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Abstract

The Bayesian approach to statistics is based on an alternative philosophy that
treats parameters (and anything uncertain) as random. The approach requires a prior
probability distribution for each unknown parameter whose distribution is updated
as a posterior distribution upon receiving more information, as governed by Bayes’
theorem.

1 The Bayesian Approach

In the Bayesian approach to statistics, anything unknown (like the truth of hypotheses or
the values of parameters) is treated as random, and as such, is described by a probability
distribution. The Bayesian philosophical approach to probability is different than that of the
frequentist philosophy (which is central to the methods in the course up to this point). From
the frequentist point of view, parameters are fixed and unknown; hypotheses are true or
false. As these objects are not random, the frequentist says uncertainty about them cannot
be described with probability. The Bayesian point of view is that all uncertainty must be
described by probability.

1.1 Prior and Posterior Distributions, Likelihood

Before seeing data, the prior distribution of an unknown parameter θ is described by a
probability density (or mass function, if discrete) f(θ).1 The Bayesian approach connects
data and parameter through the likelihood function, f(x | θ). Recall that when treating the
parameter θ as fixed, integrating (or summing) over all possible data values x results in a total
one. But the same function where x is fixed as the data and the parameter θ is what varies
is called the likelihood. Parameter values where the likelihood is high are those that have
a high probability of producing the observed data. In the maximum likelihood approach to
statistics, the best estimate of the value θ̂ that maximizes the likelihood (and log-likelihood)
function. All Bayesian inference is based on evaluation of the posterior distribution, which,

1In the description that follows, the symbol f will be used to describe multiple different functions; each is
distinguished by its argument, so f(θ) and f(x) will mean different probability distributions, not the same
function evaluated at two different values.
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by Bayes’ Theorem, is written as

f(θ | x) =
f(x | θ)f(θ)

f(x)

where the only term we have not defined is the marginal likelihood f(x), which is the prob-
ability of observing the data x averaged across the entire parameter space.

f(x) =

∫
f(x | θ)f(θ) dθ

Notice that the posterior density is proportional to the product of the likelihood and the
prior density; the marginal likelihood, which is constant when the data x is observed, is
merely the required constant to normalize the product of the likelihood and prior density
so that when treating the product as a function of θ with x fixed, it integrates to one as is
required for the left-hand-side of the equation to be a proper probability density for θ.

In the Bayesian approach to statistical inference, the best values of θ for explaining the
observed data x are found by combining information from the prior distribution (which
values of θ are probable based on our prior understanding of the setting) and the likelihood
(which values of θ are likely to produce the observed data). Note as well that different
choices of prior distribution can result in different inference from the same data. Critics of
the Bayesian approach to statistical inference focus on the subjective nature of selecting a
prior distribution in the absence of data. Proponents of the Bayesian approach see the direct
probabilistic interpretation of inference to be advantageous and see the selection of a prior
distribution as either a natural way to incorporate true prior information into the inference
process, as a way to specify an individuals subjective prior beliefs, or as a pragmatic concern
where choosing an appropriately vague prior distribution will have very small impact on the
final inference given informative data.

2 Theory for a Single Population Proportion

To make the previous section concrete, consider an example of estimating an unknown popu-
lation parameter p, say the proportion of red balls in an infinitely large population, based on
a sample of n individuals where there are x red balls in the sample. The natural likelihood
function for the setting is the binomial distribution.

f(x | p) =

(
n

x

)
px(1− p)n−x 0 < p < 1

In theory, the prior distribution for p could be discrete or continuous; it can be any
legitimate probability distribution for valid values of p between 0 and 1. For reasons of
mathematical convenience, we will focus on a continuous prior probability distribution called
the Beta distribution which is determined by two parameters α and β and has density f(p)
proportional to pα−1(1− p)β−1. This product needs to be divided by the correct normalizing
constant so that the integral of the probability density is one; namely∫ 1

0

Cpα−1(1− p)β−1 dp = 1

2



so that we can find C by solving this problem.

1

C
=

∫ 1

0

pα−1(1− p)β−1 dp

It is required that α > 0 and β > 0 or the previous integral will not be finite. The integral
on the right-hand-side of the above equation is called the beta function, B(α, β), and has
solution

B(α, β) =

∫ 1

0

pα−1(1− p)β−1 dp =
Γ(α)Γ(β)

Γ(α + β)

where the gamma function, Γ, is defined as

Γ(α) =

∫ ∞
0

tα−1e−t dt

This looks complicated, but is related to things we have seen before. For a positive integer
n, Γ(n) = (n − 1)!, so the gamma function is a continuous interpolation of the factorial
function. The following can be shown by direct mathematical arguments.

Γ(α + 1) = αΓ(α)

Γ(1) = 1

Γ

(
1

2

)
=
√
π

All of this is simply theory to specify a convenient choice of prior density for p, where
p ∼ Beta(α0, β0).

f(p) =

(
Γ(α0 + β0)

Γ(α0)Γ(β0)

)
pα0−1(1− p)β0−1, 0 < p < 1

Conjugate Prior Distribution

Note that both the likelihood f(x | p) and prior density f(p) are constants multiplied by a
function of p of the form p to a power times (1 − p) to a power. The posterior density is
then proportional to the product of likelihood and prior density.

f(p | x) ∝ px(1− p)n−x × pα0−1(1− p)β0−1 = p(x+α0)−1(1− p)(n−x+β0)−1

The posterior density indicates that the posterior distribution of p also has a Beta distribu-
tion, but with α = x+ α0 and β = n− x+ β0. To summarize, if

p ∼ Beta(α0, β0) and

X | p ∼ Binomial(n, p)

then
p | X ∼ Beta(x+ α0, n− x+ β0)

As more data is gathered, the parameter α increases with each success and β increases with
each failure.
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Moments of the Beta Distribution

The first two moments of the beta distribution are:

mean =
α

α + β
and variance =

αβ

(α + β)2(α + β + 1)

Notice that the variance may also be written in this fashion.

variance =

(
α

α + β

)(
β

α + β

)(
1

α + β + 1

)
Notice that the variance gets smaller as the sum α + β increases. When applied to the
posterior distribution, this is

variance =

(
x+ α0

n+ α0 + β0

)(
n− x+ β0

n+ α0 + β0

)(
1

n+ α0 + β0 + 1

)
which, in the case where α0 = β0 = 2 and p̃ = (x+ 2)/(n+ 4) simplifies to

variance =
p̃(1− p̃)
n+ 5

which is very close to the method for confidence intervals for p we studied earlier in the
semester. The only difference is that the denominator is n + 5 rather than n + 4. This
method of inference is quite close in practice to the Bayesian approach for the prior with
α0 = β0 = 2.

3 Pictures

We are likely well past the point where a few pictures to show what is going on would be
helpful! First, here are multiple examples of different prior densities. Note that when α0 and
β0 are each larger than one, the density goes to zero and p = 0 and p = 1 but that it goes to
infinity when α0 < 1 and β0 < 1. When α + 0 = β0 = 1, the distribution is uniform. When
α0 + β0 is larger, the prior distribution is more concentrated. Thus, good choices typically
have α0 + β0 fairly small relative to the sample size so that the likelihood and data will
dominate the posterior distribution.
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Beta(0.5,0.5) Distribution, mean = 0.5, sd = 0.3536
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Beta(1,1) Distribution, mean = 0.5, sd = 0.2887
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Beta(2,2) Distribution, mean = 0.5, sd = 0.2236
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Beta(10,10) Distribution, mean = 0.5, sd = 0.1091
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Beta(100,200) Distribution, mean = 0.3333, sd = 0.0272

4 Inference

Let’s see what happens to the posterior distribution of p as we get new data, beginning with
a uniform prior density.

Before we see data, here is a graph of the posterior distribution.
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Beta(1,1) Distribution, mean = 0.5, sd = 0.2887

Suppose the first draw is a red ball. We now think that p, the proportion of red balls, is
probably bigger than what we saw earlier, given this new data.
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Beta(2,1) Distribution, mean = 0.6667, sd = 0.2357
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A second red ball shifts the distribution even closer to 1. But n = 2 is a small sample
size, so p values near zero are still not too improbable.
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Beta(3,1) Distribution, mean = 0.75, sd = 0.1936

A white ball shifts the distribution back toward 0.
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Beta(3,2) Distribution, mean = 0.6, sd = 0.2

Two more white balls shifts it further.
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Beta(3,4) Distribution, mean = 0.4286, sd = 0.175

Notice that as we get more data, the distribution gets more concentrated (although
slowly) and that the shape is beginning to resemble a normal curve (at least as the number
of red and white balls both increase).

Also note here that the mean of the beta distribution is 3/7
.
= 0.4286. We have seen

2/5 = 0.4 red balls so far, but the posterior density is centered somewhere between 0.4 and
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0.5, which was the mean of the uniform prior density. This is not a coincidence.

Posterior Mean

The posterior mean is

E(p | x) =
x+ α0

n+ α0 + β0

=

(
α0 + β0

n+ α0 + β0

)(
α0

α0 + β0

)
+

(
n

n+ α0 + β0

)(x
n

)
which means that the posterior mean is a weighted average between the prior mean and the
maximum likelihood estimate where the relative weight of the prior distribution is α0 + β0

and the relative weight of the maximum likelihood estimate is n. Hence, one can think of the
sum α0 + β0 as the effective number of observations that the prior distribution is equivalent
to. If this is much smaller than n, then the data will dominate the posterior inference.

Back to Pictures

Let’s jump ahead and add 40 more red balls and 70 more white balls to the sample. Notice
how much more concentrated the posterior density is. After observing 42 red balls and 73
white balls, we have a pretty good idea where p is.
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Beta(43,74) Distribution, mean = 0.3675, sd = 0.0444

Credible Regions

Similar to finding a confidence interval from a bootstrap density by cutting off a fraction of
the distribution on both sides, we can do the same for the Bayesian posterior distribution to
find a credible region. To find a 95% credible region for the data so far, as simply need to
find the 0.025 and 0.975 quantiles of the Beta(43, 74) distribution.

qbeta(c(0.025, 0.975), 43, 74)

## [1] 0.2829 0.4565

Compare this to the standard interval using p̂ = 42/115.
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p.hat = 42/115

se = sqrt(p.hat * (1 - p.hat)/115)

p.hat + 1.96 * c(-se, se)

## [1] 0.2772 0.4532

The confidence interval using p̃ and the Bayesian credible region when α0 = β0 = 2 are
even more similar from the same data.

qbeta(c(0.025, 0.975), 44, 75)

## [1] 0.2856 0.4580

p.tilde = 44/119

se.tilde = sqrt(p.tilde * (1 - p.tilde)/119)

p.tilde + 1.96 * c(-se.tilde, se.tilde)

## [1] 0.2830 0.4565

5 Summary

The Bayesian approach to inference differs from the frequentist approach in that probabilities
are used directly to quantify anything that is uncertain. Parameters are random variables.

The posterior density is proportional to the product of the likelihood and prior density.
For inference about a single population proportion, the Bayesian approach to estimation

is to find the posterior density and then cut off a given percentage on each end to state that
there is, say, a 95% probability that the unknown p is in the given interval.

A confidence interval from the same data will have slightly different end points, but the
practical difference between the two approaches gets small as the sample size increases, at
least if a somewhat vague prior density is used for the Bayesian approach.
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