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Abstract

This document shows some probability examples and R code that goes beyond the scope of
the Lock® textbook.

1 2 x 2 Tables

To illustrate the ideas, we begin with an artificial example where each of a sample of 20 individuals
is characterized by sex and whether or not they have one or more pierced ears. Here is the data in
a table.

Ears
Sex Pierced not Pierced Total
Female 10 2 12
Male 1 7 8
Total 11 9 20

Let pr and pas be the population proportions of individuals with at least one pierced ear
for females and males, respectively, and assume that the 20 indivuals are a random sample from
a population of interest. Here is a hypothesis we can test to assess the evidence that a larger
proportion of females have at least one pierced ear than do males.

Hy:pr =pum
Hy:pr >pu

Earlier, we computed a p-value for this test by taking an array of 11 ones and 9 zeros, sampling
12 of these without replacement, taking the difference in sample proportions of ones for the samples
of size 12 and 8, and seeing what proportion of these were at least as large as the observed difference
10 1
— — = =10.7083
12 8
From this process, we can define X to be the number of individuals in the sample of size 12 with
pierced ears if we were to sample 12 individuals at random from 20 of which 11 have a pierced ear.
In the sample, X = 10. For the data to at least as extreme, X would need to be 10 or larger. The
only outcome with a more extreme difference in proportions would be if X = 11 and of the data
looked like this.



Ears

Sex Pierced not Pierced Total
Female 11 1 12
Male 0 8 8
Total 11 9 20

There are only 11 individuals with pierced ears, so that is the maximum that can be in the first
sample. The minimum is 3 which would happen if all 8 individuals from the sample of 8 had pierced
ears.

The p-value, then, is P (X = 10U X = 11) which is P (X = 10)+P (X = 11) as these two events
are disjoint. One way to think about computing these probabilities is to think about all ways to
choose 12 balls from 20 and to count how many of these ways have 10 (or 11) of the color associated
with pierced ears. Using the binomial coefficient

(1) = o

for the number of ways to choose k items from n, we find the following.

) () 11x36
P =10= (1530()2) 125970
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= 0.0031

The p-value is P (X = 10) + P (X = 11), so we also need to calculate

11\ (9 1 9
P =11)= (l(lf)g()l) N 125270

= 7.1446 x 107°

and their sum
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Summary in context.— There is very strong evidence that the population proportion of people
with at least one pierced ear is higher for females than males (p = 0.0032, 1-sided Fisher’s Exact
Text).

Calculations in R.— Here are severl ways to do this calculation in R. First, using choose ().

choose(11, 10) * choose(9, 2)/choose(20, 12) + choose(11, 11) * choose(9, 1)/choose(20,
12)

## [1] 0.003215

A second way recognizes that X is a hypergeometric random variable with parameters m = 11
ones, n = 9 zeros, and a sample size of k = 12, using dhyper ().

sum(dhyper(10:11, m = 11, n = 9, k = 12))
## [1] 0.003215

A third way uses the fact that P (X > 10) =1—-P (X <9).



1 - phyper(9, m = 11, n = 9, k = 12)
## [1] 0.003215

Finally, there is a builtin function named fisher.test() that takes the data as a matrix and
the direction of the alternative hypothesis refers to the upper left element.

mat = matrix(c(10, 1, 2, 7), nrow = 2, ncol = 2)
mat

#t [,1]1 [,2]
# [1,] 10 2
## [2,] 1 7

fisher.test(mat, alternative = "greater")
##

## Fisher's Exact Test for Count Data
##

## data: mat

## p-value = 0.003215

## alternative hypothesis: true odds ratio is greater than 1
## 95 percent confidence interval:

## 2.634 Inf

## sample estimates:

## odds ratio

## 26.6

1.1 Another Problem

Exercise 11.34 on page 652 categorizes members of the Rock and Roll Hall of Fame on whether or
not the member is a performer or not, and on whether or not the member (individual or group)
has at least one female member or not. Here is the data.

Female No female
members members Total

Performer 32 149 181
Not a performer 9 83 92
Total 41 232 273

The observed proportion of performer members with at least one female member is 32/181 = 0.1768
while the observed proportion of nonperformer members with at least one female member is 9/92 =
0.0978. This data is the entire population, so inference from a sample to a population does not
make sense. But we can ask how unusual it would be to see a difference as large as

32 9 .
R 9% =0.079

when taking random samples without replacement of sizes 181 and 92 from the total. In this
example, it would be much more tedious to compute the probabilities of each outcome at least as
extreme as the real data individually, so we do not.



1 - phyper(31, 41, 232, 181)
## [1] 0.058
sum(dhyper (32:41, 41, 232, 181))

## [1] 0.058

2 Normal Distribution Problems

The density of a normal distribution with mean p and standard deviation o is

] o) = —=e 45

The probability that a normal random variable X is between a and b where —oco < a < b < 400 is

b
[ talmoyas

Using the change of variable

o
it follows that
b (b—p)/o
[ talnot= [ o
a (a—p)/o
where )
0(2) = —e=e 2

is a normal density with 4 = 0 and ¢ = 1 called the standard normal density. Hence, every proba-
bility calculation for an arbitrary normal distribution can be rewritten as an equivalent calculation
for a standard normal distribution.

P(a<X<b):P<“_“<Z<b_“>
ag (o

2.1 Finding Probabilities

Probabilities from normal distributions are computed by finding areas under a normal curve. The
R function pnorm() will tell the area to the left. Here are several examples from a normal curve
with p =500 and o = 100, drawn below.

require(ggplot2)

## Loading required package: ggplot2

ggplot(data.frame(x = c(200, 800)), aes(x = x)) + stat_function(fun = dnorm,
args = list(mean = 500, sd = 100)) + geom_segment(aes(x = 200, xend = 800,
y = 0, yend = 0))



0.004 -

0.003 -

>0.002 -

0.001 -

0.000 -

260 460 660 860
P (X < 400)
pnorm (400, 500, 100)
## [1] 0.1587
P (X > 650)
1 - pnorm(650, 500, 100)
## [1] 0.06681
P (|X — 500| > 150)
pnorm (350, 500, 100) + (1 - pnorm(650, 500, 100))

## [1] 0.1336

2.2 Finding Quantiles
The 0.05 and 0.95 quantiles.

gnorm(c(0.05, 0.95), 500, 100)

## [1] 335.5 664.5

2.3 Finding Coverage Probabilities

Suppose that a sample mean from an independent sample from a large normal population has a
standard error of 20. Then, a 95% confidence interval using the 2 x SE rule covers the true mean
if | X — p| <40, or —40 < X —p < 40. As X — pu ~ N(0,20), we calculate the coverage probability
as



pnorm(40, 0, 20) - pnorm(-40, 0, 20)
## [1] 0.9545
Note this is slightly larger than 0.95, but it also depended on knowing the SE perfectly.

2.4 Power Calculation

Suppose that the standard error of the sample mean is 20 and the distribution is normal; in symbols,
X ~ N(u,20). For the hypotheses Hy: pu = 50 versus H4: u < 50, do the following.

1. Assume Hj is true. For what value c is it true that if X = ¢, the p-value calculated from a
normal distribution will be 0.017

gnorm(0.01, 50, 20)
## [1] 3.473

2. If Hy is true, what is the probability that the p-value is less than 0.017

pnorm(gnorm(0.01, 50, 20), 50, 20)

## [1] 0.01

Or, think it through!
3. If X = 28.7, what is the p-value?

pnorm(28.7, 50, 20)
## [1] 0.1434

4. If p = 44, what is the probability that the p-value will be less than 0.017

pnorm(gnorm(0.01, 50, 20), 44, 20)

## [1] 0.02136

3 Binomial Calculations

The binomial distribution with parameters n and p has probability mass function

p(x) = <n>px(1 —p)" forz=0,1,2,...,n

Here are some sample calculations for a distribution with n = 50 and p = 0.3. Note that dbinom()
computes binomial probabilities at individual outcomes, pbinom() computes the cumulative dis-
tribution function, the sum of probabilities less than or equal to a value, and gbinom() finds
quantiles.



. P(X = 14).

dbinom(14, 50, 0.3)

## [1] 0.1189

. P(X =x)forz=5,...,10.

dbinom(5:10, 50, 0.3)

## [1] 0.0005509 0.0017709 0.0047705 0.0109891 0.0219783 0.0386190
. P(X < 18) two ways.

pbinom(18, 50, 0.3)

## [1] 0.8594

sum(dbinom(0:18, 50, 0.3))

## [1] 0.8594

CP(14< X <18).

pbinom(18, 50, 0.3) - pbinom(13, 50, 0.3)
## [1] 0.5316

sum(dbinom(14:18, 50, 0.3))

## [1] 0.5316

. P(X >20).

1 - pbinom(19, 50, 0.3)

## [1] 0.0848

sum(dbinom(20:50, 50, 0.3))

## [1] 0.0848

. The 0.1 and 0.9 quantiles.



gbinom(c (0.1, 0.9), 50, 0.3)

## [1] 11 19

. A number ¢ so that P (X <¢) > 0.4 and P (X > ¢) > 0.6. (This is the 0.4 quantile.)

gbinom(0.4, 50, 0.3)

## [1] 14

pbinom(gbinom(0.4, 50, 0.3), 50, 0.3)

## [1] 0.4468

1 - pbinom(gbinom(0.4, 50, 0.3) - 1, 50, 0.3)

## [1] 0.6721



