
Chapter 3 R Bootstrap Examples

Bret Larget

February 19, 2014

Abstract

This document shows examples of how to use R to construct bootstrap confidence intervals to
accompany Chapter 3 of the Lock 5 textbook. It also highlights the use of the R package ggplot2
for graphics. A quick introduction to the package boot is included at the end. However, when
learning the bootstrap and the R language, it is useful to learn how to apply the bootstrap “from
scratch” without a package to understand better how R works and to strengthen the conceptual
understanding of the bootstrap.

1 Bootstrap Confidence Intervals with Standard Errors

The textbook describes how to construct a confidence interval for a population parameter by
constructing an interval centered at a point estimate with a margin of error equal to twice the
standard error. Here, we will estimate the size of the standard error by applying the bootstrap
and sampling many samples with replacement from the original sample, each the same size as the
original sample, computing a point estimate for each, and finding the standard deviation of this
distribution of bootstrap statistics.

1.1 Atlanta Commute Times

The data set CommuteAtlanta from the textbook contains variables about a sample of 500
commuters in the Atlanta area.

library(Lock5Data)
data(CommuteAtlanta)
str(CommuteAtlanta)

'data.frame': 500 obs. of 5 variables:
$ City : Factor w/ 1 level "Atlanta": 1 1 1 1 1 1 1 1 1 1 ...
$ Age : int 19 55 48 45 48 43 48 41 47 39 ...
$ Distance: int 10 45 12 4 15 33 15 4 25 1 ...
$ Time : int 15 60 45 10 30 60 45 10 25 15 ...
$ Sex : Factor w/ 2 levels "F","M": 2 2 2 1 1 2 2 1 2 1 ...

These commuters were all part of the US Census Bureau’s American Housing Survey and none
worked from home. You can find more details from the help page of the data set.

1

?CommuteAtlanta

To construct the confidence interval for the mean commute time in Atlanta, we need to find the
point estimate (sample mean) from the original sample.

time.mean = with(CommuteAtlanta, mean(Time))
time.mean

[1] 29.11

To find the standard error, we will create a huge matrix with 1000 rows (one for each bootstrap
sample) and 500 columns (one for each sampled value, to match the original sample size). We
will then use apply() to apply mean() to each row of the matrix. This approach differs from the
example in the author R guide that uses a for loop, but we can show this approach later as well.

First create a large matrix to store all of the samples.

B = 1000
n = nrow(CommuteAtlanta)
boot.samples = matrix(sample(CommuteAtlanta$Time, size = B * n, replace = TRUE),

B, n)

Notice that we used sample() to sample from the values in CommuteAtlanta$Time and we
sampled with replacement (replace=TRUE) to fill all B*n elements in the matrix. Next, the three
arguments to apply() are the object on which parts will applied the function, the number 1 to
indicate the function should be applied to each row (use 2 for columns), and the function name
mean.

boot.statistics = apply(boot.samples, 1, mean)

Graph this with a density plot overlaying a histogram for something different. Here, ggplot()
requires a data frame with the input data, so we use data.frame() to create one with the only
variable of interest.

require(ggplot2)
ggplot(data.frame(meanTime = boot.statistics),aes(x=meanTime)) +
geom_histogram(binwidth=0.25,aes(y=..density..)) +
geom_density(color="red")

2

0.0

0.1

0.2

0.3

0.4

27 29 31
meanTime

de
ns

ity

We see a distribution that is not too asymmetric and is bell-shaped, more or less. The standard
deviation of this distribution is as follows.

time.se = sd(boot.statistics)
time.se

[1] 0.9414

Finally, construct the confidence interval. Here, I round the margin of error up and to one
decimal place so that it has two significant digits, and I am being cautious when rounding not to
make the interval too small.

me = ceiling(10 * 2 * time.se)/10
round(time.mean, 1) + c(-1, 1) * me

[1] 27.2 31.0

Now interpret in context.

We are 95% confident that the mean commute time in Atlanta among commuters who
do not work at home is in the interval from 27.2 to 31 minutes.

The accuracy of this inference depends on the original sample being representative from the popu-
lation of interest. As the US Census Bureau has likely used accurate sampling methods, this seems
reasonable. We could examine the references to gain more understanding about the conditions
associated with the sampling procedure (in what year, in what season, what wording was used to
collect the data).

1.2 Writing a Function

As there were several complicated steps, it would be useful to have a function to do them all so that
in the future, we can source in the function and then just call it. Here is an example function that
takes an argument x which is assumed to be a numerical sample and does the bootstrap B times.
The function will print useful information to the console, make a plot of the bootstrap distribution,

3

and return the bootstrap statistics, the interval, the standard error and the graph all togther as a
list.

Bret Larget

January 10, 2014

A quick bootstrap function for a confidence interval for the mean

x is a single quantitative sample

B is the desired number of bootstrap samples to take

binwidth is passed on to geom_histogram()

boot.mean = function(x,B,binwidth=NULL) {
n = length(x)
boot.samples = matrix(sample(x,size=n*B,replace=TRUE), B, n)
boot.statistics = apply(boot.samples,1,mean)
se = sd(boot.statistics)
require(ggplot2)
if (is.null(binwidth))

binwidth = diff(range(boot.statistics))/30
p = ggplot(data.frame(x=boot.statistics),aes(x=x)) +

geom_histogram(aes(y=..density..),binwidth=binwidth) + geom_density(color="red")
plot(p)
interval = mean(x) + c(-1,1)*2*se
print(interval)
return(list(boot.statistics = boot.statistics, interval=interval, se=se, plot=p))

}

Here is how to use the function for the heights of students in our course.

students = read.csv("students.csv")
out = with(students, boot.mean(Height, B = 1000))

0.0

0.2

0.4

0.6

66 67 68 69 70
x

de
ns

ity

4

[1] 66.90 69.56

out$interval

[1] 66.90 69.56

We would need to be cautious, however, before using this interval to conclude that the mean
height of UW students is between 66.9 and 69.6 inches as the sample of students is not random,
but is a sample of convenience from our class. Here are two possible confounding variables: sex
and country of origin. Is the sex of a student associated with height and with the decision to take
Statistics 302? What about country of origin?

1.3 for loops

The R guide from the authors implements the bootsrap using a for loop. Rather than taking all the
samples at once, the for loop just takes samples one at a time. Usually, R code that uses apply() is
more efficient than code that uses for loops. Try both out for a large number of bootstrap replicates!

n = length(students$Height)
B = 1000
result = rep(NA, B)
for (i in 1:B) {

boot.sample = sample(n, replace = TRUE)
result[i] = mean(students$Height[boot.sample])

}
with(students, mean(Height) + c(-1, 1) * 2 * sd(result))

[1] 66.89 69.58

1.4 Proportions

Consider the problem of estimating the proportion of orange Reese’s pieces. I picked one of the
student samples at random (really!) and chose a student with 11 orange and 19 nonorange candies.
Let’s use the bootstrap to find a 95% confidence interval for the proportion of orange Reese’s pieces.
The simplest thing to do is to represent the sample data as a vector with 11 1s and 19 0s and use
the same machinery as before with the sample mean.

reeses = c(rep(1, 11), rep(0, 19))
reeses.boot = boot.mean(reeses, 1000, binwidth = 1/30)

5

0

1

2

3

4

5

0.2 0.4 0.6
x

de
ns

ity

[1] 0.1947 0.5386

So, based on only this single sample, we are 95% confident that the true proportion of orange
Reese’s pieces is between 0.19 and 0.54. Had we combined all 48 samples together in one big sample,
we could redo the problem. There were a total of 741 orange candies and 699 nonorange ones for
an observed proportion of 0.515.

reeses = c(rep(1, 741), rep(0, 699))
reeses.boot = boot.mean(reeses, 1000, binwidth = 0.005)

0

10

20

30

0.48 0.50 0.52 0.54 0.56
x

de
ns

ity

[1] 0.4888 0.5404

With this much larger sample size, the SE is much smaller and we have a narrower confidence
interval. Anyone else think that the true proportion is 0.5?

6

1.5 Differences in Means

I will use the StudentSurvey data set from the textbook to illustrate using the bootstrap to
estimate differences in means. On interesting variable is Exercise, the number of hours per week
each student exercises.

data(StudentSurvey)
with(StudentSurvey, summary(Exercise))

Min. 1st Qu. Median Mean 3rd Qu. Max. NA's
0.00 5.00 8.00 9.05 12.00 40.00 1

with(StudentSurvey, summary(Gender))

F M
169 193

with(StudentSurvey, by(Exercise, Gender, mean, na.rm = TRUE))

Gender: F
[1] 8.11
--
Gender: M
[1] 9.876

We see from this summary that in the sample, men exercise more hours per week than women.
If we treat this sample of students as randomly chosen from a population of college students, we can
estimate the difference in time spent exercising for each sex. Note that without more information
about the sampling process, any such inference may be prone to bias is the students in the sample
differ substantially from the population.

One student did not report a value for exercise. We will create a new data frame to use that
eliminates this individual. Note the use of the square brackets to take a subset of the rows (and
all of the columns), and the use of !is.na() to find all cases where the Exercise variable was not
missing (NA).

newStudent = with(StudentSurvey, StudentSurvey[!is.na(Exercise),])

Before constructing the confidence interval, here is a graph of the two distributions. I am using
side-by-side boxplots with the actual data points plotted in a layer above, but jittered to avoid
overplotting. I used coord_flip() to make it easier to compare the distributions and because a
short and wide plot fits the page better. I outlined the boxplot in red and used red for the outlier
colors so that these can be distinguished from the plotted data points.

ggplot(newStudent, aes(x=Gender,y=Exercise)) +
geom_boxplot(color="red",outlier.colour="red") +
geom_point(position = position_jitter(h=0,w=0.3)) +
ylab('# of hours exercise per week') +
coord_flip()

7

● ●

●●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
● ●

●

●

●
●

●●

●

●

●

● ●

●

●

●

●

●

●

●
●

●

●

●

●●

●

●

●

●

●

●●

●
●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

● ●

●●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●
●

●

● ●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●
●●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

● ●

●

●●

●

●

●

●

●

●

●

●

●

●
●

●

●●

●
●

●

●

● ●

●

●

● ●

●

●
●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●●

●

●

●

●

●

● ●

●

●
●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●● ●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●●

●

●

●

●
●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
F

M

0 10 20 30 40
of hours exercise per week

G
en

de
r

We use length() to find the sample size of each group. Note that the number of females is
n[1] and the number of males is n[2].

n = with(newStudent, by(Exercise, Gender, length))
n

Gender: F
[1] 168
--
Gender: M
[1] 193

The next block of code creates a matrix for the males and one for the females of samples with
replacement of the same size for each. We then use apply() to fine the mean of each sample and
take the differences (male minus female) to get the distribution of bootstrap statistics. We graph
this to check for symmetry and a bell shape. All looks fine.

B = 1000
female.samples = with(newStudent, matrix(sample(Exercise[Gender == "F"], size = n[1] *

B, replace = TRUE), B, n[1]))
male.samples = with(newStudent, matrix(sample(Exercise[Gender == "M"], size = n[2] *

B, replace = TRUE), B, n[2]))
female.means = apply(female.samples, 1, mean)
male.means = apply(male.samples, 1, mean)
boot.stat = male.means - female.means
ggplot(data.frame(x = boot.stat), aes(x = x)) + geom_density()

8

0.0

0.2

0.4

0.6

0 1 2 3
x

de
ns

ity

To finish, take the point estimate (the difference in sample means) and add and subtract twice
the standard error. After looking at the unrounded version, round to one decimal place for two
significant figures.

xbars = with(newStudent, by(Exercise, Gender, mean))
me = 2 * sd(boot.stat)
(xbars[2] - xbars[1]) + c(-1, 1) * me

[1] 0.5397 2.9914

round((xbars[2] - xbars[1]) + c(-1, 1) * me, 1)

[1] 0.5 3.0

1.6 The boot package

There is a package boot with a function boot() that does the bootstrap for many situations. I
will revisit the Atlanta Commute Times example. The function boot() requires three arguments:
(1) the data from the original sample (a data frame or a matrix or an array); (2) a function to
compute the statistics from the data where the first argument is the data and the second argument
is the indices of the observations in the bootstrap sample; (3) the number of bootstrap replicates.
An example will help you to understand.

library(boot)
data(CommuteAtlanta)
my.mean = function(x, indices) {
return(mean(x[indices]))

}
time.boot = boot(CommuteAtlanta$Time, my.mean, 10000)

Notice that my.mean(CommuteAtlanta$Time,1:length(CommuteAtlanta$Time) computes the
mean of the original sample.

9

The object time.boot is a list with many elements. One is time.boot$t0 which is the sample
mean of the original data. Another is time.boot$t which is the collection of bootstrap statistics
that can be used as above. But the built-in function boot.ci() will calculate bootstrap confidence
intervals using multiple methods.

boot.ci(time.boot)

BOOTSTRAP CONFIDENCE INTERVAL CALCULATIONS
Based on 10000 bootstrap replicates
##
CALL :
boot.ci(boot.out = time.boot)
##
Intervals :
Level Normal Basic
95% (27.28, 30.96) (27.24, 30.92)
##
Level Percentile BCa
95% (27.30, 30.98) (27.40, 31.13)
Calculations and Intervals on Original Scale

Basic uses the estimated standard error. Percentile uses percentiles. BCa also uses percentiles,
but adjusted to account for bias and skewness.

2 Percentile Bootstrap to come . . .

The idea of confidence intervals using percentiles from the bootstrap is to pick the endpoints from
the middle of the bootstrap distribution corresponding to the desired confidence level. Here is an
example using Exercise 3.109.

require(Lock5Data)
data(ImmuneTea)
tea = with(ImmuneTea, InterferonGamma[Drink=="Tea"])
coffee = with(ImmuneTea, InterferonGamma[Drink=="Coffee"])
tea.mean = mean(tea)
coffee.mean = mean(coffee)
tea.n = length(tea)
coffee.n = length(coffee)
B = 100000
create empty arrays for the means of each sample

tea.boot = numeric(B)
coffee.boot = numeric(B)
Use a for loop to take the samples

for (i in 1:B) {
tea.boot[i] = mean(sample(tea,size=tea.n,replace=TRUE))
coffee.boot[i] = mean(sample(coffee,size=coffee.n,replace=TRUE))

}

10

boot.stat = tea.boot - coffee.boot
Find endpoints for 90%, 95%, and 99% bootstrap confidence intervals using percentiles.

quantile(boot.stat,c(0.05,0.95))

5% 95%
4.018 29.764

quantile(boot.stat,c(0.025,0.975))

2.5% 97.5%
1.491 32.045

quantile(boot.stat,c(0.005,0.995))

0.5% 99.5%
-3.745 36.264

11

