Fact Sheet for Final Exam

General solutions of the system of linear differential equations $\dot{X} = CX$ when C is a 2×2 matrix.

case	eigenvalues	eigenvectors	solution
Real distinct eigenvalues	λ_1 and λ_2	$oldsymbol{v_1}$ and $oldsymbol{v_2}$	$X(t) = \alpha_1 e^{\lambda_1 t} \boldsymbol{v}_1 + \alpha_2 e^{\lambda_2 t} \boldsymbol{v}_2$
Complex conjugate eigenvalues	$\sigma \pm i \tau$	$oldsymbol{v}\pm i oldsymbol{w}$	$X(t) = \alpha_1 e^{\sigma t} (\cos(\tau t) \boldsymbol{v} - \sin(\tau t) \boldsymbol{w}) + \alpha_2 e^{\sigma t} (\sin(\tau t) \boldsymbol{v} + \cos(\tau t) \boldsymbol{w})$
Equal eigenvalues, one eigenvector, one generalized eigenvector	λ	$oldsymbol{v},(oldsymbol{w})$	$X(t) = e^{\lambda t} (\alpha_1 \boldsymbol{v} + \alpha_2 (\boldsymbol{w} + t \boldsymbol{v}))$
Equal eigenvalues, two eigenvectors	λ	v_1, v_2	$X(t) = \alpha_1 e^{\lambda t} \boldsymbol{v}_1 + \alpha_2 e^{\lambda t} \boldsymbol{v}_2$

Definition of generalized eigenvector: If C has exactly one linearly independent real eigenvector \boldsymbol{v} with real eigenvalue λ , \boldsymbol{w} is a generalized eigenvector of C if $(C - \lambda I)\boldsymbol{w} = \boldsymbol{v}$.

Solutions to normal forms of linear planar systems:

Equation	Closed form solution	
$\dot{X} = \left(\begin{array}{cc} \lambda_1 & 0\\ 0 & \lambda_2 \end{array}\right) X$	$X(t) = \left(\begin{array}{cc} e^{\lambda_1 t} & 0\\ 0 & e^{\lambda_2 t} \end{array}\right) X_0$	
$\dot{X} = \left(\begin{array}{cc} \sigma & -\tau \\ \tau & \sigma \end{array}\right) X$	$X(t) = e^{\sigma t} \begin{pmatrix} \cos(\tau t) & -\sin(\tau t) \\ \sin(\tau t) & \cos(\tau t) \end{pmatrix} X_0$	
$\dot{X} = \left(\begin{array}{cc} \lambda_1 & 1\\ 0 & \lambda_1 \end{array}\right) X$	$X(t) = e^{\lambda_1 t} \begin{pmatrix} 1 & t \\ 0 & 1 \end{pmatrix} X_0$	

Cookbook for first order ODEs:

Separable: dx/dt = f(t)g(x)

Linear: dx/dt + a(t)x = g(t)

General solution $x(t) = c(t)x_h(t)$ where $x_h(t)$ is the solution to the homogeneous equation and $c'(t) = g(t)/x_h(t)$.

Homogeneous Coefficients: dx/dt = F(x/t)

The substitution v = x/t transforms the equation to dv/dt = (F(v) - v)/t which is separable.

Bernoulli: $dx/dt + a(t)x = g(t)x^p$

The substitution $v = x^{1-p}$ leads to the equation dv/dt + (1-p)a(t)v = (1-p)g(t) which may be solved by another method.

Exact: h(t, x)dx + (-g(t, x))dt = 0

The equation is exact if $-g_x(t,x) = h_t(t,x)$. The solution satisfies F(t,x) = C where $F_x(t,x) = h(t,x)$ and $F_t(t,x) = -g(t,x)$.