Professor Larget

Assignment #4: due October 1, 2001

- 1. Consider the Markov chain example of progress of labor in human birthing on page 62.
 - (a) Enter the matrix into S-PLUS.
 - (b) What is the probability that a woman in her first pregnancy who is 4 cm dilated will have given birth within six hours?
 - (c) How much time after first being 4 cm dilated will 95% of all women in their first deliveries have given birth?
- 2. Do problem 2.3.
- 3. Do problem 3.13.
- 4. Suppose that a matrix **P** may be decomposed into

$$\mathbf{P} = \mathbf{U}\mathbf{D}\mathbf{U}^{-1}$$

where **D** is a diagonal matrix and \mathbf{U}^{-1} is the inverse matrix of **U**, namely $\mathbf{U}^{-1}\mathbf{U} = \mathbf{U}\mathbf{U}^{-1} = \mathbf{I}$ where **I** is the identity matrix. (This decomposition is called the spectral decomposition of a matrix. Matrices which may be decomposed in this way are called diagonalizable. Matrices **P** and **D** in this example are similar matrices.)

Find an expression for \mathbf{P}^n .

5. Consider the transition matrix

$$\mathbf{P} = \begin{bmatrix} 0.8 & 0.2 & 0 & 0 \\ 0 & 0 & 0.5 & 0.5 \\ 0.5 & 0.5 & 0 & 0 \\ 0 & 0 & 0.2 & 0.8 \end{bmatrix}$$

Use the function eigen in S-PLUS to decompose $\mathbf{P} = \mathbf{U}\mathbf{D}\mathbf{U}^{-1}$ as in the previous problem.

- > e <- eigen(P)
- > U <- e\$vectors
- > Uinv <- solve(U)
- > D <- diag(e\$values)
- (a) What is $\lim_{n\to\infty} \mathbf{D}^n$?
- (b) What is the exact expression of $\lim_{n\to\infty} \mathbf{P}^n$?
- (c) What is the exact expression of $\lim_{n\to\infty} \pi^{(0)} \mathbf{P}^n$ where $\pi^{(0)} = (1, 0, 0, 0)$?
- (d) Find a vector π such that $\pi \mathbf{P} = \pi$.

- 6. For the gambling problem in lecture where the initial stakes are a = 1 and b = 5 and the probability that A wins a single round is p = 1/6, find the expected number of times that A's fortune is two before the game ends. (You may solve this numerically or analytically.)
- 7. For the fish bowl problem, 2.19, classify each state as recurrent or transient when there are five fish in the bowl initially.
- 8. (a) The integers 0, 1, 2, 3, 4 are written in order around a circle. You begin at 0. At each time step, you are equally likely to move clockwise or counter-clockwise one position. Find the period of each recurrent class.
 - (b) The integers 0, 1, 2, 3, 4, 5 are written in order around a circle. You begin at 0. At each time step, you are equally likely to move clockwise or counter-clockwise one position. Find the period of each recurrent class.