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Classi� cation Trees With Bivariate Linear
Discriminant Node Models

Hyunjoong KIM and Wei-Yin LOH

This article introduces a classi� cation tree algorithm that can simultaneously reduce
tree size, improve class prediction, and enhance data visualization.We accomplish this by
� tting a bivariate linear discriminant model to the data in each node. Standard algorithms
can produce fairly large tree structures because they employ a very simple node model,
wherein the entire partition associated with a node is assigned to one class. We reduce
the size of our trees by letting the discriminant models share part of the data complexity.
Being themselves classi� ers, the discriminant models can also help to improve prediction
accuracy. Finally, because the discriminant models use only two predictor variables at a
time, their effects are easily visualized by means of two-dimensional plots. Our algorithm
does not simply � t discriminant models to the terminal nodes of a pruned tree, as this does
not reduce the size of the tree. Instead, discriminantmodeling is carried out in all phases of
tree growth and the misclassi� cation costs of the node models are explicitly used to prune
the tree. Our algorithm is also distinct from the “linear combination split” algorithms that
partition the data space with arbitrarily oriented hyperplanes.We use axis-orthogonalsplits
to preserve the interpretabilityof the tree structures.An extensive empirical study with real
datasets shows that, in general, our algorithm has better prediction power than many other
tree or nontree algorithms.

Key Words: Decision tree; Linear discriminant analysis; Tree-structuredclassi� er.

1. INTRODUCTION

A major advantage of classi� cation trees is the direct and intuitive way they can be
interpreted. Consider, for example, Figure 1 which shows a tree obtained using version 4
of the CART algorithm (Breiman, Friedman, Olshen, and Stone 1984; Steinberg and Colla
1997). It is based on data from a study on breast cancer at the University of Wisconsin
(Wolbergand Mangasarian1990).Thedata consistof measurements taken from 699patients
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Figure 1. CART tree for breast cancer data. At an intermediate node, a case goes to the left subnode if it satis� es
the condition there; otherwise it goes to the right subnode. The pair of numbers on the left of a terminal node gives
the numbers of benign and malignant cases at the node.

on 9 predictor variables taking integer values between 1 and 10. The response variable
records whether a patient’s tumor is benign or malignant . The tree is straightforward
to interpret and shows that � ve predictor variables may be suf� cient to predict the response.

Figures 2 and 3 show trees constructed from the same data using the CRUISE (Kim and
Loh 2001) and QUEST (Loh and Shih 1997) algorithms. Both are smaller than the CART
tree and are thus even easier to interpret. But are they equally good in terms of prediction
accuracy? Empirical evidence (Lim, Loh, and Shih 2000; Kim and Loh 2001) indicates that
these algorithms tend to produce trees with comparable accuracy. If these three trees are
indeed equally accurate, the QUEST tree may be preferred for its simplicity.

The class compositions are shown beside the terminal nodes of the trees. For example,
the extreme left terminal node of the CART tree contains 416 benign and 5 malignant

cases. If a user wishes to see how these 421 cases are distributed in the space of the predictor
variables, what is the best way to do this graphically? One could make one-dimensional
dot plots of the data for each variable, using a different plot symbol for each class. This
will require nine dot plots. Better still, we could look at two-dimensional plots. But which
predictor variable to plot against which? A scatterplot matrix of all pairs of predictors will
contain 92 = 81 plots per terminal node. These plots can be tiresome to examine if the
number of predictors or the number of terminal nodes is large. Besides, many of the plots
will probably be uninteresting.Clearly, it is useful to have a method that can screen through
all the plots and show us only the interesting ones. We consider a plot to be “interesting” if
it shows good separation of the classes.
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Figure 2. CRUISE tree for breast cancer data. At an intermediate node, a case goes to the left subnode if it satis� es
the condition there; otherwise it goes to the right subnode. The pair of numbers on the left of a terminal node gives
the numbers of benign and malignant cases at the node.

Figure 3. QUEST tree for breast cancer data. At an intermediate node, a case goes to the left subnode if it satis� es
the condition there; otherwise it goes to the right subnode. The pair of numbers on the left of a terminal node gives
the numbers of benign and malignant cases at the node.
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Figure 4. Classi� cation tree for the breast cancer data using the proposed M method. At an intermediate node, a
case goes to the left subnode if it satis� es the condition there; otherwise it goes to the right subnode. The pair of
numbers on the left of a terminal node gives the numbers of benign and malignant cases.

There is another bene� t to graphing the data in each terminal node. The common goal
in CART, CRUISE, and QUEST is to obtain a tree such that the learning sample in each
terminal node is quite pure. When this cannot be achievedwith a small number of univariate
(i.e., axis-orthogonal) splits, we will get either a large tree or an extremely simple one (due
to over-pruning). One solution is to employ linear combination splits, but such splits are
usually dif� cult to interpret if they involve more than two variables. We propose instead
to retain univariate splits but � t a linear discriminant model to the best two-variable plot
at each node. Because the discriminant models can be used for class prediction, it is not
necessary for the terminal nodes to be very pure. Thus, we can simplify the tree structure
without sacri� cing interpretability.

Figure 4 shows the result of applying this idea to the breast cancer data. The tree has
only two splits. Plots of the jittered data in the three terminal nodes are given in Figure 5.
They show that the two classes are separated quite well in the terminal nodes by the linear
discriminant boundaries. Further, the northwest-southeast orientation of the boundaries
explain why the CART and CRUISE trees have four or more levels of splits—often several
axis-orthogonal splits are needed to approximate a nonorthogonal split.

Section 2 describes the algorithm used to produce this tree and illustrates it with an
arti� cial dataset. Section 3 presents the results of an empirical comparative evaluation
of the predictive accuracy and training time of our algorithm versus more than 30 other
classi� cation algorithms on 32 datasets. Section 4 uses two real datasets to demonstrate the
simpli� cation potential of our approach. We conclude with some remarks in Section 5.

2. THE PROPOSED ALGORITHM

Althoughour approach is applicableto many split selectionalgorithms,we will describe
its implementation on the CRUISE 2D algorithm. Our choice is in� uenced by its good
prediction accuracy, its negligible bias in the variables selected to split the nodes, and its
ability to detect local pairwise interactionsbetweenpredictorvariables (Kim and Loh 2001).
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We describe two ways to select the best pair of variables to � t a linear discriminant
node model. The � rst method � ts the model to all pairs of predictors and computes their
resubstitutionestimates of misclassi� cation cost. The pair with the smallest cost is selected.
If there are missing values, only the cases with complete observations in the respective pair
of variables are used in the model � tting. The misclassi� cation cost of the � tted model is
estimated for all the cases in the node after missing values are imputed with the node class
means (for numerical predictors) and modes (for categorical predictors). We call this the
“C” (for cost) method.

In situationswhere there are missing values in the learning sample, it is conceivablethat
the C method may select variables that have a lot of missing values. To avoid this problem,

Figure 5. Jittered plots of data and the linear discriminant boundaries in the terminal nodes of the tree in Figure 4.
The benign and malignant cases are labeled 1 and 2, respectively.
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we propose a second method that is based on p values from multivariateanalysis of variance
(MANOVA) calculations. Given a node t and a pair of predictor variables x = (xl; xm)0,
l 6= m, let nj denote the number of class j cases in t with complete observations on x.
Let xji denote the ith observation from class j, x̄j be the sample mean vector for class
j computed from the nj cases, and x̄ be the overall sample mean vector ignoring class.
Finally, let B = j nj(x̄j ¡ x̄)(x̄j ¡ x̄)0 and W = j

nj

i = 1(xji ¡ x̄j)(xji ¡ x̄j)0

denote the between and within group sum of squares matrices. The MANOVA Wilks’ ¤

statistic for testing equality of the class mean vectors is ¤ = jWj=jB + Wj. We compute
approximate p values with Bartlett’s (1938) approximation

¡ fn ¡ 1 ¡ (2 + Jt)=2g log¤ ¹ À 2
2(Jt¡1);

where n = j nj and Jt is the number of classes present among the learning samples in
t. The pair of variables with the minimum p value is selected. We will refer to this as the
“M” (for MANOVA) method.

To render the C and M methods applicable to categorical variables, we � rst transform
each categorical value to a numerical value using a technique in Loh and Vanichsetakul
(1988). Speci� cally, a categorical variable is converted into a 0-1 dummy vector and then
projected onto the largest discriminant coordinate.

The rest of our tree construction algorithm proceeds as in CRUISE, except that during
pruning, the resubstitutionestimateof misclassi� cationcost of the linear discriminantmodel
is used in the cost-complexity function. The whole procedure may be formally stated as
follows.

Algorithm 1.
1. Modeling: First, any categorical predictor variables are transformed to their largest

discriminant coordinates at each node. Then a bivariate linear discriminant model
is � tted to the data there. The pair of predictor variables is selected by one of two
methods:
C: For each pair of variables, a bivariate linear discriminant model is � tted to the

data nonmissing in those variables. An estimate of the misclassi� cation cost of
the model is obtained from all the cases in the node after imputation of missing
values with node class means or modes. The pair of variables having the smallest
estimated cost is selected. (If a pair of predictors has a singular within group
matrix W, a linear discriminant model is not � tted for the pair. Instead, the
“constant” model is used, which classi� es every observation to the class with the
highest frequency in the node.)

M: Wilks’ ¤ is computed for each pair of predictor variables. Bartlett’s approxima-
tion is used to obtain the p values. The pair of variables with the smallest p value
is selected for use in the bivariate linear discriminant model.

2. Partitioning:Each node is split into two or more subnodes according to the CRUISE
2D univariate split selection rules described by Kim and Loh (2001).

3. Stopping: A node is not partitioned if one or more of the following conditions are
met:
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(a) There are very few cases in the node (default is 5).
(b) At most one class has more than m cases, where m is user-speci� ed (default is

m = maxf2; N=200g, where N is the number of cases in the learning sample).
(c) All the cases go down the same branch if the node is split.

4. Pruning: The tree is pruned according to the cost-complexity pruning algorithm of
Breiman et al. (1984). The cost at each node is the estimated misclassi� cation cost of
the model � tted in Step 1. The estimate is based on the learning sample after missing
values are imputed with the node class means (for ordered numerical variables) or
modes (for categorical variables).

This approach is different from the “lazy”one of takinga standardalgorithmand adding
a step that � ts a discriminant model to each terminal node of the pruned tree. The latter
approach does not decrease the size of the tree because node model � tting is carried out
after the � nal tree is selected. Besides, it is unlikely to signi� cantly increase classi� cation
accuracy since standard algorithms typically produce fairly pure terminal nodes which do
not bene� t from re� nement by discriminant analysis. In our approach, a discriminant model
is � tted to each node of the tree during its construction and the misclassi� cation costs of
the node models are used to prune the tree.

As a simple illustration of our method, we simulated a set of 10,000 data points uni-
formly distributed over the two-dimensional rectangle shown in panel (a) of Figure 6. If a
point falls in the region above the crooked line, it has probability 0.95 to be in class 1 and
probability 0.05 to be in class 2. Similarly, if a point falls in the region below the crooked
line, it has probabilities 0.95 and 0.05 to be in class 2 and 1, respectively. The crooked line
boundary is de� ned by the equation

y =

3x=2; 0 < x µ 10=3
5; 10=3 < x µ 20=3
3x=2 ¡ 5; 20=2 < x µ 10:

The partitions obtained with the CART and CRUISE 2D univariate split algorithms
are shown in panels (b) and (c) of Figure 6. Both approximate poorly the two parts of the
true class boundary that have positive slope. The corresponding results from the CART and
CRUISE linear combination split algorithms are shown in panels (d) and (e). They miss
the horizontal piece of the boundary altogether. The result from our M method is shown in
panel (f).

3. ACCURACY AND SPEED ON REAL DATA

Lim, Loh, and Shih (2000) and Kim and Loh (2001) carried out a large empirical study
to compare the prediction accuracy and training time of many classi� cation algorithms. We
now add the results for the C and M methods to theirs for comparison. Table 1 summarizes
the 36 competing algorithms. Each algorithm is applied to 32 datasets. For each algorithm-
dataset pair, a ten-fold cross-validation estimate of the misclassi� cation rate and the total
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Figure 6. True and estimated class partitions for simulated data example.
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Table 1. Classi�cation Algorithms in Comparative Study. The 0-SE tree is used where applicable.

Code Name of algorithm

C Proposed algorithm with CR2 split and C discriminant model selection
M Proposed algorithm with CR2 split and M discriminant model selection
CR1 CRUISE 1D (Kim and Loh 2001)
CR2 CRUISE 2D (Kim and Loh 2001)
CRL CRUISE linear combination splits Kim and Loh (2001)
CTU Salford Systems CART univariate splits (Steinberg and Colla 1997)
CTL Salford Systems CART linear combination splits (Steinberg and Colla 1997)
SPT S-Plus-tree univariate splits (Clark and Pregibon 1993)
QTU QUEST univariate splits (Loh and Shih 1997)
QTL QUEST linear combination splits (Loh and Shih 1997)
FTU FACT univariate splits (Loh and Vanichsetakul 1988)
FTL FACT linear combination splits (Loh and Vanichsetakul 1988)
IC IND CART univariate splits (Buntine and Caruana 1992)
IB IND Bayes (Buntine and Caruana 1992)
IBO IND Bayes with opt style (Buntine and Caruana 1992)
IM IND Bayes with mml style (Buntine and Caruana 1992)
IMO IND Bayes with opt and mml styles (Buntine and Caruana 1992)
C4T C4.5 decision tree (Quinlan 1993)
C4R C4.5 decision rules (Quinlan 1993)
OCU OC1 tree, univariate splits (Murthy, Kasif and Salzberg 1994)
OCL OC1 with linear combination splits (Murthy, Kasif and Salzberg 1994)
OCM OC1 with univariate and linear combination splits (Murthy, Kasif and Salzberg 1994)
LMT LMDT linear combination split tree (Brodley and Utgoff 1995)
CAL CAL5 decision tree (Müller and Wysotzki 1997)
T1 One-split tree (Holte 1993)
LDA Linear discriminant analysis
QDA Quadratic discriminant analysis
NN Nearest neighbor
LOG Polytomous logistic regression
FM1 FDA-MARS, additive model (Hastie, Tibshirani, and Buja 1994)
FM2 FDA-MARS, interaction model (Hastie, Tibshirani, and Buja 1994)
PDA Penalized discriminant analysis (Hastie, Buja, and Tibshirani 1995)
MDA Mixture discriminant analysis (Hastie and Tibshirani 1996)
POL POLYCLASS (Kooperberg, Bose, and Stone 1997)
LVQ Learning vector quantization neural network (Kohonen 1995)
RBF Radial basis function neural network (Sarle 1994)

training time are recorded. Details about the competing algorithms and datasets were given
by Lim, Loh, and Shih (2000).

Figure 7 plots the median training time versus mean error rate of the algorithms. The
training times are measured on a DEC 3000 Alpha Model 300 workstation running the
UNIX operating system. In terms of mean error rate, the spline-based polytomous logistic
regression POL is best. It has the lowest mean error rate of 0.195. Our M and C methods are
ranked 9th and 11th, with mean error rates of 0.213 and 0.217, respectively.To determine if
the differences are statistically signi� cant, we � t a mixed effects model to the data, treating
the algorithms as � xed effects and the datasets as random effects. A test of the hypothesis
of no algorithm effects yields a p value less than 0:001. Using 90% Tukey simultaneous
con� dence intervals (Hochberg and Tamhane 1987, p. 81), we � nd that a difference in
mean error rates less than 0.056 is not statistically signi� cant from zero. Thus, the C and M

algorithms are not signi� cantly different from POL. The solid vertical line in the top plot
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Figure 7. Median training time versus mean error rate. Plot symbols are de� ned in Table 1. Vertical axes are in
log-scale. Algorithms to the left of the solid vertical line in plot (a) have mean error rates that are not statistically
signi�cant at the 10% simultaneous level from POL. The subset of these that have median training time less than
ten minutes is shown in plot (b).
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Table 2. Variables for Car Data

Variable De�nition Variable De�nition

manuf manufacturer (31 categories) rev engine revolutions per mile
minprice minimum price in $1000’s manual manual transmission (yes, no)
midprice midrange price in $1000’s fuel fuel tank capacity in gallons
maxprice maximum price in $1000’s passngr passenger capacity
citympg city miles per gallon length length in inches
hwympg highway miles per gallon wheelbase wheelbase length in inches
airbag air bags standard (3 categories) width width in inches
drtrain drive train type (3 categories) uturn U-turn space in feet
cylin number of cylinders rearseat rear seat room in inches
enginsz engine size in liters luggage luggage capacity in cu. ft.
hp horsepower weight weight in lbs.
rpm revolutions per minute domestic U.S. or non-U.S. manufacturer

of Figure 7 separates the algorithms into two groups: those whose mean error rates do not
differ signi� cantly from that of POL and those that do. The three horizontal dotted lines
in the plot divide the algorithms into four groups according to median training time: less
than one minute, one to ten minutes, ten minutes to one hour, and more than one hour. POL

has the third highest median training time of 3.2 hours. The median training time of C is
93 seconds and that of M is 44 seconds. A magni� ed plot of the algorithms that are not
statistically signi� cant from POL and that require less than ten minutes of median training
time is shown in the lower half of Figure 7. Among the classi� cation tree algorithms that
employ univariate splits in this group, the three algorithms with the lowest mean error rates
are M, IC (IND CART), and C, in that order.

4. MORE EXAMPLES WITH REAL DATA

We now give two examples to show how our method can signi� cantly simplify a tree
structure. The � rst example shows maximum simpli� cation, where only the root node is
left after pruning. The second example shows how collinearity among predictors can create
dif� culties for other classi� cation tree methods.

4.1 CAR DATA

This dataset is from Lock (1993). It contains speci� cations for 93 new car models for
the 1993 year. We use the type of car (small, sporty, compact, midsize, large,
and van) as the classvariable.The predictorvariablesare listed in Table 2: 19 are numerical,
3 are categorical, and 2 are binary. The only missing values are for cylin in the rotary
engine Mazda RX-7, rearseat for the two-seaters (Corvette and RX-7), and luggage

for all the vans and the two-seaters.
The CART, CRUISE and QUEST trees are shown in Figures 8–10. They have 5, 14, and

12 terminal nodes and misclassify 33, 12, and 5 cases, respectively. The C and M methods
both yield trivial trees after pruning.The M method selects a linear discriminantmodel based
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Figure 8. CART tree for car data.

on weight and passngr; its linear discriminant boundaries are shown in Figure 11 and
it misclassi� es 18 cases. The C method chooses the variables whlbase and passngr for
its linear discriminant model and misclassi� es 15 cases. Figure 11 is very easy to interpret.
As the partitions indicate, small cars are the lightest and have seating for four or � ve
passengers. Sporty cars have medium weight but their passenger capacity is four or less.
Compact cars also have medium weight, but they can seat � ve or six passengers. Medium

cars are heavy and their passenger capacity ranges from four to six. The large cars are
also heavy but they all seat six. Finally, vans are heavy but seat seven or eight. Clearly,
it is not possible to draw such simple conclusions from the CRUISE and QUEST trees.
[Although the CART tree is easy to interpret, it does not predict vans because of missing
values in luggage—see Kim and Loh (2001) for further discussion of this problem.]

Because the C and M methods yield single bivariate linear discriminant models here,
it is natural to compare them with a multivariate linear discriminant model � tted to all
the predictor variables. This task is complicated by the presence of a 31-valued categorical

Figure 9. CRUISE tree for car data.
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Figure 10. QUEST tree for car data.

Figure 11. Jittered plot of car data and linear discriminant partitions for the M method; S = small, P = sporty,
C = compact, M = midsize, L = large, V = van.
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Figure 12. Projection of the car data onto the space of the � rst two discriminant coordinates of a 20-variable
model; S = small, P = sporty, C = compact, M = midsize, L = large, V = van.

variable (manuf) and three variables (cylin, rearseat , luggage) that have missing
values. We choose to exclude these four variables in order to keep the sample size constant.
After treating the binary predictors as 0-1 variables, this leaves 20 numerical predictors.
The resulting 20-variable linear discriminant model misclassi� es 9 cases. It thus appears
to be more accurate than the C and M methods but less accurate than QUEST (note: the
apparent error rate is usually biased low). A weakness of the 20-variate discriminant model
is, however, that it cannot be visualized. The best that can be done is to plot the result in
the space of the � rst two discriminant coordinates. Such a projection is given in Figure 12;
it obviously does not explain why the model has such a low error rate.

4.2 FISH DATA

This dataset is from the UC Irvine Repository of databases (Murphy and Aha 1994).
The data consist of observations on 159 � shes caught in a lake in Finland. Seven species
of � sh are represented in the sample: (1) Bream, (2) White� sh, (3) Roach, (4) Parkki, (5)
Smelt, (6) Pike, and (7) Perch. The predictor variables are de� ned in Table 3. The sex

variable is missing from 87 cases and another case does not have a value for the weight

variable.
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Table 3. Predictor Variables for Fish Identi�cation Problem

weight Weight of the �sh (in grams)
length1 Length from the nose to the beginning of the tail (in cm)
length2 Length from the nose to the notch of the tail (in cm)
length3 Length from the nose to the end of the tail (in cm)
height Maximal height as a percentage of Length3
width Maximal width as a percentage of Length3
sex Male or female

The CART, CRUISE, and QUEST trees for predicting species are shown in Figures 13
and 14. They misclassify 21, 24, and 26 cases, respectively.The CART tree does not predict
class 2 and the QUEST tree does not predict classes 2 and 3.

Figure 15 shows the tree from the M method. It splits just once, on height, and
misclassi� es only three cases. (The C tree has the same structure as the M tree, although
the variables employed in the linear discriminant node models are slightly different. It also
misclassi� es three cases.) Table 4 displays the class compositions and the predictions in
each terminal node of the tree.

The reason for the low error rate of the M tree is apparent from Figure 16, which plots
the data and the linear discriminant boundaries in each terminal node of the tree. There is a
high degree of collinearity among the predictor variables in three of the � ve terminal nodes.
In particular, the collinearitybetween length2 and length3 in node C makes it dif� cult
for any classi� cation tree that employs only univariate splits to achieve a low error rate.

A referee noticed that each terminal node of the M tree contains only two or three
classes. This is due to the CRUISE split selection algorithm, which seeks to divide them.
Since a linear discriminant model is � tted only to the classes present in a node, the model
can be relatively simple. As a result, even when the number of classes is large, our approach
of � tting a discriminant model at each node does not necessarily add a lot of complexity.

Figure 13. CART (left) and QUEST (right) trees for � sh data. The number in italics beneath each terminal node
is the predicted class.
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Figure 14. CRUISE 2D tree for � sh data.

If linear combinationsplits are allowed,much lower error rates are possible.The CART,
CRUISE, and QUEST trees using such splits misclassify 17, 1, and 1 cases, respectively.
But since these splits involve more than two variables, they are practically impossible to
interpret or visualize. Our method thus strikes a useful compromise between prediction
accuracy and interpretability. The tree sizes and resubstitution estimates of error rates of
the trees are summarized in Table 5.

5. CONCLUDING REMARKS

Classi� cation trees are more intuitive to interpret than other classi� ers. Our examples
illustrate, however, that the trees are not necessarily easy to interpret. Ease of interpretation
decreases rapidly with tree size. On the other hand, tree size typicallygrows with the amount
of information in a dataset. Thus, the practical reality is that traditional classi� cation trees
are easy to interpret only if the data are not too complex. We can simplify a tree structure
by pruning it, but over-pruning can degrade its prediction accuracy. [The CART, CRUISE,
and QUEST tree shown here are pruned with the “1-SE rule” of Breiman et al. (1984). Thus,

Figure 15. M tree for � sh data
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Table 4. Predictions in the Nodes of Figure 15

Node A Node B Node C

True Predicted class True Predicted class True Predicted class
Class 1 2 3 4 5 6 7 Class 1 2 3 4 5 6 7 Class 1 2 3 4 5 6 7

1 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0
2 0 0 0 0 0 0 0 2 0 0 0 0 0 0 0 2 0 1 3 0 0 0 0
3 0 0 0 0 0 0 0 3 0 0 0 0 0 0 0 3 0 0 19 0 0 0 0
4 0 0 0 0 0 0 0 4 0 0 0 0 0 0 0 4 0 0 0 0 0 0 0
5 0 0 0 0 5 0 0 5 0 0 0 0 9 0 0 5 0 0 0 0 0 0 0
6 0 0 0 0 0 14 0 6 0 0 0 0 0 3 0 6 0 0 0 0 0 0 0
7 0 0 0 0 0 0 0 7 0 0 0 0 0 0 0 7 0 0 0 0 0 0 54

Node D Node E

True Predicted class True Predicted class
Class 1 2 3 4 5 6 7 Class 1 2 3 4 5 6 7

1 0 0 0 0 0 0 0 1 35 0 0 0 0 0 0
2 0 2 0 0 0 0 0 2 0 0 0 0 0 0 0
3 0 0 1 0 0 0 0 3 0 0 0 0 0 0 0
4 0 0 0 0 0 0 0 4 0 0 0 11 0 0 0
5 0 0 0 0 0 0 0 5 0 0 0 0 0 0 0
6 0 0 0 0 0 0 0 6 0 0 0 0 0 0 0
7 0 0 0 0 0 0 2 7 0 0 0 0 0 0 0

Figure 16. Bivariate linear discriminant partitions of data in the nodes of tree in Figure 15.
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Table 5. Comparison of Methods on Fish Data

Univariate splits Linear splits

#Terminal Resub. #Terminal Resub.
Method nodes error nodes error

CART 6 21/159 6 17/159
CRUISE 16 13/159 16 1/159
QUEST 5 16/159 10 1/159
C & M 5 3/159 NA NA

they probably should not be pruned any further.]
The C and M methods are our answer to the question: how to reduce tree size without

sacri� cing prediction accuracy? We do this by taking full advantage of the visual power of
two-dimensionalgraphicaldisplaysand the predictivepower of lineardiscriminantanalysis.
Our methods employ a two-pronged approach to solve the problem. First, they reduce the
tree size by absorbing some of the data complexity in the node models. Second, they force
each node model to involve only two predictor variables so that the � tted model can be
visualized in a two-dimensional plot. The empirical results reported here demonstrate that
this approach can be quite effective.

We use linear discriminant analysis to � t the node models because it produces accurate
classi� ers in our empirical study (Section 3) and because it is computationally ef� cient.
More sophisticatedmodels, such as quadratic discriminant analysis or spline-based models,
can also be used but it is unclear if they provide suf� cient increase in prediction accuracy
to justify the greater computational cost.

The C and M methods will be incorporated in a future version of the CRUISE computer
program (http://www.stat.wisc.edu/¹loh/cruise.html).
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