R for Introductory Statistics

Bret Larget

September 25, 2002

The aim of this document is to help you, an undergraduate student in an introductory statistics course, learn
to use the software R as part of your learning of statistics. If you find that it reads like the rough draft of
something that could be more useful and better written, that is because it is a rough draft that could be
more useful and better written. This document will evolve on a weekly basis as the semester progresses. I
will add new material as we cover it in class and edit old material based on feedback from you to make it
clearer for you and future students. I suggest that you do not print new versions but merely replace your
electronic copy from time to time. Good luck as you begin your quest to master introductory statistical
concepts and their application!

1 What is R?

R is powerful software for interacting with data. With R you can create sophisticated graphs, you can
carryout statistical analyses, and you can create and run simulations. R is also a programming language
with an extensive set of built-in functions, so you can, with some experience, extend the language and write
your own code to build your own statistical tools. Advanced users can even incorporate functions written in
other languages, such as C, C++, and Fortran.

The S language has been around for more than twenty years and has been the most widely-used statistical
software in departments of statistics for most of that time, first as S and then as the commercially available
S-PLUS. R is an open source implementation of the S language that is now a viable alternative to S-PLUS,
and in fact, has many advantages. A core team of statisticians and many other contributors work to update
and improve R and to make versions that run well under all of the most popular operating systems. Most
importantly to you, R is free, high-quality statistical software that will be useful as you learn statistics even
though it is also a first-rate tool for professional statisticians.

Why use R for introductory statistics?

There are several reasons that make R an excellent choice of statistical software for an introductory statistical
course. First, R is free and available on the Web. You can use it on your home computers and are not tied
to campus labs. Second, R is powerful, widely-used software. The knowledge of R you gain during the
course potentially translates to a marketable skill. You will learn to use a tool that has many practical uses
outside the classroom. Third, even though it is not the simplest statistical software, the basics are easy
enough to master that learning to use R need not interfere overly much with learning the statistical concepts
encountered in an introductory course. Fourth, did I mention that it is free and you can use it at home?

The primary drawback to using R in an introductory course is that most existing documentation for R

is written for an audience that is knowledgable about statistics and has experience with other statistical
computing programs. In contrast, this document intends to make R accessible to the typical student in an
introductory statistics course who is new to both statistical concepts and statistical computing. The aim is to
teach you how to install R on your home computer and to teach you to use R to learn the statistical concepts
usually included in an introductory course with explanations and examples aimed at the appropriate level.
This document purposely does not attempt to teach you about R’s advanced features. The intention is to
teach you enough R to enhance your learning of introductory statistics and to point you in the direction of
more information should you find a desire to learn more.

2 Installing R

Installing R on your computer is simple if you have clear directions you can find that tell you exactly what to
do in a way that is easy to understand. Directions exist at the R website (http://cran.r-project.org/)
for installing R, but many students may have difficulty determining which files they need to download and
then how to install them. Here are more explicit instructions that tell you what to do.

Obtaining the software

There are two options for installing the software: downloading it from the Web or installing from a prepared
CD. If you have a fast Internet connection (a direct campus connection, cable modem, or DSL), I recommend
that you download the software. If you have no Internet connection or are limited to a regular modem I
recommend that you borrow a CD from me. In either case, there is only one file that you need to obtain
(different depending on the operating system). Running this file begins the installation process which is
straight-forward.

Downloading R from the Web

Go the R homepage at http://cran.us.r-project.org/.

Windows (95 or later) Click on the link Windows (95 and later), then click on the link base/, and
finally click on SetupR.exe which begins the download. After the download is complete, double click on the
downloaded file and follow the on screen installation instructions.

Macintosh Click on the link MacOS (System 8.6 to 9.1 and Mac0S X), then click on the link base/,
and finally click on rm151.sit which begins the download. After the download is complete, double click on
the downloaded file and follow the on screen installation instructions.

Loading R from a CD

Insert the CD into the drive, open the CD (from My Computer in Windows) and double click on the
SetupR.exe icon to begin installation. Follow the on screen installation instructions.

3 A First Session with R

Starting and Quitting

Because most students in the course are running R under Windows, these instructions will assume that you
are using the Windows version. (Apologies to the few Mac users.) I actually run R most often under Linux.
If you notice differences in what I write and how R actually performs under Windows, please let me know.

Begin R by double clicking on the shortcut (if you added a shortcut to your Desktop) or from the Start
button followed by the Program menu. R will open with a command window with a prompt > that awaits
your first command. R is a command line program. You interact with the software by typing in commands
which the program then interprets and acts on.

When you are done with your R session, you can quit from the File menu or by typing q() in the command
window at the prompt >.

Several Examples

Here is a demonstration of several functions you will use frequently. A later section will provide more details.
In these examples I will look at a data set from the textbook Statistics for the Life Sciences, second edition,
by Samuels and Witmer. The data set consists of measurements of glucose concentration in the anterior
chamber of the right eye of 31 dogs, measured for each dog as a percentage of the serum glucose concentration
(page 31, problem 2.9). At this point we are not doing any statistical thinking, but are merely learning the
nuts and bolts of using R.

Entering data as a vector The easiest way to enter small data sets is with the function c that concatenates
numbers (or vectors) together. For example, we could create an object named ‘glucose’ containing the 31
measures as follows.

R> glucose <- c(81, 85, 93, 93, 99, 76, 75, 84, 78, 84, 81, 82,
+ 89, 81, 96, 82, 74, 70, 84, 86, 80, 70, 131, 75, 88, 102,
+ 115, 89, 82, 79, 106)

The symbol ‘<-’; a less than sign followed immediately without a space by a hyphen, looks like an arrow.
It is the assignment operator and creates an object with the name on the left of the <= whose value is the
evaluation of the remainder of the command.

You do not need to type in the ‘4’ symbols, which are prompts that indicates R is waiting for a command
to be completed. This command was so long it did not fit onto a single line, so R wrapped to the following
line. You may also press [Enter] to continue a command on the next line.

Warning—if you type a ‘(" and then do not complete the command by typing a ¢)’, R will continue to wait
for the command to be completed and show a string of ‘+’ prompts even if you continue to press [Enter]. If
you get in trouble, you can press [Escl, the Escape key to break back to a regular prompt.

Alternatively, you can enter data into R by first creating a text file and then reading in the data. This is
especially useful for larger data sets or when there are more than one variable. A later section will explain
how to do this.

Let’s use R to create a histogram, using the command hist.

R> hist(glucose)

Histogram of glucose

<
—
o _|
> —
=
o ® 7
>
g ©
L
<t —
N_
o 1] []
| | | | | | | |
70 80 90 100 110 120 130 140
glucose

Here is a stem-and-leaf diagram.

R> stem(glucose)

The decimal point is 1 digit(s) to the right of the |

7 | 00455689
8 | 011122244456899
9 | 3369

10 | 26

11 1 5

12 |

1311

To calculate measures of center, use the functions mean and median.

R> mean(glucose)

[1] 86.7742

R> median(glucose)

[1] 84

The quantile function computes the five number summary, minimum, first quartile, median, third quartile,
maximum, by default.

R> quantile(glucose)

0% 25% 50% 75% 100%
70.0 79.5 84.0 91.0 131.0

The five number summary may be shown graphically as a modified boxplot.

R> boxplot(glucose)

Q| 3
i
o o
H pa—
— _—
1
] |
1
O 1
S -
o _|
© i
1
o _| R T
I~

Boxplots show less information than histograms. Their true utility is for making comparisons between
different distributions. Here is an example from Samuels and Witmer, pages 22-24.

R> growthDark <- c(15, 20, 11, 30, 33, 22, 37, 20, 29, 35, 8, 10,

+ 15, 25)
R> growthLight <- c(10, 15, 22, 25, 9, 15, 4, 11, 20, 21, 27, 20,
+ 10, 20)

R> boxplot(list(dark = growthDark, light = growthLight))

4 Some R Nuts and Bolts

New users of complex software typically learn what they need to know to do what they need to do and try
not to learn anything extra until they need to. A complex program like R is like a big black box with many
complicated buttons and dials to control its operation. For new users especially, most of the details of the
box can (and should) remain hidden. The program can work well enough for simple tasks with just a few
learned commands More advanced users will invariably need to learn and understand more of what happens
in the box and will want to master more ways to control its operation, but even highly advanced users
are often content to leave details unexamined. (Do I need to know the algorithm for finding the median?
Probably not. I am content to trust that it works.)

Getting Help

The first place to look for more information than this document provides is the documentation distributed
with the software. You can access the help by typing the command help.start (). In addition, the Windows
version has a Help menu. From this you can find several choices of manuals, all of which the typical
introductory statistics student may find intimidating, and a mechanism to search for help on a specific topic.
As you become a more experienced user, this source of help will become more accessible and useful. You
can get help on a specific function by typing ?function-name at the prompt. For example, Thist provides
many more details on how to use hist using all of its available options.

Generally speaking, the guiding principle in creating this introduction to R is to show you only what you
need to know to use R effectively as part of an introductory statistics course and no more. For example, the
documentation on using hist contained here is far less complete than the distributed documentation but
should be highly accessible to introductory statistics students.

However, at times, I will violate to this principle and include material that is extraneous, with the judgment
that the material might be helpful to some students.

Objects in R

In R, everything is an object. For your purposes, you can classify the objects in R as functions and non-
functions.

There are two types of commands that R understands. If you type in the name of an object, R will print
(display) the object. If you type in a function call, R will execute the function and (depending on the
function), print results. (The third type of command you will type in is an expression with poor syntax that
R cannot parse and understand. When you do this, R will print an error message.)

What can be confusing to beginners is that functions themseleves are objects. Function calls are indicated
with parentheses that can contain input. Typing a function name without parentheses displays the function,
but does not execute it. For example the function q will quit the program if executed. To actually quit, you
would type q(). Typing q shows the function that quits the program, but does not quit.

R> q

function (save = "default", status = 0, runLast = TRUE)
.Internal(quit(save, status, runlast))

The q function does little more than call an internal function. Other functions are small programs written
in R (more technically, the S language). For example, median is a small R program. When you become a
more advanced user of R you will want to learn to write your own small programs.

5 Getting Help

There is complete on-line documentation of R that this section does not attempt to reproduce. To open the
help page for a particular function, type a ‘7’ before the name of the function name. For example, to get
help about the function hist, you would typing ?hist after the prompt. You may also use the Help menu
and search for keywords.

6 Elementary Exploratory Data Analysis of One Variable

This section provides several examples of using R functions to graph a single variable and explains how to
use some of the parameters associated with these functions to modify the results.

Histograms The hist function produces histograms. The example we looked at previously plotted the
variable glucose. By default, there were seven classes, each of width ten, ranging from 70 to 140. If we
wanted to specify a different number of classes, say 14, we could have typed this.

R> hist(glucose, breaks = 14)

Histogram of glucose

o _
—
w pa—
>
2 o© -
(]
>
(o
ICH
LL
N pa—
o - | [|
| | | | | | |
70 80 90 100 110 120 130
glucose

If we wished to manually set breaks to begin at 60, end at 140, and have widths of 8, while shading in the
bars red (color 2), we could have done this.

R> hist(glucose, breaks = seq(60, 140, by = 8), col = 2)

Histogram of glucose

8 10 12
l

Frequency
6
|

< —
N —
o |
| | | | |
60 80 100 120 140
glucose

The values of main, x1ab, and ylab may be set to change the main title or the labels on the x and y axes.
You may also set unequal class widths. R will correctly scale the heights so the areas are proportional and
relative frequencies are equal to density times class width. You may set the range of the axes with x1im and

ylim.

R> hist(glucose, breaks = c(70, 80, 90, 100, 140), xlab = "Eye Glucose (percentage relative to blood)",
+ main = "Samuels and Witmer, Exercise 2.9", ylim = c(0, 0.05))

Samuels and Witmer, Exercise 2.9

<
O__
o
> —
=
)
S o
&) O
o
S |
o
o | | | | | | | |

70 80 90 100 110 120 130 140

Eye Glucose (percentage relative to blood)

Stem-and-Leaf Diagrams The function stem produces stem-and-leaf diagrams. By default, the function
may not round or split stems as you might like. In fact, sometimes the default behavior is to combine two
stems to one and to place the leaves of both stems on the same row. Consider this example, the total amount
of time each of twenty fruit flies spent preening (in seconds) during a six-minute of observation period.

R> preen <- c(34, 24, 10, 16, 52, 76, 33, 31, 46, 24, 18, 26, 57,
+ 32, 25, 48, 22, 48, 29, 19)
R> stem(preen)

The decimal point is 1 digit(s) to the right of the |

0 | 0689

2 | 2445691234
4 | 68827

6 | 6

The stem-and-leaf diagram is misleading. The middle two stems are clear enough; for example, values range
from 22 to 29 and then 31 to 34 in the ‘2’ stem. However, it appears that the maximum value is 66, when,
in fact, it is 76. Similarly, it is unclear as to whether the 0 stem shos values in the single digits, teens, or
both. We can get around this behavior by using the scale parameter. Setting scale=2 should double the

number of stems.

R> stem(preen, scale = 2)

The decimal point is 1 digit(s) to the right of the |

1 | 0689

2 | 244569
3 | 1234
4 | 688

5 | 27

6 |

716

Boxplots Boxplots are constructed using the boxplot function. If the argument is one vector, a single
boxplot will be drawn. Parallel boxplots may be drawn by providing a list of variables, either directly using
the 1list function or as the output of the split function which partitions one variable according to the
categories of a second (categorical) variable. Here is a boxplot of the preening times from the previous
example with the box shaded green.

R> boxplot(preen, col = 3)

70

50

30

Samuels and Witmer Exercise 2.26 presents self-reported numbers of hours of exercise per week given by 25
college students, 12 men and 13 women. Here is one way to read in the data and make parallel boxplots.

R> male <- c¢(6, 0, 2, 1, 2, 4.5, 8, 3, 17, 4.5, 4, 5)
R> female <- c¢(5, 13, 3, 2, 6, 14, 3, 1, 1.5, 1.5, 3, 8, 4)
R> boxplot(list(male = male, female = female))

10

o
0 _|
—
o
o
o _|
—
- -
]]
1
Lr) p—
] e E—
o — R I
| |
male female

The functions read.table and split would be useful to create parallel boxplots if the data were read in
from a file. The function data.frame could also be used to create a “data frame” or matrix of the two
variables.

For example, you could create a text file ex2-26.txt with the values of the two variables like this.

hours sex

6 male
0 male
2 male
5 male
5 female
13 female
3 female
4 female

Here is how to read it and create a data frame x.

R> x <- read.table("ex2-26.txt", header = TRUE)

11

Alternatively, you could create the data frame using the variables entered before. The function rep repeats
a value a specified number of times.

R> hours <- c(male, female)
R> sex <- c(rep("male", 12), rep("female", 13))
R> x <- data.frame(hours = hours, sex = sex)

Finally, make the parallel boxplots. The attach function adds the names of the variables to the search path.

R> attach(x)
R> boxplot(split(hours, sex))

Quantitative Summaries R is also useful for numerical summaries of variables. The functions mean
and median compute the mean and median, respectively. The function fivenum may be used to find the
five-number summary, the minimum, first quartile, median, third quartile, and maximum. The standard
deviation may be computed with sd. Here are examples of their use with the preening time data.

R> mean (preen)

[1] 33.5

R> sd(preen)

[1] 16.31435

R> median(preen)

[1] 30

R> max(preen)

(1] 76

R> min(preen)

[1] 10

R> fivenum(preen)

[1] 10 23 30 47 76

12

Using R to make Simple Calculations Here are several examples of using R to do simple calculations.

]

The colon operator ‘:’ creates a sequence from one integer to another. The bracket operators ‘[’ and ‘]’ are
used to take a subset of a variable. Functions such as sum and length do obvious things.

Sum the numbers from 1 to 10.

R> sum(1:10)

[1] 55

Find the interquartile range of the preening-time data set. Determine the lower and upper fence values.

R> fnum <- fivenum(preen)
R> igr <- fnum([4] - fnum[2]
R> igr

[1] 24

R> fnum[2] - 1.5 * iqr

[1] -13

R> fnum[4] + 1.5 * igr

[1] 83

Count the number of observations within one, two, and three standard deviations of the mean for the
preening-time data and then report these as percentages. A statement with ‘<’ or ‘>’ returns true or false
for each position of an array while ‘&’ means ‘and’ applied at each position of a vector. A sum of a vector of
‘T” and ‘F’ counts the number that are true.

R> m <- mean(preen)
R> s <- sd(preen)
R> sum((m - s < preen) & (preen < m + s))

[1] 15

R> round((sum((m - s < preen) & (preen < m + s))/length(preen) *
+ 100))

(11 75

R> sum((m - 2 * s < preen) & (preen < m + 2 * s))

13

(1] 19

R> round((sum((m - 2 * s < preen) & (preen < m + 2 * s))/length(preen) *
+ 100))

[1] 95
R> sum((m - 3 * s < preen) & (preen < m + 3 * s))
[1] 20

R> round((sum((m - 3 * s < preen) & (preen < m + 3 * s))/length(preen) *
+ 100))

[1] 100

7 Probability Distributions

R has a number of built in functions for calculations involving probability distributions, both discrete and
continuous. In introductory statistics courses, the binomial and normal distributions are normally introduced
early in the semester. Occasionally the Poisson distribution makes an appearance. When the topic changes
to statistical inference, the t, chi-square, and F distributions become important.

For each of these distributions (and others), R has four primary functions. Each function has a one letter
prefix followed by the root name of the function. The names make mnemonic sense for continuous random
variables but are used in both cases. For example dnorm is the height of the density of a normal curve
while dbinom returns the probability of an outcome of a binomial distribution. Here is the complete list:
‘d’ represents ‘density’ for continuous random varaibles or ‘probability mass function’ for discrete random
variables; ‘p’ represents ‘probability’ and returns the cumulative distribution function value in each case; ‘q’
represents ‘quantile’ and is the inverse of the corresponding ‘p’ function; while ‘r’ can be used to generate a
‘random’ sample from a distribution. Below, I will include home-brewed functions with prefix ‘g’ that are
useful for graphing the distributions.

Binomial Distribution The binomial distribution is applicable for counting the number of outcomes of
a given type from a prespecified number n independent trials, each with two possible outcomes, and the
same probability of the outcome of interest, p. The distribution is completely determined by n and p. The
probability mass function is defined as:

Pr{Y = j} = (”j)ju —p)

(") s

is called a binomial coefficient. (Some textbooks use the notation ,C; instead.) In R, the function dbi-
nom returns this probability. There are three required arguments: the value(s) for which to compute the
probability (7), the number of trials (n), and the success probability for each trial (p).

where

14

For example, here we find the complete distribution when n =5 and p = 0.1.

R> dbinom(0:5, 5, 0.1)

[1] 0.59049 0.32805 0.07290 0.00810 0.00045 0.00001

If we want to find the single probability of exactly 10 successes in 100 trials with p = 0.1, we do this.

R> dbinom(10, 100, 0.1)

[1] 0.1318653

The function pbinom is useful for summing consecutive binomial probabilities. With n = 5 and p = 0.1, here
are some example calcuations.

Pr{Y <2} = pbinom(2,5,0.1) = 0.99144
Pr{Y >3} = 1-Pr{Y <2} =1- pbinom(2,5,0.1) = 0.00856
Pr{l1 <Y <3} = Pr{V <3} —Pr{Y <0} = pbinom(3,5,0.1) — pbinom(0,5,0.1) = 0.40905

Normal Distribution Normal distributions have symmetric, bell-shaped density curves that are described
by two parameters: the mean p and the standard deviation o. The two points of a normal density curve that
are the steepest—at the “shoulders” of the curve— are precisely one standard deviation above and below the
mean.

Heights of individual corn plants may be modeled as normally distributed with a mean of 145 cm and a
standard deviation of 22 cm (Samuels and Witmer, page 148, exercise 4.24). Here are several example
normal calculations using R.

Find the proportion of plants:
... larger than 100cm;

R> 1 - pnorm(100, 145, 22)

[1] 0.979595

... between 120cm and 150cm:

R> pnorm(150, 145, 22) - pnorm(120, 145, 22)

[1] 0.461992

... 150cm or less:

R> pnorm(150, 145, 22)

15

[1] 0.5898942

Find the 75th percentile.

R> qnorm(0.75, 145, 22)

[1] 159.8388

Find the 99th percentile.

R> qnorm(0.99, 145, 22)

[1] 196.1797

Find the endpoints of middle 95% of the distribution.

R> gnorm(c(0.025, 0.975), 145, 22)

[1] 101.8808 188.1192

16

