

Edge Effects on Vegetation Communities in Old-Growth and Managed Forest Landscapes

Kristin Michels, PhD student Department of Botany

Background

- Approximately 1% of forests in Great Lakes Region are old-growth (never harvested), as estimated in 1995
- Remaining old-growth forests are in disjunct patches and isolated from other old-growth stands
- Various types of land use surround these remaining old-growth stands
- Effect of surrounding land use unknown

Old-Growth Model

Study Area

Sylvania Wilderness

Study Area Land Use Michigan Side of Border

- Entirely within the Sylvania Wilderness
- Limited activities allowed (e.g., timber harvest, hunting, and motorized engines all prohibited)

Wisconsin Side of Border

- Privately owned land (family trusts, LLCs, or school trusts)
- Management varies depending on owner, but timber harvest allowed (and occurs)

Private Land

Research Questions

 Is there a *difference* between variables collected on wilderness land and managed land?

• If there is a difference, *how* do variables change from wilderness border?

• If variables do change, *where* does this change occur (i.e., in distance *from* the border)?

Specific Variables of Interest

- Abundance: Number of plots species present
- Frequency: Proportion of plots species present
- Density: Number of species per unit area
- Dominance: Area species occupies (cover/DBH)
- Importance: Average of summed *relative* frequency, *relative* density, and *relative* dominance (for trees)
- Heterogeneity: *uniformity* of species distribution
- Diversity: *species variability* (Shannon-Weiner diversity index)
- Richness: Number of different species present
- Evenness: Equitability of abundance ("shape")

Field Methods

- Eight random transects across wilderness border (500 m/side; 1 k total length)
- Every 50 m sampled a 10 m x 10 m plot (trees, saplings, shrubs, stand characteristics)
- Twenty plots total per transect (10 plots/side with plots #1-10 on MI side and #11-20 on WI side)
- Three 1 m x 1 m nested sub-plots within each plot (herbs and seedlings)

All Data Collected

- Distance from border
- Slope & Aspect
- Tree species, size, & distribution
- Tree canopy index
- Sapling species & abundance
- Shrub species & cover
- Seedling species & abundance
- Herb ID & cover

- Canopy height
- Canopy cover
- Windfalls
- Snags
- Reiterated trunks
- Basal sprouts
- Graminoids
- Bare soil
- Non-vegetated area
- Coarse woody debris

Important Data Collected

- Distance from border
- Slope and Aspect
- Tree species, size, & distribution
- Tree canopy index
- Sapling species & abundance
- Shrub species & cover
- Seedling species & abundance
- Herb ID & cover

- Canopy height
- Canopy cover
- Windfalls
- Snags
- Reiterated trunks
- Basal sprouts
- Graminoids
- Bare soil
- Non-vegetated area
- Coarse woody debris

Research Q#1

How and *where* does *plot*-level *vegetation* (trees, shrubs, and saplings) differ from wilderness to adjacent managed lands?

10x10 Plot Data Collected

- Distance from border (calculated in GIS; ignore lat/ long location)
- Tree ID and size ("diameter at breast height")
- Sapling ID and number (count) of each sapling
- Shrub ID and percent cover of each shrub

Trees: Species, Size, Height Tree: identified species if > 10 cm DBH, unbranched, and > 5 m height • Size: Diameter at breast height (for area)

 $A = \pi r^2$ $C = 2\pi r$

"pi tape" - Circumference measured - Tape units divide by pi for diameter - Calculate area from diameter

Saplings Species & Count Sapling: < 10 cm DBH, > 1 m height • Species identification

Species counts

Shrub Species and Cover

Shrub: multistemmed, woody, and usually < 5 m height

- Species identification
- Percent cover

Research Q#2

Does canopy structure or stand characteristics differ from wilderness to adjacent managed lands?

10x10 Plot Data Collected Canopy height Percent canopy cover Abundance of windfalls * and snags Percent cover coarse woody debris, graminoids, and nonvegetated areas

Canopy Structure: Cover

Percent cover reference guide

Stand Characteristics: Disturbances

Windfalls

Stand Characteristics: Cover

Coarse Woody Debris: downed woody material (>20cm DBH) **Non-Vegetated Areas:** no vegetation, but still covered (e.g., in leaf litter) Graminoids: cover of

grasses or grass-like species

Research Q#3

Does canopy heterogeneity or spatial heterogeneity differ from wilderness to adjacent managed lands?

10x10 Plot Data Collected Canopy index for each tree • Distances to 4 closest trees in cardinal directions

Tree Heterogeneity: Canopy

- I: upper canopy (≥ 80% vertically exposed)
- II: lower canopy (< 80% vertically exposed)
- III: upper understory (crowns reached canopy foliage)
- IV: lower understory (crowns entirely below canopy trees)

Aiba and Kohyama (1997)

http://rainforests.mongabay.com/

Tree Heterogeneity: Spatial

Point quarter distance method for trees

Research Q#4

How and where does sub-plot vegetation (herbs and seedlings) differ from wilderness to adjacent managed lands?

1x1 Subplot Data Collected

 Seedling ID and number of each seedling (count)

 Herbaceous ID and percent cover of each species

Seedlings: Species & Counts

Seedling: tree species < 1 m height

 Species ID and counts in 3 subplots

Herbs: Species & Cover Herb: non-woody (herbaceous) forbs (nongrass flowering plant) and graminoids

 Herb ID and percent cover

• 3 subplots

Estimating Cover

Research Q#5

Is there a difference in species diversity as a function of distance from the wilderness border and where does this occur?

Diversity Metrics

- Species Richness: number of different species
- Shannon-Weiner Diversity Index: the proportion, *p*, of species *i* in the total sample is multiplied by natural log; result summed across all species and multiplied by -1
- Evenness: divide the Shannon Diversity Index value by the natural log of species richness (the total number of species)

Shannon-Diversity (H')

	Sp A	Sp B	pA	р _в
Plot 1	99	1	0.99	0.01
Plot 2	50	50	0.50	0.50

For Plot 1 $H' = -1[0.99 \cdot \log(0.99) + 0.01 \cdot \log(0.01)] = 0.024$

For Plot 2 $H' = -1[0.5 \cdot \log(0.5) + 0.5 \cdot \log(0.5)] = 0.301$

- *s* = number of species (e.g., 2)
- p_i = proportion of individuals belonging to species *i*

Importance Value (Trees) = (relative dominance + relative density + relative frequency)/3

- Relative dominance: basal area of a single tree species in a plot per total basal area of all tree species in a plot
- Relative density: number of single tree species in each plot per total number of tree species in each plot
- Relative frequency: number of a single species observations in a plot per total species observations found in each plot

Example: Relative Density

Relative density_j% = $(100 \cdot Density_j)$ ^p $\sum_{j=1}^{p} Density_j$

 Relative density of species *j* = ratio of its density to the overall density, the sum of the densities of the *p* species

Commonly expressed as percent