CPMA 521, Fall 2001
Professor Larget
Assignment #6: due October 15, 2001

I expect that you will use S-PLUS or R for many or all of these problems.

1. Consider a corrected version of the game Paul and I played in class. Paul begins with
a chips and I begin with one chip. At each stage, Paul wins one chip from me with
probability p and loses one chip from me with probability 1 — p.

(a) If p =2/5, find the smallest number a so that Paul has better than a fifty percent
chance of winning all of the chips eventually.

(b) For this value of a, how long is the game expected to last?

(c) For this value of a, how many times do you expect Paul’s fortune to be a before
the game ends?

Solution: When a = 2, b =1, and p = 2/5, the probability that Player A eventually wins
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The Markov probability transition matrix is

1 0 0 O
06 0 04 O
0 06 0 04
0 0 0 1.0

P =

The matrix of expected visits is

U (1_[ 0 04 71 —041t [25/19 10/197 . [ 1.32 0.53
- 0.6 0 — | -06 1 ~ | 15/19 25/19 | T | 0.79 1.32
The game is expected to last 0.79 + 1.32 = 2.11 turns on average.

You expect that Paul’s fortune will be two chips 1.32 times on average.

2. Consider the following random walk on a tree. Nodes a, b, ¢, d, e, f, g, and h are
connected with the following edge set: {(a, f), (b, f), (f, 9), (¢, 9), (g,h), (d, h), (e, h)}.
At each time, the next node is selected uniformly at random from the neighboring
nodes.

(a) This Markov chain is finite and irreducible. What is the periodicity of the only
recurrent class?

(b) Construct the probability transition matrix P.
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(c) How many eigenvalues have an absolute value strictly less than one?
(d) What happens to P™ as n — 0o?

(e) Describe all solutions to the equations 7P = 7 and ), m; = 1. Is there a unique
solution or are there many?

(f) Describe all solutions to the equations 7P? = w and Y, m; = 1. Is there a unique
solution or are there many?

Solution:

(a) The periodicity is 2.

(b) ) ]

o 0 0 0 0 1 0 0
o 0 0 0 0 1 0 0
o 0 0 0 0 0 1 0
p_| 0 0 0 0 0 0 0 1
o 0 0 0 0 0 0 1
1/31/3 0 0 0 0 1/3 0

o 0 1/3 0 0 1/3 0 1/3
0 0 0 1/31/3 0 1/3 0

(c) Six of the eight eigenvalues are strictly less than 1. One is 1 and one is —1.

(d) As n — oo, P™ alternates between two limit matrices, one for odd n and one for
even. For odd n, P" tends to

0 0 1/7 0 0 3/7 0 3/7]
0o 0 1/7 0 0 3/7 0 3/7
17 1)7 0 1/7 1/T 0 3/7 0
0 0 1/7 0 0 3/7 0 3/7
0 0 1/7 0 0 3/7 0 3/7
17 1)7 0 1/7 1/T 0 3/7 0
0o 0 1/7 0 0 3/7 0 3/7
| 1/7 17 0 1)1 1)1 0 3/1 0

while for even n, it tends to

17 1/7 0 1/7 1/T 0 3/7 0
17 1)7 0 1/7 1/T 0 3/7 0
0O 0 1/T 0 0 3/7T 0 3/7
17 1)7 0 1/7 1/T 0 3/7 0
17 1)7 0 1/7 1/T 0 3/7 0
0o 0 1/T 0 0 3/7T 0 3/7
17 1/7 0 1/7 1/T 0 3/7 0
0 0 1/7 0 0 3/7 0 3/7)




(e) The unique solution to 7P = 7 subject to the constraint that Y m; = 1 is
7= (1/14,1/14,1/14,1/14,1/14,3/14,3/14, 3/14).

(f) Solutions to 7P? = 7 subject to >_7m; = 1 and m > 0 are not unique but are of the
form

m=a(1/7,1/7,0,1/7,1/7,0,3/7,0) + (1 — )(0,0,1/7,0,0,3/7,0,3/7)

where 0 < o < 1. The reason is that the chain is of periodicity 2. If we take two
consecutive steps each time, we will always stay in the same periodic class. Any
linear combination of the two separate stationary distributions for the classes will be
a solution.

3. Redo the previous problem, but consider each node to be a neighbor of itself. For
example, from state a you remain at a with probability 1/2 and move to state f with
probability 1/2.

Solution:

(a) The periodicity is 1.
(b)
0 1/2 0
0 1/2 0
0 0 1/2 0 0 1/2 0
/

0 0
0 0
0

0o 0 0 1/2 0 0 0 1/2
/
0

o 0 0 0 1/2 0 0 1/2
1/4 1/4 0 0 1/4 1/4 0

0 0 1/4 0 0 1/4 1/4 1/4
0 0 0 1/4 1/4 0 1/4 1/4

(c) Seven of the eight eigenvalues are strictly less than 1. One is 1.
(d) As n — oo, P™ tends to

1/11 1/11 1/11 1/11 1/11 2/11 2/11 2/11
1/11 1/11 1/11 1/11 1/11 2/11 2/11 2/11
1/11 1/11 1/11 1/11 1/11 2/11 2/11 2/11
1/11 1/11 1/11 1/11 1/11 2/11 2/11 2/11
1/11 1/11 1/11 1/11 1/11 2/11 2/11 2/11
1/11 1/11 1/11 1/11 1/11 2/11 2/11 2/11
1/11 1/11 1/11 1/11 1/11 2/11 2/11 2/11
1/11 1/11 1/11 1/11 1/11 2/11 2/11 2/11

(e) The unique solution to 7P = 7 subject to the constraint that Y m; = 1 is

7= (1/11,1/11,1/11,1/11,1/11,2/11,2/12,2/12).



(f)

Solutions to 7P? = 7 subject to Y . m; = 1 and © > 0 are also unique and are the
same as the previous part.

4. In class we discussed three descriptions of a Poisson process. I want you to empirically
verufy that two of the descriptions are equivalent.

(a)

Write an S program to place a Poisson number of points on a line segment, with
their locations chosen uniformly at random. The function should allow the user to
specify the segment length and the rate of the Poisson process. User this function
to simulate a Poisson process with rate 1 on a segment of length 100. Then,
compute the interarrival times (try something like diff (sort(c(0,x)))). Make
a quantile-quantile plot of these random points versus a random sample of the
same size of random exponential random variables with rate 1 generated using
rexp. See Krause and Olson page 182 for a description of qgplot. If most of the
points fall close to a line, this is evidence they come from the same distribution.

Write an S program to generate a sequence of exponential random variables as
interarrival times of a point process. See how many events fall into the interval
(0,2). Repeat this thousands of times. How do the long-run relative frequencies
compare to a Poisson(2) distribution probabilities? You will use the functions
rexp to generate exponential random variables, cumsum to find the locations of
the point, and dpois to calculate Poisson probabilities.

Solution: One hundred is too small to make the plot straight with high probability. But
10,000 works pretty well. Here is a sample function.

probd4a <- function(lambda=1,tt=100) {

n
X
e

<- rpois(1l,lambda*tt)
<- runif(n)*tt
<- diff(c(0,sort(x)))

qqplot(e,rexp(n))
invisible()

}

For part (b), here is a function that works.

prob4b <- function(lambda=1,tt=2,ntrials=1) {
counts <- rep(0,10%tt/lambda) # create an array to store the counts
for(i in 1:ntrials) {

}

e <- rexp(10*tt/lambda)
while(sum(e)<tt)

e <- c(e,rexp(10*tt/lambda))
n <- sum(cumsum(e)<tt)
counts[n+1] <- counts[n+1]+1



counts

}

In one realization with ntrials=10000, here are the counts compared to the expected
counts from a Poisson(2) distribution. Notice the similarities.
k 0 1 2 3 4 5 6 7

8 9
observed 1310 2694 2694 1816 961 350 134 29 10 2
expected 1353 2707 2707 1804 902 361 120 34 9 2




