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Curran-Everett, Douglas. Multiple comparisons: philosophies and
illustrations. Am J Physiol Regulatory Integrative Comp Physiol 279:
R1–R8, 2000.—Statistical procedures underpin the process of scientific
discovery. As researchers, one way we use these procedures is to test the
validity of a null hypothesis. Often, we test the validity of more than one
null hypothesis. If we fail to use an appropriate procedure to account for
this multiplicity, then we are more likely to reach a wrong scientific
conclusion—we are more likely to make a mistake. In physiology, exper-
iments that involve multiple comparisons are common: of the original
articles published in 1997 by the American Physiological Society, ;40%
cite a multiple comparison procedure. In this review, I demonstrate the
statistical issue embedded in multiple comparisons, and I summarize the
philosophies of handling this issue. I also illustrate the three proce-
dures—Newman-Keuls, Bonferroni, least significant difference—cited
most often in my literature review; each of these procedures is of limited
practical value. Last, I demonstrate the false discovery rate procedure, a
promising development in multiple comparisons. The false discovery rate
procedure may be the best practical solution to the problems of multiple
comparisons that exist within physiology and other scientific disciplines.

Bonferroni inequality, false discovery rate, least significant difference,
Newman-Keuls, statistics

STATISTICAL PROCEDURES are inherent to scientific discov-
ery. As researchers, we use these procedures for two
main reasons: to obtain point and interval estimates
about the value of a population parameter, and to test
the validity of a null hypothesis (5). Point and interval
estimates emphasize the magnitude and uncertainty of
the experimental results. The test of a null hypothesis
helps guard against an unwarranted scientific conclu-
sion, or it helps argue for a real experimental effect
(18). When more than one hypothesis is tested—when
multiple comparisons are made—the validity of our
scientific conclusions may be weakened if we fail to use
an appropriate multiple comparison procedure (6, 8,
11, 14, 19, 20).

In studies published recently by the American Phys-
iological Society (APS), the citation of a multiple com-
parison procedure is common (Table 1). This finding
raises an important question: do physiologists under-

stand the philosophies and assumptions behind com-
peting multiple comparison procedures? This question
is relevant for three reasons: there are many proce-
dures available, textbooks of statistics (for example,
Refs. 1, 13, and 18) provide little more than a cursory
description of the procedures themselves, and there
can be several solutions to the problem created by
multiple comparisons.

In this paper, I summarize the statistical issue embed-
ded in multiple comparisons, and I review the philoso-
phies of handling this issue. Then, I illustrate the three
procedures—Newman-Keuls, Bonferroni, least signifi-
cant difference—cited most often in my literature review.
Last, I review the false discovery rate, a promising devel-
opment in multiple comparisons.

Glossary

a Error rate for a single comparison
a^ Error rate for a family of k comparisons
H0 Null hypothesis

m Population mean
P Achieved significance level

Pr{A} Probability of event A
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y# Sample mean
Dy#* Critical difference between two sample

means

THE ISSUE EMBEDDED IN MULTIPLE COMPARISONS

To test a null hypothesis, we must formulate the
hypothesis beforehand. Then, using data collected dur-
ing the experiment, we must compute the observed
value T of some test statistic. Last, we must compare
the observed value T to a critical value T*, chosen from
the distribution of the test statistic that is based on the
null hypothesis. If T is more extreme than T*, then
that is surprising if the null hypothesis is true, and we
are entitled to become skeptical about the scientific
validity of the null hypothesis.

Suppose we want to assess renal blood flow in two
independent samples. If our objective is to compare the
underlying population means, m1 and m2, then one pair
of null and alternative hypotheses, H0 and H1, is

H0: m1 5 m2

H1: m1 Þ m2

The probability that we reject H0 given that H0 is true
is the error rate a. We can use mathematical notation1

to write this statement as

Pr{reject H0uH0 is true} 5 a (1)

Note that the critical value T* is the 100[1 2 (a /2)]th
percentile from the distribution of the test statistic
given that the null hypothesis is true. Equation 1 can
be rewritten as

1 2 Pr{fail to reject H0uH0 is true} 5 1 2 (1 2 a) (2)
5 a

Multiple comparisons. Suppose we want to assess
renal blood flow in three independent samples.2 In this
setting, there are three alternative hypotheses, H1–H3,
that correspond to the comparisons among population
means:

H0: m1 5 m2 5 m3

H1: m1 Þ m2

H2: m1 Þ m3

H3: m2 Þ m3

Associated with each of these comparisons is an error
rate of magnitude a. If the three comparisons are
considered to be a family, then the family will have an
error rate a^, where a^ . a. As a result, it is more
likely that a true null hypothesis will be rejected erro-
neously. This is the statistical issue that lies at the
heart of multiple comparison procedures.

To see why this issue warrants our attention, imag-
ine that each of k independent comparisons is tested at
an error rate of a. Assume that the underlying popu-
lations are identical and that each of the k null hypoth-
eses is true. What is a^, the probability that at least
one of the k comparisons will reject a true null hypoth-
esis? As in Eq. 2, the probability of rejecting at least
one H0 given that all H0 are true can be written

1 2 Pr{fail to reject all H0uall k H0 are true}

5 1 2 (1 2 a)k

5 a^

For a single comparison, a^ 5 a. When the number of
comparisons increases, a remains constant, but a^

1In comments about my review of statistical concepts (Ref. 5), one
referee wrote that my exposition was mathematical and therefore
unfriendly. I use mathematics for two reasons: mathematics is one
dialect of the language of science, and the precision of mathematical
notation simplifies communication and clarifies reasoning. Never-
theless, because I appreciate that readers will have different levels of
comfort with mathematics, I integrate the mathematics with text
summaries.

2For r experimental groups, there are r (r 2 1)/2 paired compar-
isons possible.

Table 1. Manuscripts of APS journals in 1997: use of multiple comparison procedures

Manuscripts Procedures Used, %†

n
% Multiple

comparisons* Newman-Keuls Bonferroni LSD Other‡

Am J Physiol
Cell Physiol 90 20 17 33 11 39
Endocrinol Metab 61 49 30 7 12 52
Gastrointest Liver Physiol 68 37 16 24 12 48
Heart Circ Physiol 136 60 23 21 9 47
Lung Cell Mol Physiol 62 52 17 25 20 38
Regulatory Integrative Comp Physiol 106 56 23 12 16 48
Renal Physiol 44 20 6 39 0 56

J Appl Physiol 106 53 25 20 11 45
J Neurophysiol 125 8 25 40 20 15

All journals taken together 798 40 22 20 12 45

n, number of research manuscripts reviewed; LSD, least significant difference. In 1997, these journals published a total of ;4,000 original
articles. Number of articles reviewed represents a 20% sample (selected by systematic random sampling, fixed start) of the articles published by
each journal. *Percentage of research manuscripts that report a multiple comparison procedure. †Values represent the % use in those manuscripts
that report a multiple comparison procedure. ‡Includes Duncan, Dunnett, Scheffé, Tukey, and unnamed procedures. Roughly 8% (27/321) of
manuscripts that report use of a multiple comparison procedure fail to identify the procedure.
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increases. For example, if a 5 0.05, then for k 5 1, 2,
3, 4, 5, . . . , 10,

k 1 2 3 4 5 . . . 10
a^ 0.05 0.10 0.14 0.19 0.23 . . . 0.40

For k 5 10 comparisons, there is a 40% chance that we
will reject erroneously at least one true null hypothe-
sis.

Misguided multiple comparisons. In many of the
studies tallied in Table 1, a multiple comparison pro-
cedure was used to analyze several groups of observa-
tions made on the same subjects. In general, this use of
a multiple comparison procedure is misguided: most
procedures assume that the groups are independent,
but repeated observations on a subject, for example,
observations made during baseline and then during
several periods after some intervention, create correla-
tion among the groups (9). As a result, the true error
variability is underestimated, and the observed values
for the standard deviations of the group means under-
estimate the true variabilities (9). When most multiple
comparison procedures are used to analyze groups of
repeated observations, the outcome will be an inflated
number of statistically significant differences among
the group means (see APPENDIX).

PHILOSOPHIES ABOUT MULTIPLE COMPARISONS

Would you tell me, please, which way I ought to go from
here?—Alice

That depends a good deal on where you want to get
to.—The Cat
L. Carroll in Alice’s Adventures in Wonderland (1865)

When we decide the validity of a single comparison,
we can make a mistake: we can reject a true null
hypothesis, or we can fail to reject a false null hypoth-
esis. When we decide the validity of k comparisons—
this happens in most experiments—we are more likely
to reject a true null hypothesis. The challenge for any
multiple comparison procedure is to satisfy two con-
flicting requirements: reduce the risk that we reject a
true null hypothesis but maintain the likelihood that
we detect an experimental effect if it exists (7, 12, 17).
The relative importance assigned to these require-
ments has produced opposing philosophies about how
to handle the issue of multiple comparisons.

Focus on individual comparisons. Proponents of this
philosophy argue it is sufficient to control the single
comparison error rate a, the probability that we reject
a true null hypothesis. They base this philosophy on
the assumption that most scientific comparisons are
preplanned (2, 15, 16). This assumption is naive and
unrealistic: many experimental effects are discovered
only after an investigator explores—rummages
through—the data.

Control for multiple comparisons. In general, physi-
ologists examine the impact of an intervention on a
set—a family—of related comparisons: for example,
the impact of some drug on renal blood flow and uri-
nary excretion of hormones and electrolytes, or a series
of paired comparisons among several groups of obser-

vations. In these situations, we base our scientific
conclusions on a family of comparisons: that is, multi-
ple comparisons considered as a single entity. As a
result, it is not the single comparison error rate a that
we must control but the family error rate a^, the
probability that we reject at least one true null hypoth-
esis in the family of comparisons (7, 8, 11–13, 17,
19–20). Multiple comparison procedures provide con-
trol of the family error rate a^.

THE GENERAL STRATEGY

Most multiple comparison procedures use the same
basic strategy: to make inferences about the population
means for two groups, m, and mw, they compare the
magnitude of the difference between the sample means
y#, and y#w to a critical difference Dy#*. If

uy# w 2 y# ,u . Dy# *

where

Dy# * 5 c z SE{u} (3)

and where SE{u} is the standard error of the quantity
u, then that is statistical evidence that m, Þ mw. Pro-
cedures differ in the statistics substituted for the coef-
ficient c and the quantity u. Table 2 lists the statistics
for the Newman-Keuls, Bonferroni, and least signifi-
cant difference tests.

SIMULATED SAMPLE OBSERVATIONS

An article published recently in the Journal provides
an ideal framework with which to illustrate multiple
comparison procedures. In the experiment, Koch et al.
(10) explored the heritability of running endurance,
measured as distance run, in rats. I used the observed
sample statistics from 10 experimental groups (Fig. 1)
as the empirical foundation for the simulated sample
observations.3

This is how I generated the simulated sample obser-
vations—the data. Let the random variable Yj repre-
sent the distance run by a rat in group j, where j 5 1,
2, . . . , 10. Assume that each Yj is distributed normally
with mean mj and variance sj

2

Yj , N(mj, sj
2)

3Statistical calculations and exercises were executed using SAS
Release 6.12 (SAS Institute, Cary, NC, 1996).

Table 2. Calculation of the critical difference between
sample means, Dy#*

a^ c u

Newman-Keuls a qm,n
a^ y#

Bonferroni ka ta /2,n y#w 2 y#,

Least significant difference a ta^ /2,n y#w 2 y#,

For some family error rate a^, the critical difference Dy#* is Dy#* 5
c z SE{u} (Eq 3). The subsequent sections that summarize these
multiple comparison procedures detail the quantities for a^ and for
the statistics c and u.
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I estimated each mj and sj using approximate values
for the observed group means and standard devia-
tions (see Ref. 10, Tables 1 and 2). For simplicity, I
limited each sample to 10 observations. One set of 10
simulated samples is listed in Table 3. For the rest of
the review, I use the resulting sample means

y# 1 5 474, y# 2 5 291, · · · , y# 10 5 612

and the resulting sample standard deviations

s1 5 100, s2 5 102, · · · , s10 5 65

as the basis for my illustration of specific multiple
comparison procedures.

NEWMAN-KEULS PROCEDURE

The Newman-Keuls procedure4 is a multiple range
test that compares the underlying population means of

r experimental groups. That is, it evaluates the null
hypothesis

H0: m1 5 m2 5 · · · 5 mr (4)

The procedure sets the family error rate a^ at a, the
single comparison error rate, by using studentized
range distributions to calculate critical differences (see
Eq. 5).

Another multiple range test is the Duncan proce-
dure.5 It is only the specification of a^ that differenti-
ates the method of Duncan from that of Newman-
Keuls. The Duncan family error rate is a^ 5 1 2
(1 2 a)m 2 1, where m is the number of means being
compared. The Duncan multiple range test is a noted
ancestor of modern multiple comparison procedures,
but because a^ grows with m, the test violates a basic
tenet of multiple comparisons: the control of a^ despite
a large number of comparisons (see Ref. 12, p. 87–89).

The example. To make inferences about the equality
of two population means, m, and mw, the Newman-
Keuls procedure uses the critical difference Dy#*m, de-
fined as

Dy# *m 5 qm,n
a^ z SE{y# } (5)

In Eq. 5, the coefficient qm,n
a^ is the 100[1 2 a^]th

percentile from a studentized range distribution with
m means and n degrees of freedom, and SE{y#} is the
standard error of the sample mean. Using the pooled
sample variance s2 5 6,883 (see Table 3), the standard
error of the sample mean is estimated as

SE{y# } 5 s/În 5 83/Î10 5 26.2

Suppose we define a^ 5 0.05. In this simulated
experiment, there are n 5 90 degrees of freedom (see
Table 3). Because there can be groups of m 5 2, 3, . . . ,
10 consecutive sample means, there are nine critical
differences to be calculated using Eq. 5 (Table 4).

A simple graphical technique can communicate the
inferences based on these critical differences. First, we
list the sample means in ascending order (see Table 3)

4This procedure is known also by the name Student-Newman-
Keuls.

5Nearly 6% (18/321) of the reviewed manuscripts that report a
multiple comparison procedure used the Duncan procedure.

Fig. 1. Experimental groups 1 – 10 associated with the simulated
sample observations and derived sample statistics listed in Table 3.
This diagram is based on the selective breeding procedure described
in Ref. 10. The initial generation is generation 0. In each generation,
the 2 female (E) and 2 male (h) rats at the extremes of observed
running endurance were paired and bred to produce the subsequent
generation.

Table 3. Simulated sample observations and derived sample statistics

Group j mj sj Sample Observations y1, y2, . . . , y10 y# j sj

1 450 100 501, 619, 382, 502, 480, 396, 269, 543, 547, 501 474 100
2 325 100 475, 244, 351, 155, 267, 181, 334, 296, 200, 403 291 102
3 500 100 462, 450, 571, 415, 613, 361, 467, 503, 554, 476 487 75
4 375 100 487, 356, 498, 336, 489, 411, 248, 369, 423, 423 404 79
5 650 100 591, 700, 495, 579, 542, 627, 748, 658, 586, 797 632 94
6 500 100 578, 589, 543, 443, 461, 444, 478, 513, 565, 412 503 64
7 375 100 313, 440, 406, 339, 389, 372, 286, 341, 498, 349 373 63
8 400 100 336, 575, 370, 428, 377, 282, 308, 311, 286, 432 370 90
9 750 100 683, 658, 684, 808, 698, 853, 922, 806, 789, 801 770 86

10 575 100 564, 616, 632, 700, 674, 663, 561, 544, 505, 661 612 65

Experimental groups 1–10 correspond to those depicted in Fig. 1. From each of the 10 populations defined by the mean mj and standard
deviation sj, we draw 10 independent sample observations that represent distance run (in m). Each sample mean y# j and sample standard
deviation sj estimate the corresponding population mean mj and population standard deviation sj. Because there are r 5 10 groups, each with
n 5 10 observations in each group, there are n 5 r z (n 2 1) degrees of freedom. In this simulation, the pooled sample variance s2 5 6,883.
These values are used to calculate the critical difference Dy#* for the Newman-Keuls, Bonferroni, and least significant difference procedures.
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Group j 2 8 7 4 1 3 6 10 5 9
y# j 291 370 373 404 474 487 503 612 632 770

Then, for each group of m consecutive means, progress-
ing from largest to smallest m, we compare the mag-
nitude of the m-mean range, y#w 2 y#,, to its correspond-
ing critical difference Dy#*m. If

y# w 2 y# , # Dy# *m

then we underline the group of m means: we are unable
to discriminate among them. If

y# w 2 y# , . Dy# *m

then we draw no line: we have identified at least one
difference. At the end of this process, it is only those
means that remain unconnected that we can discrimi-
nate statistically.

To illustrate this technique, we begin with m 5 10.
The initial step is

770 2 291 5 479 . 120, draw no line

In fact, for m 5 9, 8, . . . , 4, y#w 2 y#, . Dy#*m, therefore
draw no lines.

The next step is to evaluate groups of m 5 3 con-
secutive means

770 2 612 5 158 . 88, draw no line;

632 2 503 5 129 . 88, draw no line;

612 2 487 5 125 . 88, draw no line;

503 2 474 5 29 , 88, underline;

487 2 404 5 83 , 88, underline;

474 2 373 5 101 . 88, draw no line;

404 2 370 5 34 , 88, underline;

373 2 291 5 82 , 88, underline

The final step is to evaluate pairs (m 5 2) of adja-
cent means

770 2 632 5 138 . 74, draw no line;

632 2 612 5 20 , 74, underline;

612 2 503 5 109 . 74, draw no line

At this point, we can stop: all remaining pairs of con-
secutive means were underlined in the preceding step,
when m 5 3.

The Newman-Keuls procedure leads to these conclu-
sions about the 10 sample means

Group j 2 8 7 4 1 3 6 10 5 9
y# j 291 370 373 404 474 487 503 612 632 770

These are examples of inferences based on this data
graphic: m2 resembles m8 and m7 but differs from m4,
m1, . . . , m9; and m9 differs from all other means. Table
5 lists the inferences for the 16 preplanned group
comparisons.

Practical considerations. The Newman-Keuls proce-
dure evaluates all r (r 2 1)/2 paired comparisons
among r sample means from a balanced design. The
test assumes the r means are independent and are
based on identical numbers of observations (Ref. 12, p.
86). When it compares more than three means, the
Newman-Keuls procedure no longer caps the family

Table 4. Critical differences for the Newman-Keuls procedure

m, Number of Means Being Compared

2 3 4 5 6 7 8 9 10

qm,n
a^ 2.81 3.37 3.70 3.94 4.12 4.27 4.39 4.50 4.59

Dy#*m 74 88 97 103 108 112 115 118 120

qm,n
a^ , 100[1 2 a^]th percentile from a studentized range distribution with m means and n degrees of freedom; Dy#*m, critical difference for

m consecutive sample means (Eq. 5).

Table 5. Statistical inferences based on preplanned group comparisons

Preplanned Comparisons Statistical Inferences about the Population Means

i: Null hypothesis H0
i k0 Newman-Keuls Bonferroni LSD False discovery rate

Female rats
1: m7 5 m3 5 m1 3 m7 m1 m3 m7 m1 m3 m7 m1 m3 m7 m1 m3
2: m9 5 m5 5 m1 3 m1 m5 m9 m1 m5 m9 m1 m5 m9 m1 m5 m9
3: m9 5 m7 1 m7 m9 m7 m9 m7 m9 m7 m9
4: m5 5 m3 1 m3 m5 m3 m5 m3 m5 m3 m5

Male rats
5: m8 5 m4 5 m2 3 m2 m8 m4 m2 m8 m4 m2 m8 m4 m2 m8 m4
6: m10 5 m6 5 m2 3 m2 m6 m10 m2 m6 m10 m2 m6 m10 m2 m6 m10
7: m10 5 m8 1 m8 m10 m8 m10 m8 m10 m8 m10
8: m6 5 m4 1 m4 m6 m4 m6 m4 m6 m4 m6

k0, number of comparisons associated with the null hypothesis; LSD, least significant difference. For each multiple comparison procedure,
the relative ordering of the population means matches that of the sample means because the sample mean y# i estimates the population mean
mi: that is, because y# i 5 m̂i. Underlined population means cannot be discriminated statistically. Note that the Bonferroni inequality fails to
detect several differences between means that the other procedures identify.
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error rate a^ at a; instead, a^ . a (Ref. 8, p. 127). For
this reason, the Newman-Keuls procedure is of limited
value for multiple comparisons.

BONFERRONI PROCEDURE

The Bonferroni inequality is a probability inequality
that does control the family error rate a^. For a family
of k comparisons, the Bonferroni inequality defines the
upper bound of the family error rate to be

a^ 5 1 2 (1 2 a)k 5 k z a

where a is the error rate for each comparison. In other
words, the inequality assigns an error rate of a^ /k to
each comparison within the family. Because a can vary
among comparisons, the general expression for the
family error rate is

a^ 5 a1 1 a2 1 · · · 1 ak

The example. To make inferences about the equality
of two population means, m, and mw, the Bonferroni
procedure relies on the critical difference Dy#*, defined
as

Dy# * 5 ta/2,n z SE{y# w 2 y# ,} (6)

In Eq. 6, the coefficient ta /2,n is the 100[1 2 (a /2)]th
percentile from a t distribution with n degrees of free-
dom, and SE{y#w 2 y#,} is the standard error of the
difference between the sample means.

If we define a^ 5 0.05, then for each of the 16
preplanned comparisons listed in Table 5

a 5 a^/k 5 0.05/16 5 0.0031

Therefore, because there are n 5 90 degrees of freedom
(see Table 3), ta/2,n 5 3.04. Using the pooled sample
variance s2 5 6,883, the standard error of the differ-
ence between sample means is estimated as

SE{y# w 2 y# ,} 5 Î(s2 1 s2)/n 5 37.1 (7)

By virtue of Eq. 6, the resulting critical difference for
the Bonferroni procedure is

Dy# * 5 3.04 3 37.1 5 113

Therefore, the Bonferroni procedure leads to these
conclusions about the 10 sample means

Group j 2 8 7 4 1 3 6 10 5 9
y# j 291 370 373 404 474 487 503 612 632 770

Table 5 lists the resulting inferences for the 16 pre-
planned group comparisons.

Practical considerations. Although it is not a multi-
ple comparison procedure per se, the Bonferroni in-
equality can be used for multiple comparison problems.
The technique is valid regardless of whether the r
sample means are independent or correlated (Ref. 12,
p. 67). The Bonferroni inequality is appealing because
it is versatile and simple. Unfortunately, its appeal is
diminished by the strict protection of the single com-
parison error rate a. As a consequence, the Bonferroni
inequality is conservative: it will be unable to detect

some of the actual differences among a family of k
comparisons (see Table 5).

LEAST SIGNIFICANT DIFFERENCE PROCEDURE

The least significant difference (LSD) procedure, de-
veloped by Sir R. A. Fisher, preceded the Newman-
Keuls multiple range test. Like the Newman-Keuls
test, the LSD procedure compares the underlying pop-
ulation means of r experimental groups (see Eq. 4), and
it sets the family error rate a^ at the single comparison
error rate a.

The example. To make inferences about the equality
of two population means, m, and mw, the LSD procedure
uses the critical difference Dy#*, defined as

Dy# * 5 ta^/2,n z SE{y# w 2 ,} (8)

In Eq. 8, the coefficient ta^ /2,n is the 100[1 2 (a^ /2)]th
percentile from a t distribution with n degrees of free-
dom, and SE{y#w 2 y#,} is the standard error of the
difference between the sample means.6

If we define a^ 5 0.05, then because there are n 5 90
degrees of freedom (see Table 3), ta^ /2,n 5 1.99. As
shown in Eq. 7, SE{y#w 2 y#,} 5 37.1. Therefore, by
virtue of Eq. 8, the resulting critical difference for the
LSD procedure is

Dy# * 5 1.99 3 37.1 5 74

The LSD procedure leads to these conclusions about
the 10 sample means

Group j 2 8 7 4 1 3 6 10 5 9
y# j 291 370 373 404 474 487 503 612 632 770

Table 5 lists the resulting inferences for the 16 pre-
planned group comparisons.

Practical considerations. The LSD procedure evalu-
ates all r (r 2 1) /2 paired comparisons among r sam-
ple means. In its protected form, the procedure is done
only if a preliminary analysis of variance is statisti-
cally significant (18). When it compares more than
three means, the LSD procedure fails to maintain the
family error rate a^ at a (Ref. 8, p. 139). The solution to
this problem is to replace ta^ /2,n in Eq. 8 with a percen-
tile from a studentized range distribution: qr 2 1,n

a^ (Ref.
8, p. 139) or qr,n

a^ (Ref. 12, p. 92).7

FALSE DISCOVERY RATE PROCEDURE:
A RECENT DEVELOPMENT

In most experiments, scientists strive to make a
discovery: to reject a null hypothesis. When an exper-
iment involves a family of k comparisons, a scientist is
more likely to make a mistaken discovery. The false
discovery rate procedure8 is a promising solution to the

6Because a^ 5 a, this critical difference is simply the allowance
used to obtain a 100(1 2 a)% confidence interval for the difference
y#w 2 y#, (see Ref. 5, Eq. A2).

7When the latter coefficient is used in Eq. 8, the method is called
the wholly (or honestly) significant difference procedure.

8This procedure is available within SAS Release 6.12 by using the
fdr option in Proc MultTest.
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problem of multiple comparisons. This procedure con-
trols not the family error rate a^ but the false discovery
rate f^, the expected fraction of null hypotheses re-
jected mistakenly

f^ 5
number of mistaken H0 rejections

total number of H0 rejections

If all k null hypotheses are true,9 then f^ 5 a^; if at least
one null hypothesis is not true, then f^ # a^ (3). When
we define the family error rate a^, we also set an upper
bound on the false discovery rate f^. But if we control f^

rather than a^, we gain statistical power, the ability to
detect an experimental effect if it exists (3, 4, 22).

The example. Unlike the preceding methods, the
false discovery rate procedure operates on achieved
significance levels (P values) to make inferences about
a family of k comparisons. Let Pi represent the signif-
icance level associated with comparison i. To execute
this procedure, we must complete three steps:

Step 1. Order the k comparisons by decreasing mag-
nitude of Pi.

Step 2. For i 5 k, k 2 1, . . . , 1, calculate the
critical significance level d*i as

d*i 5 (i/k) z f^ (9)

Step 3. If Pi # d*i, then reject the null hypotheses
associated with the remaining i compari-
sons.10

In the simulation, we selected k 5 16 comparisons of
interest. For each comparison, we evaluate the null hy-
pothesis H0: m, 5 mw by doing a t test. The P values
associated with the resulting t statistics vary from 0.723
3 0.0012 (Table 6). If we define the false discovery rate
f^ 5 0.05, the magnitude of the family error rate a^ we
have been using, then the critical significance level d*i
varies from 0.0503 0.003. In step 3, we declare compar-
isons 1–14 to be statistically significant (see Table 6).
Table 5 lists the inferences for all 16 comparisons.

Practical considerations. Because the false discovery
rate procedure operates on actual P values, it is quite
versatile. For example, the procedure can be employed
when a family of k comparisons involves different test
statistics such as Student t and Wilcoxon signed rank
statistics (3, 4). The false discovery rate procedure is
valid when the k comparisons are independent (a sam-
ple mean is part of only one comparison) or correlated
(a sample mean is part of more than one comparison,
as in the example) (3, 4, 22).

The false discovery rate procedure has two impor-
tant benefits. First, it allows us to make an inference,
with 100[1 2 ( f^ /2)]% confidence, about the direction
of a statistical difference (4, 22). For example, because
f^ 5 0.05, we can declare, with 97.5% confidence, that
m2 , m8 (see Table 6). This is a stronger inference than

the simple declaration m2 Þ m8 (Ref. 8, p. 27–39).
Second, the statistical results for a set of primary
comparisons are largely consistent despite substantial
changes in the number of secondary comparisons in-
cluded within the family (22).

SUMMARY

We dare not seek a single multiple comparison proce-
dure for all experiments.

Adapted from John W. Tukey (1994)

This remark, written by a pioneer in the area of
multiple comparisons, reflects the range of multiple
comparison problems that manifest themselves in sci-
entific research. Over the last 50–60 years, statisti-
cians have explored numerous approaches in an effort
to address these problems (8, 12). In physiology, as in
other disciplines, experiments that involve problems of
multiple comparisons are common.

In this review, I have shown that, as researchers, we
are more likely to reject a true null hypothesis if we fail
to use a multiple comparison procedure when we ana-
lyze a family of comparisons. I have also illustrated the
three procedures cited most often in APS journals:
Newman-Keuls, Bonferroni, and LSD. Unfortunately,
each of these is of limited value. In many experimental
situations, the Newman-Keuls and LSD procedures
fail to control the family error rate, the probability that
we reject at least one true null hypothesis. In contrast,
the Bonferroni inequality is overly conservative: it fails
to detect some of the actual differences that exist
within the family.

Finally, I have reviewed the false discovery rate: a
versatile, simple, and powerful approach to multiple com-
parisons. As Tukey suggests, it is perhaps unrealistic to
expect that a single multiple comparison procedure will
suffice for all situations: a statistical procedure designed
specifically for a particular experimental situation will

9Because of the artificial nature of null hypotheses (5), this is a
rare occurrence.

10If i , k when Pi # d*i, then there will be k 2 i null hypotheses
that cannot be rejected.

Table 6. Calculations for the false discovery
rate procedure

Comparison i: H0 Pi d*i

16:m3 5m1 0.723 0.050
15:m8 5m4 0.369 0.047
14:m8 5m2 0.034 0.044
13:m6 5m4 0.009 0.041
12:m7 5m1 0.008 0.038
11:m105m6 0.004 0.034
10:m4 5m2 0.003 0.031
9:m7 5m3 0.003 0.028
8:m9 5m5 0.0012 0.025
7:m5 5m3 0.0012 0.022
6:m9 5m1 0.0012 0.019
5:m5 5m1 0.0012 0.016
4:m9 5m7 0.0012 0.012
3:m105m2 0.0012 0.009
2:m6 5m2 0.0012 0.006
1:m105m8 0.0012 0.003

Pi, achieved significance level; d*i, critical significance level (Eq. 9).
For Pi, a value of 0.0012 denotes Pi , 0.001. If Pi # d*i, then the
remaining i null hypotheses are rejected. Because P14 5 0.034 #
d*14 5 0.044, null hypotheses 14 3 1 are rejected. See Table 5 for a
graphical depiction of these numerical results.
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perform better than a general procedure. Nevertheless,
there is growing evidence (4, 22) that the false discovery
rate procedure may be the best practical solution to the
problems of multiple comparisons that exist within science.

APPENDIX

For all but one of the multiple comparison procedures
listed in Table 1, an important assumption is that the r
experimental groups are independent (12).11 In many studies
that use these multiple comparison procedures, however, the
r groups are not independent. This happens because investi-
gators make repeated observations on each subject: these
observations are correlated by virtue of individual biological
makeup (9). Therefore, the true error variability is underes-
timated, and the observed values for the standard deviations
of the group means underestimate the true variabilities (9).

To appreciate the impact of correlation on variability,
imagine an investigation in a sample of n subjects. In each
subject, some random variable X is measured during two
experimental conditions: a control period and a subsequent
intervention period. Let the random variable measured dur-
ing the control period be designated X1 and that during the
intervention period be designated X2. Assume that X1 and X2
are distributed normally

X1 , N(m1, s1
2) and X2 , N(m2, s2

2)

If the random variables X1 and X2 are considered jointly,
then the distribution of the variable pair (X1, X2) can be
envisioned as a bivariate normal distribution. For this dis-
tribution, s2u1, the standard deviation of the conditional dis-
tribution of X2 given that X1 equals a specific value, depends
on the correlation r between X1 and X2

s2u1 5 s2Î1 2 r2, where 21 # r # 1

Because repeated observations on a subject are correlated,
that is, because r Þ 0, the standard deviation of the variable
measured during a second condition, given the value of the
first measurement, is reduced by a factor of =1 2 r2.

I thank Dr. Steven L. Britton (Department of Physiology and
Molecular Medicine, Medical College of Ohio) and colleagues for
permission to cite their study.
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