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ABSTRACT

Motivation: We compare phylogenetic approaches for inferring

functional gene links. The approaches detect independent instances

of the correlatedgain and loss of pairs of genes fromspecies’ genomes.

We investigate the effect on results of basing evidence of correlations

on two phylogenetic approaches, Dollo parsminony and maximum

likelihood (ML). We further examine the effect of constraining the ML

model by fixing the rate of gene gain at a low value, rather than

estimating it from the data.

Results: We detect correlated evolution among a test set of pairs

of yeast (Saccharomyces cerevisiae) genes, with a case study of

21 eukaryotic genomes and test data derived from known yeast

protein complexes. If the rate at which genes are gained is constrained

to be low, ML achieves by far the best results at detecting known

functional links. The model then has fewer parameters but it is more

realistic by preventing genes from being gained more than once.

Availability: BayesTraits by M. Pagel and A. Meade, and a script to

configure and repeatedly launch it by D. Barker and M. Pagel, are

available at http://www.evolution.reading.ac.uk

Contact: m.pagel@rdg.ac.uk

Supplementary information: Supplementary Data are available at

Bioinformatics online.

1 INTRODUCTION

An established computational approach for predicting functional

links is the across-species method of phylogenetic profiles

(Pellegrini et al., 1999). If the genes coding for part of a pathway

or structural complex are lost from a species’ genome, we might

expect that the genes to make the remainder of the proteins involved

might also soon be lost, leading to modularity in gain and loss of

genes over evolutionary time (Ettema et al., 2001). On this assump-

tion, the across-species method of phylogenetic profiles takes a

correlated pattern of presence and absence in genes across several

genomes as evidence that the products of those genes are function-

ally linked.

However, species’ genomes may have similar gene content for

the historical reason of being closely related, rather than as a result

of adaptive evolution. When comparing features of different spe-

cies, a truly phylogenetic approach allows for the historical influ-

ence of phylogenetic relationships (Ridley, 1983; Felsenstein, 1985;

Harvey and Pagel, 1991). For prediction of functional links among

gene products, this may be achieved by seeking not simple corre-

lated presence and absence of genes, but instead considering the

effect of the species phylogeny (Vert, 2002; Barker and Pagel, 2005;

Zhou et al., 2006).
We have shown that seeking correlated gains and losses of genes

on a phylogenetic tree of species substantially improves the detec-

tion of functionally linked pairs of proteins (Barker and Pagel,

2005), compared to the original across-species method (Pellegrini

et al., 1999). We here compare the original across-species method

(Pellegrini et al., 1999) with several phylogenetic methods. Two of

the latter are based on Dollo parsimony (Farris, 1977). Two are

based on maximum likelihood (ML) with a relatively general model

(cf. Barker and Pagel, 2005), and another uses ML but with a

constrained model in which the rate of gain of genes is not estimated

from the data, but fixed to a low value. The motivation for the latter,

novel approach was to model gene content evolution better, by

preventing the modelling of multiple gains of the same gene in

different parts of the phylogeny. A priori we believe such multiple

gains to be extremely rare in eukaryotes, which do not undergo

extensive horizontal gene transfer in nature.

We apply each method to a positive and negative test set, based

on known protein complexes in yeast. We compare the quality of

methods according to sensitivity and specificity. We find that all but

one of the phylogenetic methods give higher quality predictions

than the across-species method of phylogenetic profiles. Among

phylogenetic methods, ML can achieve by far the most reliable

results, but only if rates of gene gain are constrained to a low value.

2 METHODS

2.1 Species comparisons and relationships

The methods we investigate require accurate patterns of gene presence and

absence across several species. This allows us to form a species-by-proteins

matrix, which we refer to as the trait matrix, showing presence (‘1’) or

absence (‘0’) of each species’ ability to code for homologous proteins.

The trait matrix was obtained bioinformatically, from species with relat-

ively complete genome sequences. The phylogenetic approaches to seeking

correlated gain and loss of genes additionally require a phylogenetic tree

showing how the species are related to each other. We obtained the trait

matrix and phylogeny as described in the Supplementary material.

To allow validation against the large amount of known data for yeast,

we focus our study on fungi. We also include three animals, and a plant

(Arabidopsis thaliana) as outgroup for the phylogenetic tree, giving

22 species in all (Supplementary material). A.thaliana was included�To whom correspondence should be addressed.
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only to provide the root position of the phylogeny. We exclude it from

all searches for functional links, owing to its very distant relationship to

the other species.

2.2 Validation

Each method allows a range of numbers of predicted functional links

by appropriate choice of a score cut-off, with prediction quality tending

to decrease and number of predictions tending to increase as the cut-off

becomes less stringent. We compare the methods at a range of cut-offs, from

extremely liberal to extremely stringent (see Algorithm, below).

Where two proteins are truly functionally linked, we assume that,

usually, both proteins will be found within the same cellular component

or contribute to the same biological process (in the sense of Gene Ontology

Consortium, 2006). They may also form part of the same structural complex.

Methods of assessing quality of predicted functional links have relied on,

for example, shared SwissProt keywords for the proteins (Pellegrini et al.,

1999), shared subcellular compartment or functional category (von Mering

et al., 2002; Lu et al., 2003), or shared complex membership (von Mering

et al., 2002; Barker and Pagel, 2005). These methods of validation are

necessarily correlated with each other. For a simple, conservative assessment

of prediction quality, we here use data on complex membership.

Our positive test set consists of 9178 pairs of functionally linked proteins,

derived from known yeast complexes in the Comprehensive Yeast Genome

Database (Güldner et al., 2005). Our negative test set consists of 441 217

pairs of proteins that are unlikely to be functionally linked (Supplementary

material). We judge quality of predictions for a method as specificity and

sensitivity (cf. von Mering et al., 2003), where

specificity ¼ ðtrue positivesÞ/ðtrue positivesþ false positivesÞ ð1Þ

sensitivity ¼ ðtrue positivesÞ/ðtrue positivesþ false negativesÞ: ð2Þ

Sensitivity and specificity have a theoretical range of 0 to 1. High specificity

suggests the predicted functional links are likely to be correct. High sensi-

tivity suggests the method is able to find a large proportion of functional links

so that, when a link is not predicted, it is likely to genuinely not exist.

Overall, we desire both high specificity and high sensitivity.

3 ALGORITHM

For each pair of proteins in the positive and negative test sets we

sought correlated presence and absence for the across-species

method, and correlated gain and loss for the phylogenetic methods.

For the across-species method, the first score we used was the

number of species that had a matching state for the two proteins,

i.e. either both absent (‘0’) or both present (‘1’) (Pellegrini et al.,
1999). We refer to this method as ‘P99’. Two proteins both present

in yeast but with otherwise entirely dissimilar distribution patterns

would have a P99 score of 1, and two proteins with an identical

cross-species distribution pattern have a score equal to the number

of species in the study, here 21. Following the implementation of the

across-species method in Barker and Pagel (2005), we also used the

Fisher exact test (e.g. Zar, 1996), which we refer to as ‘Fisher’. This

provides a P-value for the association between binary strings.

For the first two phylogenetic methods, we used Dollo parsimony

(Farris, 1977) as an appropriate simple way to reconstruct

ancestral distribution patterns of gene presence (Krylov et al.,
2003; McLysaght et al., 2003; Koonin et al., 2004; see also Aravind
et al., 2000). Dollo parsimony maps the trait (here, gene presence or

absence) onto the phylogenetic tree with the minimum number of

gains and losses, under the constraint that there must be zero or one

gains. The number of losses is not constrained, but the overall

number of changes (gain + losses) is minimized. The scores we

derived from this were, first, the number of branches of the tree on

which change occurred in a positively correlated manner (i.e. the

number of branches on which both genes were gained together, plus

the number of branches on which both were lost together), and

second, this value minus the number of branches of the tree on

which non-correlated changes occur. We refer to these as ‘Dollo-

pos’ and ‘Dollo-overall’, respectively. Dollo-pos seek only positive

evidence of correlated evolution. Dollo-overall considers both posi-

tive and negative evidence. In the current study we found the Dollo-

pos score to range from a minimum of 0 to a maximum of 10, and

the Dollo-overall score to range from �18 to 7.

For a more sophisticated phylogenetic approach, we also evalu-

ated ML methods for detecting correlated evolution (Pagel,

1994,1997,1999). A brief summary of these ML methods follows.

For a more complete description of the methods in this context, see

Barker and Pagel (2005); see also Pagel and Meade (2006) for a

Bayesian description of the Pagel (1994) model. Two genes can

exhibit four different patterns of presence and absence in each

species, with each gene individually either being present (‘1’) or

absent (‘0’) from that species’ genome. The diagram in Equation

3 links the four states by arrows with parameters that describe the

rates of transition between the two states of one of the genes, while

the state of the other is constant.

1,11,0

0,0 0,1

q13

q21

q12

q24 q42

q34

q43

q31 ð3Þ

If two genes are gained and lost independently of one another then

the rates of change between the presence and absence of one gene

will not depend upon whether the other is present or absent. For

example, if the rate of gain of the second gene does not depend upon

the state of the first, then q12 ¼ q34. More generally, the model

of independent (uncorrelated) evolution implies that q13 ¼ q24,
q42 ¼ q31, q43 ¼ q21 and q12 ¼ q34, and therefore requires a maxi-

mum of four parameters. The most general model of dependent

(correlated) evolution does not imply these restrictions, and uses

a maximum of eight parameters to describe the data.

The dependent model will improve on the independent model

when the distribution of the genes across the species of the phy-

logeny implies that some of the pairs of transition rates constrained

in the independent model to be equal to each other, in fact differ.

The method is formally described by a rate matrix Q:

QI‚D ¼

0‚0

0‚1

1‚0

1‚1

� q12 q13 0

q21 � 0 q24
q31 0 � q34
0 q42 q43 �

2
664

3
775‚

0‚0 0‚1 1‚0 1‚1

ð4Þ

where we use the QI,D notation to indicate that the matrix can be

configured to either the independent or dependent model depending

upon whether some pairs of transition rates are constrained to be

equivalent. The main diagonal elements are defined as minus the

sum of the other rate coefficients in the row of the matrix, such that

each row sums to zero. The values of all dual transitions, or cases in

Constrained models of evolution
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which the states for both genes change simultaneously, are set to

zero in the matrix in Equation 4. These can be modeled appropri-

ately as two separate transitions. In the independent model, for

convenience we may represent the ‘gain’ parameters as a1 and a2

and the ‘loss’ parameters as b1 and b2, where a1 ¼ q13 ¼ q24,
a2 ¼ q12 ¼ q34, b1 ¼ q42 ¼ q31 and b2 ¼ q43 ¼ q21.
In contrast to Dollo parsimony, the ML approach as we imple-

ment it accounts for branch length, regarding a change as more

probable on a long branch of the phylogeny than on a short one.

Hence uncorrelated change on a short branch is regarded as weaker

negative evidence than uncorrelated change on a long branch.

Another advantage of ML is that the likelihood of each model

(independent and dependent) is summed over all possible ancestral

state reconstructions on the tree (Felsenstein, 1981; Pagel, 1994),

whereas Dollo parsimony forces a single state at each internal node,

even if the chosen state is only weakly supported.

In its full unconstrained form illustrated above, the ML model

allows a gene to arise more than once on the tree. We refer to this

model as ‘ML-unconstrained’. In reality we expect that most

correlated evolution takes the form of coincident losses of genes

because gaining the same gene twice is improbable, especially

among eukaryotes. On the other hand, given that homology is

assessed using pairwise sequence similarity (Supplementary mate-

rial), protein domain rearrangements or small amounts of conver-

gent evolution could make two initially dissimilar sequences

become more similar, and thereby appear as orthologues (Barker

and Pagel, 2005). To slightly reduce the effect of allowing multiple

gains in the model, one may fix the state of the root of the 21-species

phylogeny at ‘1’ for any gene found on both sides of the major

bifurcation between animals and fungi. This causes the model to

favour losses for those pairs, and is the approach used by Barker and

Pagel (2005). We refer to it as ‘ML-root’.

We also now evaluate a different ML model, modified by

our prior knowledge of mechanisms of eukaryotic gene content

evolution. We refer to this as ‘ML-constrained’. It is the same as

ML-unconstrained except that the initial gain parameters are not

estimated by ML, but fixed a priori at a single low value r, where
q12 ¼ q13 ¼ r for the dependent model and a1 ¼ a2 ¼ r for

the independent model. This imposes a more Dollo-like constraint

in that the algorithm will now tend to reconstruct multiple gene

losses rather than multiple gains, with the strength of the tendency

depending on the value of r. As an objective way to set the value of
r, for any study we propose that analyses of known test data are run
with a range of different values of r, and the specificity and sen-

sitivity of each of these are calculated. This allows choice of r based
on its demonstrated sensitivity and specificity. On the basis of initial

tests to discover a range of values of r likely to include the optimum

(data not shown), in the current study we investigate values for

r in the range 0.1 � r � 6.0, specifically r ¼ 0.1, 0.2, 0.4, 0.8,

1.5, 3.0 and 6.0. To investigate the effect of errors in setting r, we
record sensitivity and specificity at values of r deviating from the

optimum.

r and all rates in QI,D have, as units, the reciprocal of the units

of branch length in the species phylogeny. One value of r is unlikely
to perform well across studies. The units of branch length in the

phylogenetic tree will affect choice of r. Tree topology, relative

branch lengths and the actual rate of gain for the genes in the study

will also cause variation. We provide a script, bms_runner, which
assists the user in discovering an optimal r for a given phylogeny

and user-supplied training data. This script shows sensitivity

and specificity at various score (likelihood ratio) cut-offs for each

of a range of values of r. From this, a value of r and a cut-off may be

chosen, which give sensitivity and specificity considered appro-

priate by the user.

With ML-unconstrained and ML-root, the independent model

has four parameters and the dependent model has eight. With

ML-constrained, the independent model has two parameters and

the dependent model has six. With all the ML approaches, the

strength of evidence of correlated evolution is expressed as a like-

lihood ratio statistic LR (Cox, 1962; Goldman, 1993), where

LR ¼ � 2 ln ðH0Þ � ln ðH1Þ: ð5Þ

H0 is here the likelihood of the model of independent evolution

and H1 is the likelihood of the model of dependent evolution, with

both at their ML values. LR is zero if the dependent model does

not improve at all on the independent model, and rises with

increasing evidence of correlated evolution. In the current

study LR ranged from 0 to 25.90 for ML-unconstrained, from

0 to 25.94 for ML-root, and from 0 to 37.94 for ML-constrained

with a value of r empirically determined as appropriate for the

current study.

ML models were fitted using the program BayesTraits, launched

repeatedly by means of the bms_runner Perl script. Details of the
implementation are given in the Supplementary material.

Negatively correlated distribution patterns are unlikely to indicate

functional linkage and there is an argument for excluding those

(Barker and Pagel, 2005). This separate pre-processing step is likely

to be most useful for Fisher and ML approaches, and has no effect

for the P99 approach. To assess the impact of negative correlations

on results, we calculated Pearson correlations between distribution

Fig. 1. Reconstructed phylogeny of the 21 ingroup species, from a concate-

nation of unambiguously alignable regions of 19 single-copy proteins

(Supplementary Table S1). Bootstrap support is 100% for all nodes except

where shown.

D.Barker et al.
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patterns. In the interests of a straightforward comparison of under-

lying methods, without pre-or post-processing, we did not exclude

such pairs from predictions.

4 RESULTS

4.1 Phylogeny

TheML phylogenetic tree of species is shown in Figure 1. Bootstrap

support for most branches is high though there are two areas

of ambiguity, including the relationship among the three groups

of animals represented by Homo, Drosophila and Caenorhabditis
(Aguinaldo et al., 1997; Wolf et al., 2004). Resolution of such long-
standing ambiguities is not our current purpose. We have run our

phylogenetic searches for correlated gain and loss over the single

ML phylogenetic tree, rather than over a sample of trees. Any effect

of ambiguity is limited to proteins whose distribution varies among

the ambiguously placed species. Incorrect placement of species in

the tree can only reduce the quality of phylogenetic predictions and

cause us to judge the phylogenetic methods more harshly.

4.2 Predicted links and prediction quality

Even for those methods which could predict ‘functional links’ on

the basis of negatively correlated cross-species distribution patterns

of genes, such cases are few or absent among the more stringent

score cut-offs (Supplementary Table S2). Inclusion of negatively

correlated pairs does not affect our assessment of the relative quality

of methods.

The sensitivities and specificities achieved with each method,

according to the positive and negative test sets, are shown in

Figure 2 and Supplementary Table S3. As expected, each method

gives a range of results, depending on the score cut-off used. Within

a given method, stricter cut-offs tend to give fewer predictions,

lower sensitivity and higher specificity (Fig. 2; Supplementary

Tables S2 and S3). Due to incompleteness of the reference set,

values for specificity and sensitivity are approximate. However,

they allow us to assess the relative merits of the methods, for

some of which these statistics differ widely.

The ML-constrained method is clearly superior to any of the

other methods used, giving higher specificity for a given sensitivity,

and even achieving the theoretical maximum specificity of 1 at the

most stringent cut-offs (though with low sensitivities, of 0.0066 or

less). At more moderate, but still stringent cut-offs, the approach

produces relatively high numbers of relatively high quality predic-

tions (Fig. 2; Supplementary Tables S2 and S3).

The ML-constrained approach relies on esimtation of an appro-

priate rate of gene gain r, on the basis of known positive and

negative data. The approach is robust to the exact value of r. We

assessed sensitivity and specificity at seven values for r, ranging
from 0.1 to 6. Of these, r ¼ 0.8 gave best results in the current

study. This generally led to moderate fitted rates of loss, with the

overall median of mean (b1, b2) being 0.78 (n¼ 450 395, interquar-

tile range ¼ 1.64). Results are still superior to those of any other

method even when r deviates considerably from this optimum

(Fig. 3; Supplementary Table S4). A good estimate of r is possible
even with relatively small amounts of training data (Supplementary

Table S5), making the approach suitable for non-model organisms

where little known data exists for training.

The across-species methods, which do not use a phylogenetic

tree, predict with poor discrimination. P99 achieves a maximum

specificity of only 0.036 (at sensitivity ¼ 0.090). Fisher achieves a

maximum specificity of only 0.032 (at sensitivity ¼ 0.18). Both

these across-species approaches predict large numbers of functional

links, giving high sensitivity (Fig. 2; Supplementary Table S3). But

crucially, they fail to distinguish false positives from true positives

sufficiently, even at the most stringent cut-offs available. Specificity

Fig. 3. Sensitivity and specificity for the ML approach with the rate of

gene gain (r) fixed at various values, for various cut-offs. Cut-offs with

sensitivities greater than 0.1 have relatively poor specificity for all r

are omitted. r ¼ 0.8 is appoximately optimal for the current study, although

reduced amounts of training data led to choice of r in the range 0.8–1.5

(Supplementary Table S5). Some results have been omitted for clarity.

For full results, see Supplementary Table S4.

Fig. 2. Comparison of specificity and sensitivity for four of the seven

methods investigated. The graph focuses on cut-offs giving sensitivities

up to 0.25. Higher sensitivities are only possible at very low specificity,

for anyof themethods. TheFisher,Dollo-pos andML-unconstrainedmethods

gave results broadly similar to P99, Dollo-overall andML-root, respectively,

and are omitted for clarity. For details of allmethods see SupplementaryTable

S3. For ML-constrained, the rate of gene gain, r, was set to 0.8.

Constrained models of evolution
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for these across-species methods is so low in the current study that

we do not regard the predicted functional links as useful.

The Dollo-pos method is more accurate than the across-species

methods. At moderate to strict cut-offs, it tends to predict

fewer functional links, but they are far more likely to be correct

(Supplementary Table S3). In a sense it ‘takes up where the across-

species method leaves off’, allowing specificity of up to 0.25

(at sensitivity ¼ 0.00011). The proportion of true positives tends

to increase with the number of correlated events. But the suggestion

of Barker and Pagel (2005), that at least two or three correlated

events of gain or loss almost certainly indicate functional linkage,

does not seem to be a general rule.

The Dollo-overall method achieves still higher specificity,

with less sacrifice of sensitivity. Its specificity peaks at 0.45 (at

sensitivity 0.0014). However, at less strict cut-offs it is inferior

to Dollo-pos, giving lower specificity for a given sensitivity.

The ML-unconstrained method performs worst out of the meth-

ods examined, peaking at specificity¼ 0.021 (at sensitivity¼ 0.17).

The ML-root method achieves greater specificity than

ML-unconstrained or the across-species methods, peaking at spe-

cificity ¼ 0.041 (at sensitivity ¼ 0.00098) (Fig. 2; Supplementary

Table S3). However, ML-root performs more poorly than the

Dollo and ML-constrained methods. The poor performance of

ML-unconstrained and ML-root is a result of the poor match

between their models, which specify no limit on the number of

independent gains a gene may have, and the reality of eukaryotic

gene content evolution, in which multiple gains of the same gene in

different species are very unusual. Horizontal gene transfer has

contributed to the yeast genome, but only rarely (Hall et al.,
2005), and convergent sequence evolution may be unlikely on a

large scale. We used ML-unconstrained and ML-root not out

of a desire to model these rare situations, but because trait

matrix could in fact give the impression of multiple gains through

discretizing sequence similarity to a binary measure of ‘presence’

versus ‘absence’ (see ‘Algorithm’, above). It appears such

problems are not severe in practice, and, for the current broad

study, the trait matrix can be taken at face value. The minor adjust-

ment in ML-root (fixing of the root’s ancestral state to ‘1’ where

appropriate) is inadequate to compensate for an unconstrained rate

of gain of genes.

To further characterize the relative performance of Dollo-overall

and ML-constrained, we stratify the quality of results by rate of

gene loss (Fig. 4). Each method performs best with a ‘moderate’

rate of gene loss. Within any of the three rate categories (‘low’,

‘moderate’ or ‘high’), ML-constrained tends to give superior results

to Dollo-overall. ML-constrained can achieve a specificity of 1 in

each category. Dollo-overall only achieves a specificity of 1 in the

‘moderate’ category, but even here performs considerably worse

than ML-constrained at most score cut-offs (Fig. 4). It is clear that

rate of gene loss affects quality of predictions for both methods, but

ML-constrained gives superior results to Dollo-overall within any

rate category. This is perhaps expected, given the body of evidence

suggesting ML methods in phylogeny reconstruction give superior

results to parsimony methods in most circumstances (e.g. see

Felsenstein, 2004).

The trait matrix and full results for the ML-constrained method

are given in the Supplementary material.

5 DISCUSSION AND CONCLUSION

5.1 Quality of results

The current analysis demonstrates the importance of using a

truly phylogenetic approach when predicting functional linkage

among proteins from the cross-species pattern of gene presence

and absence. All of the phylogenetic methods except ML-

unconstrained achieved higher specificity than the across-species

approach. Among phylogenetic methods, two things were found to

be crucial. First, the phylogenetic model must approximate biologi-

cal reality reasonably closely. In the current study, this means the

rate of gain of genes must be constrained to be low, even though this

makes the model less accurate from a purely numerical, descriptive

point of view. Second, a ML model is capable of greater accuracy

and sensitivity than a Dollo parsimony-based approach. An appro-

priate model within a ML framework gives by far the best results.

This appropriately weights gains and losses of genes, and allows

correct modelling of the effect of different branch lengths in

the phylogeny.

Of the methods examined, the relatively unsuccessful ones were

incapable of achieving high specificity at any score cut-off. For the

relatively successful methods, including the best-performing

method ML-constrained, high specificity was only achieved at

low sensitivity. In other words, where accurate predictions of

functional linkage are required, only few predictions are possible.

This is partly a limitation of the methods. For example, none of the

ML or Dollo methods make any predictions for proteins present

across all species in the study. (In constrast, the P99 method predicts

Fig. 4. Comparison of specificity and sensitivity for Dollo-overall (white squares) and ML-constrained (black triangles), stratified by rate of gene loss among

the pairs compared. (A) Low rate of gene loss, (B) moderate rate of loss, (C) high rate of gene loss. ‘Low’ is arbitrarily defined to include the 163 949 pairs in the

test data where mean (b1, b2) < 0.5, ‘moderate’ to include the 148 926 pairs where 0.5�mean (b1, b2) < 1.5, and ‘high’ to include the 137 520 pairs where mean

(b1, b2) � 1.5. Values of b1 and b2 were estimated by the ML-constrained method with r ¼ 0.8.
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that all such proteins are functionally linked to each other.)

However, the number and the quality of predictions are expected

to increase as further genomes are included in the study (cf. Sun

et al., 2005).
The number of species we have used reflects the state of fungal

genome sequencing and annotation at the start of the current work,

but is still sufficient to predict 298 functional links out of

the 450 395 pairs of proteins we examined, at a specificity of

0.72 (Supplementary Tables S2 and S3). Such rates of prediction

and accuracy are already at a level where one may begin to draw

global inferences about the nature of molecular and biochemical

organization within the cell.

5.2 Extensions

To allow validation with large amounts of reliable known data, we

here confine ourselves to protein-coding genes, though in principle

our approach would work with all genes including RNA genes, and

indeed any genomic elements including promoters, enhancers,

introns, UTR motifs, conserved DNA of unknown function and

protein domains and motifs (cf. Pagel et al., 2004), either per-

class or, perhaps most interestingly, together in the same study.

This could allow functional annotation of some conserved regions

of noncoding DNA that are increasingly being revealed by com-

parative genomics (Bejerano et al., 2004; Sabarinadh et al., 2004).
Our validation of phylogeny, particularly appropriate ML models

of trait evolution in analysis of gene presence and absence suggests

that phylogeny should also be investigated within several other

computational comparative genomics methods for predicting pro-

tein function and functional linkage, e.g. gene fusion (Enright et al.,
1999; Marcotte et al., 1999a), predicted operons (Dandekar et al.,
1998; Overbeek et al., 1999), bidirectionally transcribed gene pairs

(Korbel et al., 2004) and negatively correlated cross-species distri-

bution patterns (Morett et al., 2003). None of these methods models

change on a phylogenetic tree, but all could be modified to do so.

Incorporation of the species phylogeny when predicting physical

interaction partners by means of correlated sequence evolution has

been found to improve results (Pazos et al., 2005; see also Akmaev

et al., 2000), demonstrating the value of phylogeny extends beyond

our current application.

Bayesian Markov chain Monte Carlo (MCMC) approaches, in

which we fit the model of trait evolution to more than one tree (Pagel

et al., 2004; Pagel and Meade, 2005,2006) may improve quality

of results compared to ML, especially where there is ambiguity in

the phylogeny. However in the current case study, we found com-

paratively little uncertainty in the tree topology (Fig. 1). Because of

this we have pursued our investigation of models within an ML

framework. Since Bayesian-MCMC trait reconstruction uses the

same likelihood models as ML, our conclusions concerning appro-

priate models will generalize to both approaches.

Any bioinformatic or laboratory method is limited to finding

only those functional links, which match the assumptions of

the method. The most complete and accurate results will be obtained

using several different methods together (Marcotte et al., 1999b;
Hishigaki et al., 2001; von Mering et al., 2002,2003), for example

as input to a Bayesian network (Jansen et al., 2003; Lin et al., 2004)
or logistic regression (Lin et al., 2004), but it remains important that

the quality of the inputs to the combining algorithm be as high as

possible. Phylogeny can clearly assist in this area.
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