Statistics 302, An Accelerated Introduction to Statistics Spring 2014, Larget The following tentative schedule contains a plan of what topics we will present each day in class. As a tentative schedule, it is $subject\ to\ change\ -$ I have selected a pace I expect to be appropriate for an accelerated course; we shall all see if I selected well. ## Tentative Schedule | Date | Topic
Concepts | Methods & Skills | Reading | Exercises | |---------|--|--|-------------|--| | Jan. 22 | Course Overview Introduction to Data | Methods & Skins | Keading | Exercises | | | ▶ cases and variables ▶ categorical and quantitative variables ▶ explanatory and response variables | recognizing parts of a data set; distinguishing between categorical and quantitative variables; when appropriate, distinguishing explanatory and response variables. | Section 1.1 | 1.1, 1.3, 1.5, 1.7,
1.11 | | Jan. 24 | Sampling from a Population ► samples and populations ► statistical inference ► sampling bias ► simple random samples | distinguish between samples and populations recongnize when inference is appropriate identify sources of sampling bias use the computer to take random samples from finite populations | Section 1.2 | 1.27, 1.29, 1.31,
1.35, 1.39, 1.41,
1.45 | | Jan. 27 | Experiments and Observational Studies - association - causation - confounding variables - placebos - blinding - observational studies - randomized experiments - randomized comparative experiments - matched pairs experiments | ▶ association need not imply causation ▶ identify confounding variables ▶ distinguish between observational studies and experiments ▶ distinguish some kinds of experiments ▶ know how to design and implement a randomized experiment | Section 1.3 | 1.65, 1.69, 1.71,
1.75, 1.77, 1.79 | | Jan. 29 | Describing Variables | | | | | | proportions two-way tables shape of a distribution outliers skew symmetry mean median resistance standard deviation the 95% rule z-scores percentiles quartiles empirical cumulative distribution functions range and interquartile range | ▶ graph categorical data ▶ find proportions ▶ use a computer to construct dotplots, histograms, and density plots ▶ calculate medians and means, by hand and with the computer ▶ identify approximate means and medians from histograms ▶ understand how skewness and outliers affect the mean and median ▶ compute a standard deviation with a computer ▶ compute and interpret z-scores ▶ know advantages and disadvantages of different measures of spread | Sections 2.1–2.3 | 2.3, 2.4
2.11, 2.3
2.37, 2.3
2.45, 2.4
2.73, 2.7
2.81, 2.8
2.91 | 3, 2.35,
9, 2.41,
9, 2.69,
5, 2.77, | |---------|--|--|------------------|---|--| | Jan. 31 | Graphing Single Variables ► boxplots ► side-by-side plots | ▶ identify potential outliers ▶ construct and understand boxplots ▶ construct and compare sideby-side plots | Section 2.4 | 2.121,
2.127 | 2.123, | | Feb. 3 | Describing Two Quantitative
Variables | | | | | | Dal. F | scatterplots correlation simple linear regression residuals least squares line slope and intercept of a regression line extrapolation | ▶ use the computer to construct a scatterplot ▶ use the computer to compute a correlation ▶ explain what positive and negative associations mean ▶ recognize that correlation does not imply cause and effect ▶ understand the importance of plotting data ▶ interpret correlation coefficients ▶ use a computer to find a simple linear regression line between two variables ▶ find predicted values ▶ interpret slope and intercept of regression lines ▶ understand residuals | Sections 2.5–2.6 | 2.149,
2.155,
2.161,
2.187 | 2.151,
2.159,
2.163, | | Feb. 5 | Sampling Distributions | | | | | | | parameters and statistics point estimation estimation variability sampling distributions standard error sample size | ▶ distinguish between parameters (fixed in populations) and statistics (change from sample to sample). ▶ use statistics for estimation ▶ understand how sample size affects the sampling distribution | Section 3.1 | 3.1, 3.5, 3.7, 3.9,
3.15, 3.17, 3.19 | |---------|--|---|-------------|---| | Feb. 7 | Understanding Confidence Intervals | | | | | | ▶ margin of error ▶ confidence interval ▶ confidence level | ▶ construct 95% confidence intervals ▶ interpret confidence intervals in context | Section 3.2 | 3.39, 3.41, 3.43,
3.47, 3.49 | | Feb. 10 | Bootstrap Confidence Intervals
Using the SE | | | | | | ▶ bootstrap samples ▶ bootstrap statistic ▶ bootstrap distribution | ▶ understand the mechanics of the bootstrap ▶ use the computer to create a bootstrap distribution ▶ construct confidence intervals using the standard error of the bootstrap distribution | Section 3.3 | 3.65, 3.67, 3.69,
3.73 | | Feb. 12 | Bootstrap Confidence Intervlas
Using Percentiles | | | | | | ▶ percentiles of the bootstrap distribution | mechanics of using the bootstrap percentiles for confidence intervals understand when it is and is not appropriate to use bootstrap percentiles as shown in the text to construct confidence intervals | Section 3.4 | 3.88, 3.89, 3.91,
3.95, 3.97 | | Feb. 14 | Introducing Hypothesis Tests ▶ statistical test ▶ null and alternative hypotheses ▶ statistical significance | know how to specify null and alternative hypotheses. understand the logic behind statistical hypothesis testing understand statistical significance | Section 4.1 | 4.1, 4.3, 4.7, 4.9,
4.13, 4.15 | | Feb. 17 | P-Values | | | | | | ▶ p-values▶ null (randomization) distribution | ▶ correct interpretation of a p-value ▶ estimate a p-value from a randomization distribution ▶ distinguish between one- and two-tailed tests | Section 4.2 | 4.41, 4.45, 4.47,
4.51 | |---------|---|---|-------------------------------------|--| | Feb. 19 | Statistical Significance | | | | | | ▶ statistical decisions ▶ significance level ▶ type I and type II errors | ▶ understand mechanics of statistical decisions in hypothesis testing ▶ understand conclusions from hypothesis testing ▶ know how to interpret type I and type II errors ▶ understand limitations the hypothesis testing framework | Section 4.3 | 4.67, 4.69, 4.71,
4.73, 4.75 | | Feb. 21 | Randomization Distributions | | ~ | | | | ▶ randomization distributions | ▶ use the computer to create randomization distributions in multiple settings. | Section 4.4 | 4.107, 4.110,
4.113, 4.116,
4.117, 4.121 | | Feb. 24 | Connections between Confidence
Intervals and Hypothesis Tests | | | | | | ▶ confidence interval interpretation as nonsignificant null means ▶ practical importance versus statistical significance. ▶ the issue of multiple testing | ▶ determine testing decisions from a confidence interval | Section 4.5 | 4.147, 4.149,
4.151 | | Feb. 26 | Review Day | | TT 1: 1 | | | | | | Unit A and
Unit B Syn-
theses | _ | | Feb. 28 | Exam 1 | | _ | _ | | Mar. 3 | Normal Distributions | | G 5.1 | | | | ▶ density curves ▶ normal density curves ▶ mean and standard deviation of normal distributions ▶ the standard normal distribution | ▶ finding areas under normal distributions ▶ estimate probabilities as areas under densities ▶ find quantiles for normal distributions using the computer | Section 5.1 | 5.1, 5.3, 5.4, 5.5,
5.7, 5.9,5.11,
5.13, 5.15, 5.17,
5.19, 5.23, 5.27 | | Mar. 5 | Inference Using Normal Distributions | | | | | ▶ the central limit theorem ▶ confidence intervals using normal distributions ▶ hypothesis tests using normal distributions | ► find confidence intervals and p-values with normal theory | Section 5.2 | 5.43, 5.45
5.51, 5.53, | | |--|---|--------------|-------------------------------------|----------------------------| | Mar. 7 Probability Rules | | | | | | ▶ probability ▶ equally likely outcomes ▶ conditional probability ▶ basic probability rules ▶ independence ▶ disjoint events | ▶ calculating probabilities with equally likely outcomes ▶ calculating probabilities for combinations of events using and, or, not, and if. ▶ recognizing events that are independent or disjoint | Section 11.1 | 11.1–11.7,
11.21,
11.26 | 11.15,
11.23, | | Mar. 10 Bayes' Rule | | | | | | ▶ tree diagrams▶ total probability▶ Bayes' rule | ▶ know how to use Bayes' rule
with or without a tree diagram
for flipped conditional proba-
bility calculations | Section 11.2 | 11.45,
11.51,
11.55 | 11.49,
11.53, | | Mar. 12 Random Variables | | <u> </u> | | | | ▶ discrete and continuous random variables ▶ discrete probability distributions ▶ mean of a probability distribution ▶ standard deviation of a probability distribution | ▶ complete an incomplete discrete distribution ▶ find mean and standard deviation of a discrete distribution ▶ know in principle how to find mean and standard deviation from a continuous distribution | Section 11.3 | 11.65,
11.69,
11.73,
11.81 | 11.67,
11.71,
11.77, | | Mar. 14 Binomial Probabilities | | G | 44.05 | 11.00 | | ▶ The binomial setting ▶ parameters of binomial distributions ▶ formula for a binomial probability ▶ mean and standard deviation | ▶ identify when a random variable is binomial ▶ compute binomial probabilities by formula and computer ▶ compute mean and standard deviation of a binomial distri- | Section 11.4 | 11.97,
11.107,
11.113 | 11.99,
11.111, | | of a binomial distribution | bution | | | | | of a binomial distribution Mar. 24 Probability Theory for a Sample Proportion | bution | | | | | Mar. 24 Probability Theory for a Sample | bution ▶ set up problems about a sample proportion | Section 6.1 | 6.1, 6.5 | | | | ▶ confidence intervals for a population proportion ▶ sample size determination ▶ hypothesis tests for a population proportion | ▶ find confidence intervals for p with normal approximation ▶ find sample size to achieve a specified margin of error ▶ find a p-value using a normal approximation and a computer for an exact calculation | Sections
6.2–6.3 | 6.27, 6.33, 6.57,
6.61 | |---------|--|---|---------------------|---| | Mar. 28 | Probability Theory for a Sample Mean ► standard error for a sample mean ► central limit theorem ► t distributions | ► find areas and quantiles of t distributions | Section 6.4 | 6.73, 6.77, 6.79 | | Mar. 31 | Inference for a Single Mean ➤ confidence intervals for a population mean ➤ sample size determination ➤ t test for a population mean | ▶ find the appropriate t distribution ▶ find a sample size for a specified margin of error and confidence ▶ conduct a t test | Sections
6.5–6.6 | 6.106, 6.109,
6.113, 6.135,
6.139 | | Apr. 2 | Probability Theory for Differences in Sample Proportions ▶ central limit theorem | Recognize when problem is a difference in population proportions Recognize when normal approximation is okay | Section 6.7 | 6.153, 6.157 | | Apr. 4 | Inference for Differences in Proportions ▶ confidence intervals for differences in proportions ▶ hypothesis tests for differences in proportions | ▶ use normal approximations for
confidence intervals and test-
ing | Sections
6.8–6.9 | 6.171, 6.173,
6.189, 6.193 | | Apr. 7 | Probability Theory for Differences in Sample Means ▶ central limit theorem | ► Recognize when a t distribution is appropriate | Section 6.10 | 6.211, 6.213,
6.215, 6.217 | | Apr. 9 | Inference for Differences in Means | | | | | | ▶ confidence intervals for differences in population means ▶ hypothesis testing for differences in population means | know how to use t distribution for inference between two populations and know when it is appropriate distinguish between independent samples and matched difference samples | Sections 6.11–6.13 | 6.229, 6.251,
6.253, 6.279,
6.281 | |---------|--|--|----------------------------|--| | Apr. 11 | Review | | | | | | | | Unit C Essential Synthesis | _ | | Apr. 14 | Exam 2 | | | | | Apr. 16 | Testing a Single Categorical Variable | | _ | | | | ▶ expected counts ▶ the chi-square statistic ▶ randomization goodness-of-fit test ▶ chi-square distributions ▶ chi-square goodness-of-fit test ▶ comparison to proportions for two categories | ▶ hypothesis testing and estimation for a single categorical variable | Section 7.1 | 7.1, 7.3, 7.7, 7.11 | | Apr. 18 | Testing an Association Between
Two Categorical Variables | | | | | | ▶ expected counts in two-way tables▶ chi-square test for association | ► testing an association in a two-
way table by multiple methods | Section 7.2 | 7.31, 7.33 | | Apr. 21 | Analysis of Variance ► total, among group, and within group variability ► the F statistic ► F distributions ► ANOVA table ► inference about differences in group means | ▶ use ANOVA to test for differences in group means | Section 8.1–
8.2 | 8.1, 8.3, 8.5, 8.9,
8.13, 8.33, 8.36,
8.39, 8.43 | | Apr. 23 | Inference for Regression | | | | | | linear model inference for slope and intercept coefficient of determination | interpret R² use a computer to fit a linear model check for departures from model assumptions | Section 9.1 | 9.3, 9.7, 9.9, 9.13 | | Apr. 25 | ANOVA for Regression | | Q | 0.00.000.000 | | | partitioning variabilityANOVA for regression | ► inference for simple linear regression | Section 9.2 | 9.29, 9.33, 9.39 | | Apr. 28 | Confidence and Prediction Intervals | | | | |---------|--|--|----------------------------|------| | | ▶ regression confidence intervals ▶ regression prediction intervals ▶ inference for estimation intervals | ▶ use the computer for confidence and prediction intervals | Section 9.3 | 9.57 | | Apr. 30 | Review | | | | | | | | Unit D essential synthesis | _ | | May 2 | Exam 3 | | | | | | | | _ | | | May 5 | Introduction to Bayesian Inference | | | | | | | | Course | _ | | | | | notes | | | May 7 | Bayesian Inference for Proportions | | | | | | | | _ | | | May 9 | Bayesian Inference for Means | | | | | | | | _ | | | May 12 | Final Exam, 5:05–7:05pm | | | | | | | | | |