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Two approaches for dealing with the problem of poor coverage prob- 
abilities of certain standard confidence intervals are proposed. The first 
is a recommendation that the actual coverage be estimated directly from 
the data and its value reported in addition to the nominal level. This is 
achieved through a combination of computer simulation and density 
estimation. The asymptotic validity of the procedure is proved for a 
number of common situations. A classical example is the nonparametric 
estimation of the variance of a population using the normal-theory in- 
terval. Here it is shown that the estimated coverage probability consis- 
tently estimates the true coverage probability if the population distri- 
bution possesses a finite sixth moment. 

The second approach is more traditional. It is a procedure for modi- 
fying an interval to yield improved coverage properties. Given a confi- 
dence interval, its estimated coverage probability obtained in the first 
approach is used to alter the nominal level of the interval. The interval 
with this modified nominal level is called a calibrated interval. In the 
case that the given interval is the normal-theory interval for the esti- 
mation of variance, the calibrated interval is proved to be asymptotically 
robust as long as sixth moments exist. As another application, the method 
is used to modify a bootstrap interval procedure for variance estimation. 
This leads to the derivation of a new bootstrap interval. 
KEY WORDS: Bootstrap; Confidence level; Interval estimation; Kernel 
density estimation. 

1. INTRODUCTION 

Let 0 = 0(F) be a functional of a distribution F, and 
let I, be a nominal lOOy% confidence interval (CI) for 0 
based on a sample of size n. The word "nominal" indicates 
that the true coverage probability, Yn say, of In may not 
be exactly y. Usually, though, there is a class of F for 
which y is a good approximation to Yn, in the sense that 
Yn - y 0 as n -* oo. For example, if 0 is the mean of F 
and In the normal-theory t interval, it is well known that 
Yn y provided only that F has a finite variance. Because 
the class of F with finite variance is rather large, the t 
interval is generally considered to be "robust." In contrast, 
the corresponding normal-theory interval for the variance 
o2 of F is nonrobust. In that case, Yn - y 0 iff the 
kurtosis of F is 3. For other F's the limiting difference can 
be quite large; for example, if F is the t5 distribution, the 
nominal 90% CI for U2 has true confidence coefficient less 
than .60 in large samples-see Table 2 and Scheffe (1959, 
chap. 10). 

The convergence of Yn - y to zero is harder to ascertain 
for Cl's constructed via more complicated procedures such 
as Efron's (1982) bootstrap method. In the latter, intervals 
are determined from bootstrap histograms of selected sta- 
tistics and, except for certain classes of statistics (see, e.g., 
Abramovitch and Singh 1985; Beran 1982; Bickel and 
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Freedman 1981; Singh 1981), the conditions under which 
Y-> y are not completely understood at the present time. 

Even when Yn, -r y for each F in a class fQ, the conver- 
gence may not be uniform over fl. Therefore, given a fixed 
n, In may be satisfactory for one F but not for another in 
Ql. 

In view of these problems, I propose in this article a 
method of estimating yn directly from the data. The effec- 
tiveness of this proposal is demonstrated in some examples 
in Section 2. The method rests on the following argument. 
Since if F were known we would be able to say what Yn is 
(by brute-force computer simulation if necessary), why not 
estimate F, by an estimator Fn, say, from the data and 
then find out the probability Yn that intervals from Fn will 
contain 0 = O(F )? (See Appendix B for a working def- 
inition of Yn For example, when estimating the mean of 
F using the t interval, 9n would be the proportion of those 
t intervals generated by samples from Fn that contain its 
mean 0.) 

This idea is, strictly speaking, not new. It is just a new 
application of the bootstrap philosophy, in which the data 
is resampled for more information. What I hope to show 
is that it can lead to improvements over the use of y as an 
estimator of Yn. It is easy to see why Yn should estimate Yn 
consistently. Suppose that C(y*) is a class of distributions 
containing F for which Yn y* as n -> oo. If Fn eventually 
belongs to C(y*) a.s., then we may also expect Yn , Y* 
a.s.; that is, Yn is a strongly consistent estimator of Yn. The 
argument will be rigorous if it can be shown that Yn -Y* 
uniformly over C(y*). Note that it is not necessary that 
y* = y. This advantage will be clear in Example 4, where 
I apply the method to the normal-theory interval for CU2 
and show that Yn - Yn 0 a.s. provided only that F has 
finite sixth moment. 

Three more examples are given in Section 2. In Example 
1, the estimation of the mean is considered. For the one- 
sided t interval, it is proved that, under moment conditions 
on F, Yn - Yn = O(n-1) a.s., whereas Yn - y = 0(n-112), 
For some bootstrap intervals, it can be proved only that 
both Yn - y' and Y' - Yn converge to zero as n -s oo. The 
simulation results suggest, however, that the convergence 
rate for Yn - Yn may be faster. 

Examples 2 and 3 illustrate two situations where, for all 
n, Yn estimates Yn without error for most reasonable Fn. 
The interval in both cases is the bootstrap "percentile 
method" interval of Efron (1982). In Example 2, 0 is the 
median. Here y is known to be an excellent approximation 
for Yn , In Example 3, 0 is an endpoint of the support of 
F. Here Yn 0 for all n, a totally unacceptable situation. 

It is tempting to try to use this idea of "calibrating" y 
with Y, to construct new intervals whose true coverage 
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probabilities come closer to the desired nominal value. 
This is done in Section 3, leading to the introduction of 
calibrated intervals with possibly improved properties. In 
particular, a new method of constructing an interval from 
the bootstrap histogram is proposed and shown via sim- 
ulation to be quite effective. Section 4 presents an appli- 
cation of this method to a bivariate data set. 

Throughout this article, when I refer to bootstrap re- 
sampling I mean random sampling from the empirical cdf. 
Similarly, whenever I mention the percentile, bias-cor- 
rected percentile, and bootstrap t intervals, I mean the 
(unsmoothed) methods originally defined in Efron (1982). 

2. FOUR EXAMPLES 
2.1 Example 1: Estimating a Mean 

Let 0 be the mean of F and I, the 1OOy% two-sided t 
interval, X, + tn-1,_,,s,n-112, where Xn and s2 are the 
sample mean and variance, tn,a is the lOOa-percentile of 
the t distribution with n degrees of freedom, and y = 
1 - 2a. The following theorem shows that Yn is a better 
estimator of Yn than y for In, as well as its one-sided coun- 
terpart. 

Theorem 1. Assume that F is continuous and has finite 
eighth moment. Let Fn be an estimator of F such that its 
first eight moments converge to those of F a.s. Then, for 
the one-sided t interval, Yn - y = O(n-112) and Yn - 
Yn = O(n1) a.s. If F has a finite tenth moment, then for 
the two-sided t interval, Yn - 0 = O(n-') and Yn - Yn = 
o(n-1) a.s. 

Proof. The result for the one-sided t interval depends 
on the two-term Edgeworth expansion for the distribution 
of the t statistic, as follows: 

Pr(t c x) = 4>(x) 

+ (6-93 -3n-1/2)(2x2 + 1)+(x) + O(n1), (2.1) 

where q2 and / are the variance and third central moment 
of F, respectively, and 4F(.) and 4(Q) are the standard 
normal cdf and density. [See, e.g., Hall (1983) or Abra- 
movitch and Singh (1985). Chung (1946) demonstrated 
that the "O(n-1)" term is bounded by Qn-lh(x), where 
h(x) is a function of x and Q is a constant depending only 
on the first eight moments of F.] Since ,u3(F) = 0 when 
F is normal, it follows that Y, - y = O(n -1/2). Applying 
the same expansion to F"n instead of F, we see that the 
distribution of t under F,n matches that under F up to and 
including the term in n112. Therefore, Yn - Yn = O(n1) 
a.s. 

For the two-sided t interval, the n-112 term in the ex- 
pansion for Yn is missing, because the second term on the 
right side of (2.1) is an even function of x. Therefore, 
Yn - y = O(n-1) in this case. By resorting to a three-term 
Edgeworth expansion, however, the same argument as 
above shows that now Yn - Yn = o(n'1) a.s. [A more 
careful analysis using the results in Chung (1946) indicates 
that the rate is O(n-4'3).] 

There are several other ways of constructing a CI for 
the mean. The most interesting of these attempt to provide 

asymmetric intervals (about X,), so as to reflect any skew- 
ness in F. Johnson (1978) proposed the modified t interval, 
[Xn + (6-e3,ns -2n-')] ? tn 1,1san -1/2, where &3,n iS the 
sample third central moment. A more recent and general 
technique is to construct Cl's from a bootstrap histogram. 
In the case of the mean, this is a histogram of X* = n-1 
21 X*, where (X1, X2*, . . , X*) are iid observations 
from the empirical cdf that puts mass n-1 on each obser- 
vation Xi (i = 1, 2, . . . , n). Efron (1982) gives a number 
of methods for setting Cl's from this histogram. The per- 
centile method prescribes as a nominal 100(1 - 2a)% CI 
the interval [OL, Ou], where OL and Ou are the lower and 
upper a points of the histogram. The bias-corrected per- 
centile method attempts to incorporate the skewness of F 
better by redistributing the probability unequally in the 
two tails of the histogram [see Efron (1982) for details]. 
Viewing Xn - 0 as an asymptotic pivot, it is also natural 
to consider the interval [2Xn - Ou, 2Xn - OL], which is 
the reflection of [OL, Ou] about Xn . I will call this the 
reflection method in this article [see Loh (1984) and Efron 
(1979a, remark D) for arguments for and against this]. 

The next theorem gives sufficient conditions for Yn - Y 
and Yn Yn to converge to zero a.s. for these bootstrap 
intervals. The proof is presented in Appendix A. Note 
that it is not necessary for the moments of Fn to converge 
to those of F. The convergence of Yn - y to zero only is 
proved in Beran (1984) under more general conditions. 

Theorem 2. Let F be any distribution with finite sixth 
moment, and let Fn be an estimator of F such that its first 
six moments converge a.s. Suppose that In is a bootstrap 
CI constructed from the percentile, bias-corrected per- 
centile, or reflection methods. Then Yn - y- 0 and Yn - 
Yn 0 as n -o a.s. 
Table 1 displays the results from a simulation experi- 

ment based on this example with n = 10 and y = .90. Six 
interval procedures are compared: (a) two-sided t, (b) per- 
centile method, (c) bias-corrected percentile method, (d) 
reflection method, (e) Johnson's t, and (f) bootstrap t. The 
bootstrap t was originally proposed in Efron (1982, sec. 
10.10). It consists of applying the percentile method to the 
studentized form of the statistic. [The arguments in Hink- 
ley and Wei (1984) and Abramovitch and Singh (1985) can 
be used to show that for the bootstrap t interval, typically 
Yn - y = o(n-112) in the one-sided case and Yn - Y = 
o(n'1) in the two-sided case; the nominal level y' for this 
interval, therefore, matches the performance of 'Yn as an 
estimator of Yn for the t interval in Theorem 1.] 

The distributions selected for the simulation are (a) nor- 
mal, (b) uniform, (c) normal mixture, and (d) exponential. 
The particular normal mixture used is 2rN(,u1, ci2) + (1 - 
m)Nf(,2, j), with 7Z = .5504, ,u1 = .3342, /12 = - .4091, 
v1= .2385, and CT2 = 1.3603. [As usual, N(,u, a2) denotes 

a normal distribution with mean ,u and variance 2.] Lee 
and Gurland (1977) showed that this distribution is quite 
unfavorable for the one-sample t test when n is small. The 
estimate F, used here is a data-based kernel density esti- 
mate. Appendix B describes the whole procedure in greater 
detail. 
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Table 1. Monte Carlo Estimates of yn, E()J, and sd(yp) for Example 1 
(n = 10, y = .90) 

Distribution Method Yn E(%n) sd(yn) 

Normal t interval .89 .897 .030 
Percentile .83 .840 .036 
Bias-corrected .83 .836 .037 
Reflection .83 .836 .036 
Johnson t .89 .898 .030 
Bootstrap t .90 .897 .033 

Uniform t interval .89 .898 .031 
Percentile .86 .843 .039 
Bias-corrected .85 .838 .039 
Reflection .84 .834 .038 
Johnson t .89 .900 .031 
Bootstrap t .93 .905 .035 

Mixture t interval .89 .874 .051 
Percentile .76 .813 .055 
Bias-corrected .73 .803 .059 
Reflection .82 .816 .052 
Johnson t .87 .873 .051 
Bootstrap t .76 .860 .060 

Exponential t interval .86 .876 .052 
Percentile .79 .822 .053 
Bias-corrected .79 .819 .054 
Reflection .78 .812 .051 
Johnson t .86 .877 .052 
Bootstrap t .87 .887 .052 

Maximum SE ?.02 ?.002 ?.004 

NOTE: "?" quantities are maxima of estimated standard errors (SE's). 

Table 1 indicates that, apart from the t and Johnson t 
intervals, the coverage probabilities of all of the bootstrap 
intervals can be quite poor. On the other hand, the ac- 
curacy of Yn in predicting Yn is quite good (except for the 
bootstrap t in the mixture distribution case). Note that the 
table does not show the Johnson t to be any better than 
the ordinary t interval. 

I now give two situations Where Yn estimates Yn without 
error. 

2.2 Example 2: Estimating a Median 

Let 0 be the median of a continuous distribution F. 
Given the order statistics, X(1), X(2), . . , X(n), exact Cl's 
for 0 can be constructed by using the fact that, for any 
1 ? k1 < k2 c n, 

Pr[X(k1) < 0 ? X(k2)] = E (1)n (2.2) 

for all F. Efron (1982) used this to demonstrate that the 
percentile method can be quite effective in setting inter- 
vals. From the bootstrap histogram of the sample median 
for odd n, this method yields an interval of the form 
[X(k1), X(k2)] with nominal (bootstrap) confidence level y 
remarkably close to the Yn given in (2.2). For example, if 
n = 13, k1 = 4, and k2 = 10, one gets y = .914 and 
Yn = .908. Now suppose that one did not know about (2.2) 
but constructed the bootstrap interval by using the per- 
centile method. Because (2.2) is distribution free, my pro- 
cedure would give Y~n --Yn regardless of which Fn is chosen, 
provided only that it is continuous. 

2.3 Example 3: Estimating an Endpoint 

Consider the estimation of the right endpoint 0 of the 
support of a continuous distribution F, using the bootstrap 
percentile method. A natural quantity to bootstrap here 
is the largest order statistic X(n). Unfortunately, the boot- 
strap histogram of X(n) is of necessity to the left of 0. 
Because the percentile interval lies within the support of 
this histogram, it can never contain 0. Hence Yn, 0 for 
all y. The fact that the latter holds for all continuous F, 
however, implies that we must also have , =0 if F, is 
continuous. Thus =-Y. Note that the same conclusions 
apply to the bias-corrected percentile method as well. The 
reflection method gives more sensible intervals, but they 
too may not be asymptotically consistent (see Loh 1984). 

2.4 Example 4: Estimating a Variance 

Let (X1, . . . , Xj) be a random sample from F with 
variance U2 The 100(1 - 2a)% CI for U2 based on normal 
theory is 

(n - l)S2IX2_1 l-a < U2 < (n - l)S2I/Xn2 (2.3) 
where sn is the unbiased estimate of variance and xna is 
the 100a-percentile of the x2 distribution with n degrees 
of freedom. It is well known that this interval is sensitive 
to the kurtosis ,B of F. In fact (see Scheffe 1959, chap. 10), 

V(n - 1)/2{s 2v-2 -1} -? N(O, B2) as n -> oo, 

(2.4) 

where B2 = (,B - 1)/2. Hence the coverage Yn of (2.3) 
tends to 1 - 2'F(B'1Za), which equals y = 1 - 2a only 
if,f = 3. (Throughout this article, ,za refers to the 100a- 
percentile of the standard normal distribution.) The fol- 
lowing theorem shows that, despite this, Yn - Yn 0 a.s. 

Theorem 3. Suppose that F has a finite sixth moment 
and Fn is an estimator of F such that its first six moments 
converge a.s., with the first four converging to those of F. 
Then, for the interval (2.3), Yn - Yn 0 as n > oo a.s. 

Proof. Let,u = EX1 and Yi = c-2(X, - ,U)2 (i = 1, 
2, . . . , n). Because the distribution of the left side of 
(2.4) is asymptotically equivalent to that of (n/2)12(Y,n - 
1), where Yn denotes the mean of {Y1,. . . , Yn}, it suffices 
to consider the limiting probability of the event A(y) - 

In fYn - 1) c y} under F and Fn. The Berry-Esseen 
theorem implies that 

sup IPF{A(y)} - 'F{y(fl - 1)-1/2}I 
y 

? Kp(F)(fl - 1)-312n -1/2, (2.5) 

where p(F) = ElY1 - 113 = EFlcv2(Xl - ,u)2 - 1j3 and 
K is a universal constant. Applying the same result to Fn 
gives 

Sup jPpn{A (Y)} - 14)yb,y"l2}j ? Kp(F,,)b -312n1-1l2 (2.6) 
y 

where bn, = var[&,-2(W - /?,)2], W has distribution Fn,, and 
/Un and an~ are the mean and variance of W. The assumptions 
stated imply that b > (/11 -3 1o2 (say) as 
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Table 2. Monte Carlo Estimates of y,, E(qn), and sd(%y) for (2.3) (y = .90) 

n = 25 n = 50 

Distribution Yn E( sd() Y E(P%) sd(p,) urn Yn 

Normal .90 .905 .053 .90 .905 .045 .900 
Beta(.6825, 2) .89 .891 .085 .91 .901 .061 .900 
Uniform .99 953 .031 .99 .969 .024 .991 
Exponential .64 .765 .154 .64 .706 .149 .588 
ts .71 .844 .108 .68 .811 .124 .588 
Maximum SE ?.02 ?.007 ?.006 +.02 ?.007 ?.006 

NOTE: "-?" quantities refer to the maximum estimated SE's. The SE's for the uniform distribution are less than half the maximum in 
each case. 

n -- oo a.s. Here po. may depend on the particular sequence 
(X1, X2, .. .). I conclude from (2.5) and (2.6) that 9n - 
Yn- 0 a.s. 

Table 2 gives the results of a simulation experiment for 
five distributions, with r = .90 and n = 25 and 50. The 
theoretical values of lim Yn are also reported. The param- 
eters of the beta distribution are chosen so that it has 
kurtosis equal to 3. The convergence of n - y, to zero is 
seen to be quite good for the normal, beta, and uniform 
distributions, but slower for the exponential distribution. 
Note that the t5 distribution is not covered by Theorem 3. 
Again, the details of the simulation can be found in Ap- 
pendix B. 

3. CALIBRATED INTERVALS 

The preceding examples suggest that, given an interval 
procedure In for estimating 0, Y,n can be a more accurate 
estimate of Yn than its nominal level. When this is the case, 
it is natural to ask whether one can use the information 
in Yn to construct a better interval, I* say, for 0, that is, 
one for which Yn(In) is closer to the desired level than 
yn(In). This section proposes two methods and applies them 
to the problem of estimating the variance of F. 

3.1 Calibrated Normal-Theory Interval 

Suppose that in Example 4, we want a 90% confidence 
interval for the variance a2. Further suppose that, upon 
using the CI (2.3) with a = .05 (so that y = .90), we find 
5n = .70. It is tempting now to increase y (e.g., to .95) 
and recompute Yn for the updated interval to see if 5, is 
closer to .90. One might even imagine iterating this process 
(i.e., changing y continuously) until 9n is exactly .90. The 
final value of y that results in this is then put back into 
(2.3) to obtain a modified interval. I will call this the 
calibrated normal-theory (CNT) interval. 

The interesting question is what effect this process of 
calibration has on the coverage properties of the modified 
interval. The following theorem gives conditions on F for 
which y,, (CNT) is consistent. It suffices to state and prove 
the result for the one-sided interval. 

Theorem 4. Assume that F is continuous and has finite 
sixth moment. Let Fn be a continuous estimator of F such 
that its first six moments converge to those of F a.s. Let 
5n*2 denote the sample variance based on a sample of size 

n from Fn, and let &2 denote the variance of Fn. Finally, 
let In = [ksn2, o) be the calibrated interval for q2, where 
k = k(X1, X2, ... , Xj) is chosen so that Prp,(ksn2 < 
2) = Y. (In this expression, k and &2 are fixed given Fn) 
Then PrF(a2 E In) -- y as n -m oo. 

Proof. Let ar(F) = E(X /cr)r denote the standardized 
rth moment of F and a& = ar(Fn). Hsu (1945) showed 
that 
sup IPrF{n1"2(S2U-2 - 1)(a4 - 1)-1/2 < X}- D(x)l 

x 

c An? - 121aja4 - 1 -3 

for some universal constant A. It follows that 

r = Prn(kS*2 < A2) 

= PrF {n"12(S*2A-2 - 1)(A4 - 1)1/2 

< n1'2k(1 - k)(A 4 - 1)1/2} 

= 1{nh/2k(1 - k)(a4 - 1)1/2} + Op(n112) a.s. 

This implies that k - 1 = 1 + zyn-1/2(a4 - 1)1/2 + 
op(n-112) a.s. Hence 

PrF((72 E- In) 

= PrF(kS2 < a2) 

= Pr {a-s22 < 1 + z n- 12(a4 - 1)1/2 + op(n-112)} 

= PrF{n1/2(a-2S2 - 1)(a4- 1)-1/2 

< zy + Op(1)}> y a.s. 

In general, it would be impractical to iterate the cali- 
bration process until Yn converges to the desired level. I 
have found that often a one-step calibration plus linear 
interpolation is enough. To illustrate, suppose that we want 
a CNT interval with desired coefficient yo. First find Yn for 
the interval (2.3) with y = yo. Then set 

A= - 1 if A _ yo 

= Yo + (1 - Yo)(YO - Y )(1 - YA)1 if A < yo. 
(3.1) 

That is, the point (yl, yo) is gotten by linearly interpolating 
between (yQ, Yn) and either (0, 0) or (1, 1) depending on 
whether Y' ? or < y. (For example, in the hypothetical 
case discussed in the beginning of this section, if yo = .90 
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and Yn = .70, we will set y2 = .9667.) The CNT interval 
is then given by (2.3) with y =y 

It should be noted that although the CNT interval has 
been defined specifically for the estimation of variance, 
the basic definition is quite general. It includes, for ex- 
ample, the calibrated version of any interval of the form 
0 + zaSE(Q), where 0 is any estimator of a parameter 0 
and SE(0) is any estimate of the standard error of 0 (such 
as a jackknife estimate). 

3.2 A New Bootstrap Interval 

Because our algorithm for constructing calibrated in- 
tervals is completely general, it can be applied to calibrate 
bootstrap intervals as well. For example, the undercov- 
erage exhibited by the bootstrap intervals in Table 1 may, 
hopefully, be corrected via calibration. Since calibration 
is itself a form of bootstrapping, calibrated bootstrap in- 
tervals may also properly be called iterated bootstrap in- 
tervals. 

Instead of examining the effect of calibrating any of the 
bootstrap intervals included in Table 1, I propose here a 
new bootstrap procedure designed to take full advantage 
of the calibration idea. Recall that, given a bootstrap his- 
togram and a chosen value of y, the reflection method 
prescribes the interval I, = [20 - u,, 20 - 0LI, where 
6L and Ou are the lower and upper (1 - y)/2-points of the 
histogram. The object here is to retain 100y% of the his- 
togram mass. Unless the histogram is symmetric, there is 
no a priori reason for treating the tails symmetrically. Let 
[06, 0*] be the shortest interval containing 1OOy% of the 
histogram. The corresponding reflection interval I* = 
[20 - 60, 20 - 0*] would thus be shorter than I,. If In 
undercovers 0, the interval I* will only make the problem 
worse. If we do not stop here, however, but calibrate I, 
we may be able to overcome the undercoverage somewhat 
and simultaneously obtain a relatively short CI. I propose 
as a new bootstrap interval, therefore, the result of cali- 
brating I* and will refer to this as a calibrated shortest 
reflection (CSR) interval. 

3.3 A Monte Carlo Study 

To examine further the problem set out in Example 4, 
a Monte Carlo experiment was performed for n = 20. The 

nominal level chosen is y = .90, and four distributions (all 
standardized so that a2 = 1) are used: (a) normal, (b) t5, 
(c) uniform, and (d) exponential. The competing intervals 
are NT-normal-theory interval (2.3), CNT-calibrated 
NT interval, JK-jackknife interval based on s2, JKL- 
jackknife interval based on log(s2), PER-bootstrap per- 
centile method, BCP-bias-corrected percentile method, 
BST-bootstrap t based on S2, BSTL-bootstrap t based 
on log(s2), PVT-Schenker's (1985) pivotal method, and 
CSR-calibrated shortest reflection interval. 

The JK interval is S2 + t_1,95SD, where SD is the jack- 
knife estimate of standard error of Sn. The JKL interval 
is the jackknife interval for log(a2) based on log(s2), sub- 
sequently exponentiated to recover the interval for a2. 
[Miller (1968) showed that jackknifing log(a2) is both pow- 
erful and robust for testing variances in the two-sample 
problem.] The PVT interval has the form [nU n,SIL], 
where [OL, Ou] is the PER interval. (The PVT interval is 
obtained by treating s2Ua2 as a pivotal quantity and boot- 
strapping it.) The CNT interval uses (3.1). BST and BSTL 
are bootstrap t versions of JK and JKL, respectively. 

The results are shown in Table 3. The values for E(L) 
generally refer to estimates of the expected lengths of the 
intervals truncated at zero. The only exception is for the 
BSTL interval at the t5 and exponential distributions. The 
BSTL interval seems to be extremely unstable in these two 
situations-estimates of E(L) are many orders of mag- 
nitude larger than for the other methods, and the asso- 
ciated estimates of standard errors did not seem to de- 
crease with increase in the number of Monte Carlo 
replications. I conjecture that E(L) is infinite for the BSTL 
interval at these two distributions when n = 20. Therefore, 
instead of expected length, estimates of median length are 
reported (in parentheses) in the table. The JKL, PVT, and 
BST intervals also appear to be quite unstable for the 
sample size studied, though not as much as the BSTL. 
[The relative instability of jackknife intervals in other 
problems has also been observed in Efron (1982, p. 15) 
and Wu (in press).] On the other hand, the PER and BCP 
intervals tend to be too short and hence undercover a2. 
There is some indication that the CNT interval is trying 
to set right the miscoverage of the NT interval, although 
not as much as one would like. Except for the exponential 

Table 3. Estimates of yn and E(L) for Estimating a2 (y = .90; n = 20) 

Distribution NT CNT JK JKL PER BCP PVT BST BSTL CSR 

Normal Yn .90 .89 .86 .90 .81 .80 .84 .88 .88 .83 
E(L) 1.25 1.22 1.07 1.26 .91 .93 1.27 1.46 1.71 a 1.00 

t5 Yn .76 .78 .76 .85 .71 .72 .79 .85 .85 .87 
E(L) 1.25 1.41 1.38 2.4b 1.17 1.21 2.1c 3.2b (1.4) 1.62 

Uniform Yn .99 .96 .90 .91 .86 .85 .85 .88 .90 .87 
E(L) 1.25 1.08 .77 .82 .68 .67 .88 .82 .77 .74 

Exponential Yn .64 .69 .72 .80 .68 .69 .72 .83 .84 .71 
E(L) 1.25 1.56 1.56 3.5b 1.33 1.37 3.2c 55d (2.6) 1.43 

NOTE: Median lengths are given in parentheses. Unless otherwise stated, maximum SE's for yn .01 and maximum SE's for E(L) 
.02. 

a SE = .06. 
b SE = .2. 
CSE = .1. 
dSE = .3. 
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distribution case, in which no method appears satisfactory 
in terms of both coverage probability and interval length, 
the JK and CSR intervals appear quite reasonable for the 
other distributions. The high computational cost of the 
CSR method is somewhat offset by its ability to provide 
asymmetric intervals (a property that the JK method lacks). 
Further details of the simulation are given in Appendix 
B. 

4. A BIVARIATE EXAMPLE: THE LAW 
SCHOOL DATA 

The preceding section demonstrated that the CSR method 
can produce intervals that are fairly short as well as have 
quite satisfactory coverage probabilities. One advantage 
of any bootstrap method is the potential for constructing 
asymmetric intervals (about the point estimate). We will 
examine this property of the CSR method by applying it 
to a real bivariate data set. The exercise will also illustrate 
how the method can be extended to multidimensional data. 

The data, given in Efron (1979b, 1982), consist of the 
average LSAT and GPA scores for 15 American law schools. 
The problem is to construct a 68% CI for the correlation 
coefficient p. The sample correlation is p5 = .776. To apply 
the CSR method, we use the variable kernel algorithm of 
Breiman, Meisel, and Purcell (1977) with a normal kernel 
to estimate first the true bivariate density. [See Devroye 
(1985) for some large sample properties of this density 
estimator.] Figure 1 shows a contour plot of the estimate 
superimposed on the 15 data points. The estimate is uni- 
modal, has a little ridge running northeast-southwest, and 
has correlation coefficient .344. (The difference between 
this correlation and p is an indication of the amount of 
smoothing produced by the variable kernel estimate.) 

Because only one set of data is involved, we can afford 
to be a little more elaborate in calibrating the shortest 
length interval. Instead of using just one calibration as in 
(3.1), two shortest length reflection intervals were cali- 
brated, with nominal levels 68% and 90%, respectively. 

Table 4. 68% Confidence Intervals for p 

Method Interval Length 

Normal-theory (p - .16, p + .09) .25 
Percentile - .12, p + .13) .25 
Bias-corrected percentile - .17, p + .10) .27 
Bootstrap t(p) - .19, p + .15) .34 
Bootstrap t(arctanh p) - .42, p + .09) .51 
CSR (p- .16,p+ .11) .27 

The calibration was carried out with 1,000 replicate sam- 
ples drawn from the density estimate. For each replicate 
sample, a bootstrap histogram for the sample correlation 
was constructed, using another 1,000 bootstrap samples. 
The values of Yn thus obtained were, respectively, .615 and 
.772. Linear interpolation gave y = .771 as the adjusted 
nominal level. 

The resulting CSR interval is shown in Table 4, together 
with the corresponding intervals based on normal theory 
and other bootstrap methods. The two bootstrap t intervals 
are based on the t statistics computed from p and Fisher's 
transformation arctanh(p), respectively, with the corre- 
sponding jackknife estimates of standard error used for 
studentization. Efron (1982, p. 83) noted that for this data, 
the bias-corrected percentile interval is more similar to the 
normal-theory interval than the uncorrected percentile in- 
terval, the latter being too symmetric. In this respect the 
CSR interval is in qualitative agreement with the former 
two. Its length is also not much different. In contrast, both 
of the bootstrap t intervals appear to be conservative. [Ef- 
ron (1982, p. 88) observed that the bootstrap t seems to 
be specific to translation problems and its application to 
the correlation coefficient gives poor results.] 

5. CONCLUDING REMARKS 

The ideal confidence interval is one for which (a) its 
true coverage probability yn is close to the nominal level 
y, and (b) this property holds uniformly for as many dis- 
tributions as possible, at least for large enough n. These 
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Figure 1. Contour Plot of Density Estimate. 
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twin goals may be called "accuracy" and "robustness of 
validity," respectively. Unfortunately, it is well known that, 
except for certain problems admitting nonparametric so- 
lutions (such as estimating the median), the two goals are 
often incompatible (Bahadur and Savage 1956). 

To circumvent somewhat this difficulty, I propose in this 
article a new way of looking at the problem-namely, to 
estimate y, directly from the data and report it in addition 
to y. The potential value of this approach is demonstrated 
in the examples, where we see that, besides improving 
accuracy, it can sometimes correct a y that is totally wrong. 

The proposed method is, of course, not foolproof. A 
counterexample is the estimation of an endpoint 0 of F, 
where F is completely unspecified. Here any asymptoti- 
cally valid interval must depend on some knowledge of 
the density of F near 0. Unless our estimator Fn is told 
this, the procedure cannot be expected to give good results 
all the time. (This remark does not contradict Example 3, 
since the percentile interval considered there is not asymp- 
totically valid for any F.) 

If we give up the requirement of uniform convergence 
of yn and ask only that yn -- y at each fixed F, then many 
methods are available for speeding up the convergence. 
Hall (1983), Hinkley and Wei (1984), and Abramovitch 
and Singh (1985), for example, gave methods based on 
inverting Edgeworth expansions. The calibrated intervals 
have the same aim. Unlike methods based on Edgeworth 
expansions, however, which require knowledge of the 
leading terms of the expansions and calculation of high- 
order moments (which may be unstable), the methods 
introduced in Section 3 are less demanding of mathemat- 
ical expertise, since they are entirely based on simulation. 
Therefore, they might be easier to implement in practice, 
if a computer is available. 

The calibrated intervals obviously require many more 
arithmetic operations to be performed than, say, the Hall 
intervals. In the case of the CSR interval, if B sets of 
pseudorandom samples are used to construct the bootstrap 
histogram and C sets of samples are used to calibrate each 
of these, then a total of BC sets of samples need to be 
generated and processed. In other words, if it takes one 
unit of computer time to calculate a Hall interval and B 
units to compute a percentile interval, then it would take 
BC units to obtain a CSR interval. The calibrated version 
of a standard (nonbootstrap) interval, for example, the 
CNT interval, on the other hand, requires only C units of 
computer time, because no bootstrap histogram is re- 
quired. The appropriate values of B and C to use will 
depend on the problem, but with the greater availability 
of fast computers, the computational cost should be more 
affordable with time (see Efron 1979b). 

The reader is referred to Loh (1985) for a discussion of 
similar issues in a hypothesis testing setting. 

APPENDIX A: PROOF OF THEOREM 2 
Only the proof for the percentile method is given, because 

similar proofs hold for the other two methods. The proof is 
broken into two lemmas. 

Lemma 1. Let (X1, . . . , Xn) be an iid sample from F with 

finite third moment. Let s2 and r, denote the sample variance 
and third absolute central moment, respectively. Then there is 
a continuous function K(sn, rn) such that 

1l/2(OL-X~s~ -1 -(a)I -- K(Sn, rn)n 112 as In O0L 
- 

T)Sn 
- (D ) (nSr) / a.s. 

A similar result holds for Ou. 
Proof. Let Pr* denote probabilities under bootstrap resam- 

pling and XT* be a bootstrap mean. The Berry-Ess6en theorem 
implies that 

la - 4[n1l2Snl(0 - Xn)]I 

= Pr*{nl/2s-1(X* - Xn) C n12s1 (0L - Xn)} 

- 4[nl/2Sn 1(0L - X)II 

c K1rns 3n-1"2 a.s., 

where K1 is a universal constant. Inverting this gives the result. 
Lemma 2. Let In be a CI for the mean constructed from the 

percentile method, and suppose that F has a finite sixth moment. 
Then, for every c > 0, there is a continuous function CF(c), 
depending only on e and the first six moments of F, such that 
|Y - yl c e + n-"12C (e). 

Proof. From Lemma 1, we have 
Pr(0L ? C 0) Pr{n"2sn'(X 

0) 2 d-'(a) - n-112K(sn, r )} 
= Pr{n 12(Xn - 0)-1 2 D(sn, rn)} 

where D(Sn, rn) = a 1sn[qD-( a) - n - 1/2K(sn, rn)] and U2 iS the 
variance of F. Let e > 0 and K1, . .. , K4 denote constants 
depending only on c and the first six moments of F. By Che- 
byshev's inequality, there exists K1 such that the event A = 
{nf2lIs' - a21 > K1 or Irn - pl > K1} has probability less than c. 
Here p denotes the third absolute central moment of F. By con- 
tinuity, the minimum of D(sn, rn) over the complement of A is 
bounded below by M = 4F-'(a)[1 + n"-12K2(F)], for some K2. 
Therefore, 

Pr(0L ? 0) c e + Pr{n112(XT - 0)a-1 ? M} 

e + a + n"-12K3, 

by the Berry-Esseen theorem. This and a corresponding result 
for Ou imply that I Yn - Yl - 2e + n"-12K4. 

Lemma 2 implies that Yn - y --> 0 as n -* oo. The proof of 
Theorem 2 is completed by applying the same lemma to F,n. 

APPENDIX B: COMPUTATIONAL DETAILS 

The experiments in Examples 1 and 4 were based on 500 
replications each. For each replication, a kernel estimate of the 
underlying density of F was first obtained. The normal kernel 
was used throughout, with bandwidth chosen via the data-based 
algorithm suggested in Scott, Tapia, and Thompson (1977) [see 
also Scott and Factor 1981, formulas (2.10) and (2.11)]. Starting 
with the sample range as the initial guess, 20 iterations of this 
algorithm were executed to arrive at the eventual bandwidth- 
I did this instead of using the Newton-Raphson procedure pro- 
posed by the original authors to avoid the possibility of conver- 
gence to zero. After the bandwidth was selected, 0 = 0(Fn) was 
computed and 100 samples of size n from Fn were drawn. 

The fraction of these samples for which the corresponding 
intervals contained 0 gave an estimate of Y. The average and 
standard deviation of these values of Yn over the 500 replications 
in the outermost layer of the Monte Carlo provided the estimates 
of E(y,,) and sd(y%) in Tables 1 and 2. For the intervals derived 
via bootstrap methods in Table 1, the bootstrap histograms of 
the sample mean were constructed from 100 bootstrap samples. 
This formed the third (innermost) layer of the Monte Carlo. 
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The results for Table 3 were obtained by using the following 
variance reduction technique. Let yNT and E(LNT) denote the 
true coverage probability and expected length of the NT interval. 
For each distribution and all other methods, Monte Carlo esti- 
mates of Yn -nT and E(L - LNT) were obtained, using the 
same 2,000 replicates. [For the CNT interval, e.g., let i (NT) 
be 1 or 0 according to whether NT contains o2 or not, for 
each replicate sample. Define i (CNT) similarly, and let W = 
i (CNT) - i (NT). Then Yn - YnT is estimated by averaging W 
over the 2,000 replicates.] Because the NT interval is much quicker 
to compute, y NT was estimated separately via another Monte 
Carlo run, using 50,000 replicates. The estimates of Yn reported 
in Table 3 are the sums of the estimates of yNT and Yn - yNT 
with estimates of standard errors adjusted accordingly. Estimates 
of E(L) are obtained similarly, although E(LNT) is calculated 
exactly. [E(LNT) = 1.25 for all of the distributions, since o2 = 

1.] Quite substantial reductions in variances were achieved (as 
much as one-half of what would have been obtained had a direct 
Monte Carlo been used). In the case of the BSTL interval, me- 
dian(L) is estimated by the median of the Monte Carlo reali- 
zations of L. 

All of the bootstrap intervals in Table 3 were based on 100 
bootstrap replicates, and another 100 replicates were used for 
calibrating the CNT and CSR intervals. Again the Scott et al. 
(1977) algorithm was employed to estimate densities. 

The results in Table 3 were computed on a CRAY supercom- 
puter. The rest of the computations for this article were done 
on a VAX 11/750, using random number generators from the 
International Mathematical and Statistical Library. 

[Received June 1984. Revised May 1986.] 
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