sequence chosen from the stationary distribution. Af-
ter an exponentially distributed amount of time, we picked a site uniformly at
random and changed its base to one of the other three, uniformly at random. If
this change in the sequence changed C'(t), we modified Z(t) accordingly. From
this procedure we obtained a series of alternating dwell-times. For a two-
state Markov process, dwell-times would be mutually independent exponential
random variables with odd- and even-indexed dwell-times possibly having dif-
ferent means. In the simulation, each marginal distribution is indistinguishable
from an exponential distribution and the observed auto-correlation coefficient
is bounded by 0.001. We conclude that {Z(¢)} can be approximated well by a
two-state Markov process.

We next discuss how to estimate the probability transition matrix of the
Markov process approximating {Z(t)}. Let 7T(()Z) be the stationary probability
that there is no cutter in the intermediate region. Assuming a Jukes-Cantor
model and independence, the stationary distribution of no cutters in a fragment
with N = n bases in the intermediate region is as follows

7P — P(7(0) = 0) ~ (1 - %)Mﬂ <1 - %)MH | (3)

We can estimate the infinitesimal rate of moving from zero to at least one cutter
in the following manner. Consider first a potential restriction site with four
bases. With our assumptions including a substitution rate of u per site, the rate
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of moving to a restriction site is u/3 if the four bases have a single mismatch
(if the mismatched bases changes, there is a 1/3 chance of changing to the
matching base) and 0 if there are two or more mismatches. The conditional
probability of exactly one mismatch given at least one is 4 x (1/4)3x (3/4)/(1—
(1/4)*). The overall rate is the expected number of potential restriction sites
with exactly one mismatch given none have zero mismatches times the rate of

each, or
4(1/4)33/4) w  4n—4+1u
44 1) x L2 A = - 4
(= 4+ DX =07 ¥ 3 1 (4)
There is a similar expression for the potential restriction sites with six bases
and we have the following estimate for the infinitesimal rate

(z)y _Amn—4+1u  6(n—6+1)u
G ¥ @1 T pm-1 (%)

Equations 3 and 5 are sufficient to determine the approximate probability
transition matrix for {Z(¢)} (as shown in the appendix)

m + (=7 -7 —n)

PO(t) = , (6
ms (1 —n(t)) 1 -5 (1 - n(t)
where .
n(t) = exp (—1‘1_—7%) | (7)

Typically, we measure ¢ in units of the expected number of substitutions per
site and u = 1.

Computing the likelihood

The processes {M(t)} and {Z(t)} characterize the AFLP data under the as-
sumption that band losses and gains are due to nucleotide substitutions, but
not to other events such as insertions and deletions. By definition, we com-
pute the likelihood of a tree (tree topology and edge lengths) given data at the
leaves by summing over all possible states at the internal nodes. In practice,
this calculation is efficient using a dynamic programming algorithm known in
the phylogenetics literature as Felsenstein’s “pruning” algorithm (Felsenstein,
1981) which requires storage space and time linear, rather than exponential,
in the number of nodes in the tree.

We modify the pruning algorithm slightly and define the “conditional like-
lihood” for a given node i on the tree and given location, j as the probability
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ng )(z, m, 1) that we would observe the marker data for location j at the de-
scendants of node 4, given that the parent of node i was in state (z, m) and that
the recognition sequence is r bases long. This parameterization is similar to
that in Larget and Simon (1999) and simplifies slightly the internal represen-
tation of the partial likelihood calculations. The resulting computed likelihood
is identical to that found using Felsenstein’s approach which conditions on the
state at the node ¢ rather than the parent of i. The parameter z indicates
whether or not there are cutters in the interior region of the sequence at the
parent node, and m counts the number of mismatches in 0,1,...,7.

For a node ¢ which is a tip of the tree, location j has a marker present
(z;; = 1) if and only if 2 = 0, m = 0. The conditional likelihood given the
marker data, end region length R = r and intermediate region length N = n,

is
Z M .
L(j)(z m,r) = Pz(vo)<t" ‘?) X Pr(n,O)(ti ‘]\;) if ;=1
i y 1 1-— (P?io)(tl‘n) XPy(n’O)(tllT)) 1fgjl]:0
where ¢; is the length of the branch leading to the tip 7. The conditional

likelihood for a non-root internal node i is a function of the edge length to the
parent and the conditional likelihoods at the children nodes k£ and (.

(8)

LJ (z,m,7r) Z Z PZ) (t;|n)x ( (t | )XL,(Cj)(z',m/,r)XLl(j)(z’,m/,r) :

z'=0m/=0
(9)
Using the pruning algorithm, we compute the conditional likelihoods for leaves
using Equation (8) and for non-root internal nodes using Equation (9) provided
that conditional likelihoods at children nodes are computed before the parent
nodes as in a post-order traversal of the tree (Drozdek, 2001).

As Msel sites are expected a prior: to occur 16 times as often as FcoRI
sites and Msel/EcoRI fragments are indistinguishable from FEcoRI/Msel frag-
ments, we expect 32 times as many Msel/FEcoRI fragments as FcoRI/EcoRI
fragments. We compute the overall likelihood at location j with intermediate
region length n as the weighted sum of the conditional likelihoods at the two
immediate children of root.

LY = ZZW aMIE=16) 5 19 (2,m, 16) x LYY (2,m, 16)
z=0 m=0
1 L8 ' ‘
o ;%@Zln) s pMIB=18) o 19)(5 m 18) x LY (2,m, 18) (10)
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where 771™ and 71" are the stationary probabilities for Markovian pro-

cesses {Z(t)} and {M(t)}. The overall likelihood of the tree is the product of

these over all locations
L=]]L", (11)
under the assumption that the S locations evolves independently.

Prior Specification

We need to specify the prior distribution in order to complete the model speci-
fication. In this paper we assume the typical uniform prior distribution over all
possible unrooted tree topologies with the root selected uniformly at random
from the tree edges. This vague prior distribution does not likely correspond
to that of any individual interested in the particular analysis, but is conserva-
tive in the sense that each possible evolutionary relationship is small a prior:
so that high posterior probabilities for specific relationships must be strongly
supported by the likelihood. We also assume that edge lengths {¢;} on the
rooted tree are mutually independent exponential random variables with com-
mon mean . This implies that the factor of the prior distribution due to edge
lengths depends only on the sum of all edge lengths in the tree.

E E
H le_ti/u’ — (l) e_ EZE‘Zl ti/ﬂ ,

M H

where E is the number of edges. The likelihood does not distinguish among
different rootings of the tree in this model, so we typically report summaries
of unrooted trees.

MCMC APPROACH

Under this model, exact calculation of Bayesian posterior probabilities is in-
tractable. We use Markov chain Monte Carlo (MCMC) (Metropolis et al.,
1953; Hastings, 1970; Green, 1995) to approximate the posterior distribution
of the phylogenies. The idea is to construct a Markov chain that has as its state
space the tree topologies and edge lengths and a stationary distribution that
is the posterior probability distribution of them. In our MCMC approach, at
each stage we select one of several possible updates with probability p,. Taken
in combination, these updates suffice to visit the entire state space. For a
rooted tree with 7' taxa, there are 27" — 1 nodes including 7' leaves and 7" — 1
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internal nodes, and E = 2T — 2 edges including 7" external edges and T" — 2
internal edges.

For each update below we compute the prior ratio, the likelihood ratio,
and the proposal ratio (or Hastings ratio). We follow Green (2003) to compute
proposal ratios based on densities of the random variables used in the proposal
and the Jacobian of a transformation. The acceptance probability is a function
of these ratios.

1. Update all edge lengths. Multiply all edge lengths by a common
random factor 7 ~ I'(a, a), where « is a tuning parameter. The prior
ratio is .

—t;
H w —e ZZE:1 ti(y—=1)/p ,
Pl e—ti/ﬂ/'u

where F is the number of edges. The proposal ratio is

(,.Y*)a—le—a'y* _ ea(’Y_;)

,Yaflefa'y - 72(0171)

since v* = % Note that new edge length ¢; = t;y for i = 1,..., F and

*

v* =L the Jacobian (Green, 2003) is easily obtained as
ol

a( T?"'?t*Ea'y*) — —’YE_2 )

At1,...,tg, ) (12)

So, the acceptance probability for this proposal is
1 & 1
min{l,exp (——Zti(v— 1)+ a(y — —)>7E2°‘ X LR} (13)
b= gl
where LR is the likelihood ratio.

2. Update a single edge length. Pick a random edge and multiply its
length (denoted as t;) by a random factor C' ~ I'(«r, ), where « is a
tuning parameter. The acceptance probability is

min{17e—ti('y—l)/wa(v—%),},l%a « LR} ‘ (14)

3. Reroot the tree. Remove the root and treating the tree as unrooted,
randomly pick an edge (with probability ﬁ) and select a new location
for the root on this edge uniformly at random. Denoting the sum of the
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two edge lengths from the old and new root as ¢, and 7, respectively,

the acceptance probability is

min {1, s X LR} : (15)

b

4. Local update. A local update for unrooted trees is described in Larget
and Simon (1999), but the derived acceptance probability was incorrect.
A corrected formula is in Holder et al. (2005). In this version, we modify
the proposal by updating the position of the root when the root is part of
the local neighborhood under modification. The acceptance probability
depends on the location of the root.

In this update, we begin by temporarily disregarding the root and ran-
domly picking an interior edge e from the unrooted tree topology. Uni-
formly at random designate the end nodes of this edge as u and v. One
of the other nodes adjacent to u is selected at random and designated a.
Similarly, we select a neighbor d adjacent to v. See Figure 5.

Next, the lengths of the edges on the path from a to d are multiplied by
a random amount r = exp(A(U; — 0.5)) where U; ~ Unif(0, 1) and A is
a tuning parameter. This multiplier r has density g(r |\) = 1/(Ar) for
exp(—A/2) < r < exp(A/2). Then, a new location is selected for node
u uniformly at random on the path from a to d. If this new location is
further from a than v is from a, the tree topology changes. Edges on the
path from a to d change length, but all other tree edge lengths remain
unchanged. No node connections other than in this local neighborhood
change.

The proposal density is

1 1\* 1
—— x| =] x— 16
E—1 (2) Ar (16)
If the distances from a to u, v, and d are x, y, and z, respectively, the
new locations are z* = Usrx, y* = ry, and z* = rz. The reverse proposal

would require 7* = 1/r and U;y = x/z. The Jacobian (Green, 2003) for
the corresponding bijection is r and the proposal ratio is

/(B =D/ )
(1/(E — 1) (1/2)%/ (W)

When the root is on the path from a to d, there is another parameter for
the distance of the root from node a and the Jacobian and proposal ratio
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Figure 5: Local Update. A shows a local neighborhood of the tree before the
proposal, B shows the same node after the proposal. The dark point represents
a possible location of the root.

each have another factor of . The prior ratio is a ratio of products of
exponential densities which simplifies to exp(—(z*—z)/u regardless of the
position of the root. Putting this all together, we find the corresponding
acceptance probability is

min {1, exp((z — z*)/u)r® x LR} if root is not on the path from a to d
min {1, exp((z — z*)/p)r* x LR} if root is on the path from a to d
(18)

Generalized local update. This update generalizes local by picking
a path between two leaves rather than to neighbors of an internal edge.
Specifically, randomly pick two leaves, say a and b, and let z = dist(a, b)
be the distance of the path between them. Denote the number of nodes
on the path from a and b not including nodes a and b as ny,. Then, there
are ng, + 1 edges on the path with edge lengths lé?,i =1,-- ,ngg + 1.
Stretch or shrink these edge lengths by a common multiplicative factor
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r = MUi=09) g6 that z* = z x r with (I))* = 1% x r. Randomly pick
a non-root node between a and b and move it to a new location selected
uniformly at random along the path, a distance Uy X 2* from node a. The
topology changes if the relative order of the nodes on the path changes.
The acceptance probability is

min {1, e~ 2/ K (p)natl x LR} . (19)

6. SPR: subtree pruning and regrafting. Pick an edge e whose parent
node v is not the root uniformly at random (with probability 1/(E —2)),
remove it and the subtree rooted at its child node from the tree, joining
the sibling edge of e and the parent edge of e into a single edge with
length [;. Next, pick an edge of the remainder of the tree uniformly at
random and pick a location on this edge uniformly at random. Reconnect
the subtree to the remainder of the tree by placing node v at this point,
splitting the selected edge. Let Iy be the length of the selected edge
before it is split. As this proposal does not change the sum of all edge
lengths in the tree, the prior ratio is 1. The proposal ratio is % = ﬁ—f
The acceptance probability is

l
min {15_2 X LR} . (20)
1

RESULTS AND DISCUSSION

We demonstrate the methodology presented in this paper on a data set con-
sisting of 1394 AFLP markers from fourteen individuals from eight different
sedge species. This data set is a subset of a larger data set published in Hipp
et al. (2006). The taxa with number of individuals from each are: Carez bebbii
(1), Carex bicknellii (1), Carex festucacea (2), Carex normalis (2), Carez oro-
nensis (2), Carex tenera var. echinodes (2), Carex tenera var. tenera (2), and
Carex tincta (2). The taxa chosen for this study represent a morphologically
cohesive clade, with two closely-related taxa as outgroup (C. bebbii and C.
bicknellii). Monophyly of the former is supported by neighbor joining (NJ)
and minimum evolution (ME) analyses on an expanded dataset that includes
all members of an eastern North American clade identified in a previous study
using nuclear ribosomal DNA sequence data. Some of the relationships within
the group, however, are not strongly supported using distance methods, which
was one of the interests in exploring the phylogeny of this group using a more
realistic model of character evolution.
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In the MCMC analysis, individuals from the same species were mono-
phyletic (grouped together) with probability of at least 0.999. The tree topol-
ogy with the single highest posterior probability, 0.688, is shown on the right
of Figure 6. A 95% credible region included eight tree topologies.

The two most probable clades not found in our most probable tree had
posterior probabilities greater than 0.08. Two additional clades had posterior
probabilities between 0.06 and 0.08 while all other clades all had posterior
probabilities less than 0.03. The most probable alternative clade includes C.
bebbui, C. bicknellii, and C. festucacea, corresponding to the first four taxa in
Figure 6, and has probability 0.156. We will call this clade Be/Bi/F. The next
alternative clade includes C. normalis, C. tenera var. echinodes, and C. tenera
var. tenera, the last six taxa in Figure 6. This clade, which we will denote
as N/Te/Tt, has probability of 0.088. Each of these two alternative clades is
more strongly supported by another method. We will compare and contrast
our results with those from other methods next.

Comparison with Other Methods

The method we propose for analysis of AFLP marker data has some potential
advantages over alternatives in that it is based on a molecular model for AFLP
marker evolution which may promote more accurate phylogenetic reconstruc-
tion along with clearly interpretable measures of uncertainty.

Neighbor joining. Neighbor joining (NJ) is a general purpose hierarchical
clustering method for inferring phylogenetic trees with edge lengths from pair-
wise distance data (Saitou and Nei, 1987). It is not based explicitly on any
underlying assumptions of data generation, but will recover the correct tree
topology when pairwise distances are additive, meaning that distances mea-
sured between pairs of taxa are equal to the sums of the lengths of branches in
corresponding path connecting them in the tree (see also discussion in Gascuel
and Steel (2006)).

To apply NJ to any 0/1 marker data including AFLP marker data, one
first selects a distance measure. One such distance often used for restriction
fragment data is the Nei-Li restriction site distance (Nei and Li, 1979) which
is based on the Jukes-Cantor (1969) model of nucleotide substitution and as-
sumes a fixed known size of restriction fragments.

To assess uncertainty in NJ analysis, one typically uses the bootstrap
(Felsenstein, 1985). High bootstrap values indicate strong support, but boot-
strap values are not directly comparable to Bayesian posterior probabilities

(Alfaro et al., 2003).
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Neighbor-joining Tree Our Most Probable Tree
Carex bebbii

Carex bicknellii

— Carex festucacea 1

— Carex festucacea 2

— Carex oronensis 1

— Carex oronensis 2

— Carex tincta 1

0.91

0.79

0.81 I Carex tincta 2 — |

Carex normalis 1 —

Carex normalis 2 —

1 0.95
Carex tenera var. echinodes 1 —

Carex tenera var. echinodes 2 —

Carex tenera var. teneral —

—— Carexteneravar.tenera2 ——

Figure 6: Comparison of topologies. The left tree topology is a neigh-
bor joining tree based on Nei-Li restriction site distances (Hipp et al., 2006).
Numbers represent bootstrap support. The right tree topology has the great-
est posterior probability using our Bayesian method, and numbers represent
posterior probabilities of each clade. The trees are rooted such that C. bebbir
and C. bicknellir are sister to the other species, based on previous work in the
section.
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MrBayes. MrBayes implements a generic model for 0/1 marker data based
on a continuous-time Markov process with two states. In particular, this model
assumes alternating exponential dwell times in the two states and that the dis-
tributions are identical for all markers. While it may be reasonable (and in
fact it is common) to model the substitution process of single nucleotides with
a continuous-time Markov process, the genetic background in our paper il-
lustrates that the process of AFLP marker gain and loss is complicated and
depends on the interactions among many nucleotide sites. In the model we
develop, the unobserved processes M (t) and Z(t) are Markov processes (ap-
proximately so for Z(t)), but the AFLP process X (¢) that indicates a marker
presence is a function of these two independent processes, characterized by
the relationship X (¢) = 1 if and only if M(¢t) = 0 and Z(¢t) = 0. Thus the
process X (t) would be modeled more appropriately as a hidden Markov model
(HMM). Functions of Markov chains or hidden Markov models are typically
not Markovian. While we found the nominal HMM Z(¢) to be extremely well
approximated by a two state Markov chain, the same result does not follow for
X(t). This observation implies that the 0/1 model implemented in MrBayes
may be too simple to adequately model the actual AFLP marker evolution
process.

Another implicit assumption in MrBayes is that all markers have the same
stationary distribution for presence and absence. From our analysis based on
the underlying genetic basis of AFLP marker evolution, we know that the
distributions do, in fact, rely on the marker length and are not identical, and
that distributions for very different lengths can be substantially different from
each other. We note that the 0/1 model for marker data implemented in
MrBayes is equivalent to the model in Mau and Newton (1997) for binary
data.

Distinctive elements of our model. Our model generalizes the commonly
used restriction site likelihood model (Smouse and Li, 1987; Felsenstein, 1992)
by allowing the lengths of restriction sites to be among a set of values with
known proportions a priori instead of fixed. In addition, our model includes
substitutions in the intermediate region that can cause AFLP marker loss.
Especially for long markers, such substitutions can be expected to cause a
substantial proportion of events that lead to marker loss. The longest measur-
able fragments have an intermediate region length just under 600 while this
length is 11 for the shortest measurable fragments. For an EcoRI/Msel frag-
ment with an end region of 16 bp, the total rate of substitutions that cause
marker loss for the shortest fragments is approximately 16.1u where wu is the
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substitution rate per site and the rate of loss in the intermediate region is
calculated according to Equation 5. For these short fragments, fewer than one
percent of the substitutions that cause loss are expected to occur in the inter-
mediate region. In contrast, for the longer fragments, the rate of loss would be
about 50 percent higher, or about 25.1u. For these fragments, over 35 percent
of the substitutions causing marker loss are expected to be in the intermediate
region.

Unlike other models for analyzing marker data, our method incorporates
explicitly both the fragment length and the marker presence/absence infor-
mation and so uses the available data more fully. If markers are gained and
lost through the process of nucleotide substitution, it follows that markers as-
sociated with long fragments should be more readily lost as there are more
possible sites for the introduction of new restriction sites in the interior of the
fragment. Our method accounts for this and, in effect, gives greater weight to
the information in long fragments than in shorter fragments. While our model
makes use of this additional information, it is not clear how this use affects
inference in general.

Comparison of results for sedges. To compare our method with NJ, we
display the tree from pairwise Nei-Li distances on the left of Figure 6 opposite
the most probable tree from our analysis. The NJ tree topology differs from
ours in the placement of C. tenera var. tenera in clade N/Te/Tt. In our
analysis, the complete NJ tree has posterior probability 0.013 and is the ninth
most probable tree topology. Similarly, the consensus tree containing the most
probable nonconflicting clades from MrBayes is shown in Figure 7. We find
the posterior probability of the MrBayes consensus tree to be less than one
percent.

Figure 7 (left) shows unrooted trees with estimated edge lengths from all
three methods (NJ tree and consensus trees from both Bayesian methods).
To make it easier to distinguish the three tree topologies, we also show the
simplified trees on the right of the figure. All three trees group the individuals
from the same taxa together, and all of them have clades {C. oronensis (2),
C. tincta (2)} (denoted as O/Ti in Figure 7), { C. normalis (2), C. tenera var.
echinodes (2)} (denoted as N/Te), {C. tenera var. tenera (2)} (denoted as
Tt), {C. festucacea (2)} (denoted as F), and {C. bebbii (1), C. bicknellii (1)}
(denoted as Be/Bi).

Relative edge lengths in each tree are very similar, but the topologies are
different. The differences in the three tree topologies can be explained simply
by different placement of the Be/Bi clade that contains the outgroup. The
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three topologies found by pruning the Be/Bi clade are identical. Our method
finds fairly large differences in posterior probability for these alternative place-
ments of the Be/Bi clade.

In their previous study of this group, Hipp et al. (2006) evaluated the
strength of support for alternative outgroup placements by means of a paired
sites test in a likelihood framework (Shimodaira and Hasegawa, 1999), using
the standard model of restriction site evolution (implemented in Felsenstein’s
RESTML program of his PHYLIP package version 3.63; Felsenstein (1989)).
This method of evaluating topologies fails to reveal statistically significant dif-
ferences among among the three tree topologies in Figure 7, despite differences
in the maximum log-likelihoods for each topology. Our Bayesian approach us-
ing a more sophisticated likelihood model describes the strength of evidence
for and against alternative tree topologies with posterior probabilities, not
p-values, and it is difficult to directly compare the two types of inference.

In the Carer section Owales data set, our method does lead to different
levels of quantitative support for some evolutionary relationships (clades) than
do standard methods in the field. We can explain some of the differences
among trees most strongly supported using the three methods by examining
more closely the sites associated with clades that are supported differentially.
For example, the only difference between the most probable tree topology in
our analysis and the NJ tree is the relative placement of C. tenera var. tenera.
We place the individuals from this species with C. bebbiz and C. bicknelliz in
the unrooted tree with posterior probability 0.79. The NJ tree includes C.
tenera var. tenera in a clade with C. normalis and C. tenera var. echinodes,
albeit with bootstrap support 0.59. We find a posterior probability of 0.088
for this clade. A partial explanation is that the markers most favorable to a
C. tenera var. tenera, C. bebbii, C. bicknelliz clade are longer by about 30 bp,
on average, than those that most favor a C. tenera var. tenera, C. normalis,
C. tenera var. echinodes clade.

Computational Issues

Verification. We have implemented our new method in a program writ-
ten in C+4. We tested the implementation by running the MCMC process
without data to simulate from the prior distribution on four taxon trees with
independent and identically distributed exponential branch lengths. The sam-
ple was consistent with the prior distribution including a uniform distribution
on topology and exponential branch lengths with the expected mean. Long
simulations with posterior distributions based on observed data begun from
disparate starting points are sufficiently consistent for us to be confident in
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Figure 7: Comparison of phylogenies. The top phylogeny is the most
probable tree topology using our Bayesian method. The middle phylogeny
is the NJ phylogeny based on Nei-Li distances. The bottom phylogeny is
a Bayesian phylogeny using a 0/1 model in MrBayes. The right part is a
simplified illustration of trees on the left. See the explanation for notations
from the text.
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the results presented.

Computational burden. The most important limitation of our approach
is the enormous computational burden. The posterior probabilities we report
in Figure 6 have Monte Carlo errors less than one percent, but these are
based on averaging 20 MCMC runs, each of which ran for nearly two weeks
on a standard desktop computer. Estimating a single tree using a distance
approach is essentially instantaneous, and bootstrapping a fast method is also
very fast. The analysis using MrBayes required less than ten minutes on a
desktop computer. The primary reason for the discrepancy in time between
MrBayes and our method is that the simpler model in MrBayes uses 2 X
2 matrices for each branch for likelihood calculations whereas our method
requires calculations with both 34 x 34 and 38 x 38 matrices on each branch,
for a combined total of over 600 times as many matrix elements. Furthermore,
since our model uses marker lengths in the likelihood calculation, we must carry
out a full computation for each marker whereas MrBayes takes advantage of
sharing computations among markers with identical patterns.

So, while we feel that the statistical merit of our approach has much to rec-
ommend it, we have considerable work to do to improve its implementation to
make it a practical tool for other scientists. Undoubtedly, a better implemen-
tation of our approach would result in substantially speedier calculations, but
there is also clearly much room for improvement in the basic MCMC methods
we have developed to this point.

Model assumptions. The assumption that different bands originate from
different loci is a common simplification used in all current study, and we also
take this simplification in our model. Actually, assuming only a substitution
process, different loci in the ancestor having the same fragment length will
produce different patterns of AFLP markers for the taxa. Our current method
ignores the possibility that a marker with a given length is the superposition
of bands from multiple loci. This possibility is especially problematic among
plants where there has been recent polyploidy (although this is not the case
in Carezx section Ovales). We could potentially account for this by setting the
probabilities that a particular band is from several different loci and calculating
the total likelihood as a mixture of the likelihood for all loci.

In addition, insertion and deletion events have the potential to cause a
single locus in an ancestral genome to appear as multiple separate AFLP
markers with different fragment lengths in different taxa, hence causing the
markers to be dependent. Thus, the first three assumptions about loci in our
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model may not be met. If the indel rate is significant, ignoring it could cause
us to overestimate the substitution rate because the substitution rate would
need to account for changes due to both substitutions and indels. In addition,
if multiple loci are superimposed on a single marker and we do not account
for this, then the marker from combined loci could provide support for clades
not in the true tree. We are currently extending the model described here to
incorporate processes of insertion and deletion of bases.

For computational simplicity, we assume a Jukes-Cantor model of nu-
cleotide substitution. The incorporation of more realistic nucleotide substi-
tution models that allow different base composition and unequal rates of sub-
stitution among different bases will require new computational approaches as
the mismatch process M (t) will no longer be a Markov chain. This model
extension would complicate the calculation by increasing the state space that
the MCMC would have to traverse.

CONCLUSION

We have developed the first Bayesian approach specifically to model AFLP
marker evolution. Our model is based on an understanding of the genetic
processes at the nucleotide level that directly cause marker gain and loss.
Specifically, we model observable AFLP markers as the realization of a hidden
Markov model where unobserved DNA sequences subject to nucleotide sub-
stitution constitute the underlying Markov chain. With an understanding of
AFLP fragments consisting of an end region and an intermediate region and by
assuming the Jukes-Cantor model for nucleotide substitution, we simplify the
underlying Markov chain as a pair of independent processes, a mismatch pro-
cess in the end region and a two-state process for the intermediate region. The
result is a computationally tractable yet highly detailed probability model for
AFLP marker evolution that provides a framework for the analysis of AFLP
marker data. Alternative methods of analysis are generic for 0/1 marker data
and are not based on the specific genetic underpinnings of AFLP markers.

One advantage that our method possesses is the ability to use additional
information beyond simple marker presence/absence. Our model takes into
account marker fragment lengths, which we have shown in one example can
lead to different statistical inferences. While we expect in general that methods
based on models that are more closely descriptive of the actual underlying
biology may lead to more accurate inferences and we are hopeful that our
method will enjoy this advantage in comparison to other existing alternatives,
it remains an open question to assess the relative accuracy of our model in a
variety of settings.
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There is a significant computational cost to using our method. In the
current implementation, analysis of moderate sized data sets can require weeks
of computer run time whereas alternative methods are much faster. There is
clearly room for algorithmic development as well as improvements in software
implementation of these ideas that could lower the computational burden in
using our method. In addition, we are currently working on improving and
extending the model to accounting for alternative genetic processes of AFLP
marker evolution such as insertion and deletion processes as well as accounting
for superposition of AFLP markers from multiple loci.

While there remain many interesting challenges, this paper describes a
significant methodological advance in the analysis of AFLP marker data to
infer phylogenetic trees.

APPENDIX

It’s known that for a two-state Markov Chain, the transient transition matrix

is of the form
_ —qdo1 Qo1
© ( qGio  —qo ) '

Q has eigenvalues 0 and —(go; + q10), With corresponding eigenvectors (1,1)7
and (—qo1, q10)?. We want the decomposition of Q = AAA™!, where A has the

form
1 —x
A_<1 y )

the first row of A™' = (7,1 — mp) is the stationary distribution, and where

A= ( 8 —(q010+ 10) ) ‘

Computing A~! directly we find

Yy _T

-1 __ -+ -+
mo(FE)

Tty Tty

o
1—mg

710 go1 and = = qo;.

The probability transition matrix is

o gt (ot (L= mon(t) (1= m)(1 - (1)
P=e=4e¥A ( mo(1 — (1)) <1—7r0>+7ron<t>)’

It follows that my = m—iy and % =D and so y = qip =

where

7(t) = exp (— o ) |

1—7T0
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