Take-home Final Examination

The final examination is worth 200 points with 100 points for a take-home part and 100 points for an in-class part. The take-home part of the final examination is due **Monday**, **May 1 at 8:45 A.M.** when the in-class part begins. You are permitted to consult any textbooks, your own course notes, and any course handouts. You may use MATLAB as part of a solution to any take-home problem. The only people with whom you may discuss the examination are Professors Taylor and Larget.

Problem 1: (20 points)

Show that the set of solutions to the system of linear equations below is a vector subspace of \mathbb{R}^4 . Find a basis for the solution space.

$$x_1 - 2x_3 - 3x_4 = 0$$

$$x_2 - 3x_3 + x_4 = 0$$

$$2x_1 - x_2 - x_3 - 7x_4 = 0$$

Problem 2: (20 points)

A linear mapping $L: \mathbf{R}^3 \to \mathbf{R}^3$ satisfies $L((1,2,3)^t) = (1,1,2)^t$, $L((2,3,1)^t) = (0,1,2)^t$, and $L((3,1,2)^t) = (2,1,-1)^t$.

- (a) Is L uniquely determined by the information above? Justify your response.
- (b) Find a 3×3 matrix A so that L(x) = Ax for all $x \in \mathbb{R}^3$.
- (c) Is L an invertible mapping? Explain fully.
- (d) Is A a change of basis matrix? Explain fully.

Problem 3: (20 points)

Solve the initial value problem $\frac{d^4x}{dt^4} - 3\frac{d^3x}{dt^3} + 4\frac{d^2x}{dt^2} - 12\frac{dx}{dt} = 4t + 3e^t$ where x(0) = 1, x'(0) = 0, x''(0) = -1, and x'''(0) = 0.

Problem 4: (20 points)

Find the general solution to the system of linear equations

$$\frac{dx_1}{dt} = -4x_1 - x_2$$

$$\frac{dx_2}{dt} = 3x_2 + x_3$$

$$\frac{dx_3}{dt} = 18x_1 + 6x_3$$

Problem 5: (20 points)

Consider the matrix $A = \begin{pmatrix} -12 & -3 & -14 \\ -5 & 2 & -8 \\ 12 & 3 & 14 \end{pmatrix}$.

- (a) Find matrices B and S so that $B = S^{-1}AS$ is in real Jordan normal form.
- (b) Find matrices D and T so that $D = T^{-1}AT$ is in Jordan normal form.