Problem 1: Prime sets. The first n prime numbers $2, 3, 5, \ldots, p_n$ are partitioned into two sets, $A = \{a_1, a_2, \ldots, a_h\}$ and $B = \{b_1, b_2, \ldots, b_k\}$ with h + k = n. The numbers $\{\alpha_i\}$, $i = 1, \ldots, h$ and $\{\beta_j\}$, $j = 1, \ldots, k$ are positive integers. Let

$$x = \prod_{i=1}^h a_i^{\alpha_i}$$
 and $y = \prod_{j=1}^k b_j^{\beta_j}$.

If positive integer d divides evenly into x - y, prove that either d = 1 or $d > p_n$. [BMO 11-2]

Problem 2: Uniform points. A stick of length one is broken at n points where each break point is chosen independently and uniformly at random. Find as a function of n the probability that the longest segment of the stick has length longer than one half. (Hint: First find the probability that the first segment is the longest and its length is greater than one half.) [BRL 2001]

Problem 3: Convex quadrilateral. A convex quadrilatral has angles A, B, C, and D and satisfies

$$\cos A + \cos B + \cos C + \cos D = 0$$

Prove that the quadrilateral must either be cyclic (meaning all four vertices lie on a circle) or trapezoidal (meaning that at least one set of opposite sides are parallel).

Problem 4: 2×2 integer matrices. Suppose that A and B are 2×2 matrices with integer entries. Furthermore, A, A + B, A + 2B, A + 3B, and A + 4B are each invertible and the inverses have integer entries. Show that A + 5B is invertible and the inverse has integer entries as well. [P-1994]