Math 340-Problem Solving Seminar, Fall 2001, Problem Set 2

- (1) Starting with any three-digit number n (such as n = 625), we obtain a new number f(n) which is equal to the sum of the three digits of n, their three products in pairs, and the product of all three digits.
 - (a) Find the value of $\frac{n}{f(n)}$ when n = 625. (The answer is an integer!)
 - (b) Find all three-digit numbers n such that the ratio $\frac{n}{f(n)} = 1$.
- (2) The sequence of integers $u_0, u_1, u_2, u_3, \dots$ satisfies $u_0 = 1$ and

$$u_{n+1}u_{n-1} = ku_n$$
 for each $n \ge 1$,

where k is some fixed positive integer. If $u_{2000} = 2000$, determine all possible values of k.

(3) Let a and b be positive integers. Prove that

$$4(a^3 + b^3) \ge (a+b)^3$$

(4) Given any real number $a \neq -1$, the sequence $x_1, x_2, x_3, ...$ is defined by $x_1 = a$ and $x_{n+1} = x_n^2 + x_n$ for all $n \geq 1$.

Let

$$y_n = \frac{1}{(1+x_n)}, \quad S_n = \sum_{i=1}^n y_i, \quad P_n = \prod_{i=1}^n y_i.$$

Prove that

$$aS_n + P_n = 1$$
 for all $n \ge 1$.

(HINT: First show that $P_n = \frac{a}{x_{n+1}}$.)

(5) Given that x is a positive integer, find all solutions of

$$\left[\sqrt[3]{1}\right] + \left[\sqrt[3]{2}\right] + \dots + \left[\sqrt[3]{(x^3 - 1)}\right] = 400.$$

Note: [z] denotes the largest integer $\leq z$.