Math 340-Problem Solving Seminar, Fall 2001, Problem Set 4

- (1) Find all integers a, b, and c for which (x-a)(x-10)+1=(x+b)(x+c) for all x.
- (2) Let A be a positive real number. What are the possible values of $\sum_{j=0}^{\infty} x_j^2$, given that x_0, x_1, \ldots are positive numbers for which $\sum_{j=0}^{\infty} x_j = A$.
- (3) Prove that there exist infinitely many integers n such that n, n+1, n+2 are each the sum of the squares of two integers. (For example, $0 = 0^2 + 0^2$, $1 = 0^2 + 1^2$, $2 = 1^2 + 1^2$.)
- (4) For any two integers m and n with $0 \le m \le n$, numbers d(m, n) are defined by

$$d(n,0) = d(n,n) = 1$$
 for all $n \ge 0$

and

$$m \cdot d(n, m) = m \cdot d(n - 1, m) + (2n - m) \cdot d(n - 1, m - 1)$$
 for $0 < m < n$.

Prove that all of the d(n, m) are integers.