
Statistica Sinica 29 (2019), 431-453
doi:https://doi.org/10.5705/ss.202017.0225

CLASSIFICATION AND REGRESSION TREES AND

FORESTS FOR INCOMPLETE DATA FROM SAMPLE

SURVEYS

Wei-Yin Loh1, John Eltinge2, Moon Jung Cho3 and Yuanzhi Li1

1University of Wisconsin-Madison, 2U.S. Census Bureau

and 3U.S. Bureau of Labor Statistics

Abstract: Analysis of sample survey data often requires adjustments for missing val-

ues in the variables of interest. Standard adjustments based on item imputation or

on propensity weighting factors rely on the availability of auxiliary variables for both

responding and non-responding units. Their application can be challenging when

the auxiliary variables are numerous and are themselves subject to incomplete-data

problems. This paper shows how classification and regression trees and forests can

overcome these difficulties and compares them with likelihood methods in terms of

bias and mean squared error. The development centers on a component of income

data from the U.S. Consumer Expenditure Survey, which has a relatively high rate

of item missingness. Classification trees and forests are used to model the unit-

level propensity for item missingness in the income component. Regression trees

and forests are used to model the conditional mean of the income component. The

methods are then used to estimate the mean of the income component, adjusted for

item nonresponse. Thirteen methods for estimating a population mean are com-

pared in simulation experiments. The results show that if the number of auxiliary

variables with missing values is not small, or if they have substantial missingness

rates, likelihood methods can be impracticable or inapplicable. Tree and forest

methods are always applicable, are relatively fast, and have higher efficiency than

likelihood methods under real-data situations with incomplete-data patterns sim-

ilar to that in the abovementioned survey. Their efficiency loss under parametric

conditions most favorable to likelihood methods is observed to be between 10–25%.
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1. Introduction

We consider estimation of a population mean µ of an outcome variable Y

based on an incompletely observed simple random sample S without replacement

from a finite population. After a review of some existing solutions, we introduce

nine new ones based on classification and regression trees and forests (abbreviated

to CRTF) and apply them to a data set from the U.S. Consumer Expenditure
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Survey. In addition, we show, by means of simulations with real and artificial

data, that CRTF methods have advantages with respect to (i) bias, (ii) mean

squared error, (iii) speed, and (iv) applicability to large numbers of auxiliary

predictor variables (denoted by X) subject to non-trivial missing-data rates,

although no method is uniformly best. Performance depends on the number of

X variables and their incomplete-data patterns, and on the extent to which the

observed data and missing-data patterns are consistent with model conditions

used implicitly or explicitly by a method.

Given unit i, let wi denote its sampling weight, with wi inversely proportional

to the probability that unit i is in S. Let S1 be the subset of S containing the

non-missing Y values and let yi denote the value of Y for unit i in S1. Let πi
denote the probability that Y is non-missing for unit i and let π̂i be an estimate

of πi. The inverse probability weighted (IPW) estimate of µ is(∑
i∈S1

π̂−1i wi

)−1 ∑
i∈S1

π̂−1i wiyi (1.1)

(see, e.g., Little (1986) and Seaman and White (2013)). Its bias depends on

accurate specification and estimation of a model for πi (throughout this paper,

expectations are evaluated with respect to both the sample design and the nonre-

sponse mechanism). Logistic regression is often used, but it is difficult to apply if

there are many missing values in the X variables. The simple weighted mean of

the non-missing values (denoted by SIM) given by ȳ = (
∑

i∈S1
wi)
−1∑

i∈S1
wiyi,

is an IPW estimate with constant π̂i.

Another approach is imputation of the missing Y values. Let S2 = S−S1 be

the subset of S with missing Y . Let ŷj denote the imputed value of Y for unit j

in S2. Then the mean imputation estimate of µ is(∑
k∈S

wk

)−1(∑
i∈S1

wiyi +
∑
j∈S2

wj ŷj

)
; (1.2)

SIM is a special case with ŷj = ȳ for all j ∈ S2. If the X variables are completely

observed, the ŷj values may be alternatively obtained by regression imputation

(Buck (1960)), where a regression model of Y on X is fitted to the observations

in S1 and the ŷj are predicted from the X values in S2. If the X variables

have missing values as well, the complete-case method fits the regression model

to the subset of values with complete observations in the X and Y variables.

Another solution is nearest-neighbor imputation, where ŷj is the value of yi in

S1 for which xi is nearest to xj . If X has no missing values, this method can
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yield asymptotically unbiased estimates of functions of means (Chen and Shao

(2000)). But this is not directly applicable if the X variables have missing values.

Hot deck (Little and Rubin (2002)) imputes missing values by random sampling

of non-missing values within ‘adjustment cells’ that are prespecified partitions of

the data. A major difficulty is finding suitable partitions.

Yet another method is maximum likelihood, which draws random observa-

tions from a parametric model fitted to the (X,Y ) observations. Assuming that

(i) the model is correct, (ii) the X variables are completely observed, and (iii) the

Y values are missing at random (MAR, the probability that a value is missing

does not depend on the value itself, conditional on the non-missing values of the

X variables), Rubin (1987) showed that inferences from multiply imputed data

are statistically valid for large samples. If there are missing X values, the EM

algorithm (Dempster, Laird and Rubin (1977)) is often used to estimate the pa-

rameters in the model. The AMELIA algorithm (Honaker, King and Blackwell

(2011)) uses multivariate normal likelihoods, with categorical variables converted

to dummy 0-1 vectors.

Finally, there is sequential regression, a variable-by-variable imputation tech-

nique. Initially, all missing values in the X and Y variables are imputed by

their means, medians, or modes. Then each variable is regressed in turn on the

other variables and missing values are updated with the predicted values. The

procedure is continued for several cycles to reduce the effects of the initial im-

puted values (see, e.g., Raghunathan (2016)). MICE (van Buuren and Groothuis-

Oudshoorn (2011)), which stands for multiple imputation by chained equations, is

one implementation. It uses linear regression for imputation of ordinal variables

and polytomous logistic regression for categorical variables. Theoretical argu-

ments for the effectiveness of sequential regression have been given, but they are

based on the assumption of a correctly specified linear regression model relation-

ship between the variable being imputed and the covariates (White and Carlin

(2010)).

In practice, MICE runs into computational problems when there are many

X variables with missing values. Linear regression fails if there is multicollinear-

ity and logistic regression fails if there is quasi-complete separation (Albert and

Anderson (1984); Hosmer, Lemeshow and Sturdivant (2013)). Conversano and

Siciliano (2009), Burgette and Reiter (2010), Wallace, Anderson and Mazumdar

(2010), and Doove, Buuren and Dusseldorp (2014) replace linear and logistic re-

gression with CART (Breiman et al. (1984)) classification and regression trees,

respectively, and, after several iterations, obtain multiple imputations by sam-
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Table 1. Codes and definitions of missing value flag variables.

A valid nonresponse: a response is not anticipated
C “don’t know”, refusal or other type of nonresponse
D valid data value
T topcoding applied to value

pling from the observed responses in the terminal nodes of the trees. Vateekul

and Sarinnapakorn (2009) first fit a classification tree to each missingness indi-

cator; then at each terminal node of the tree, they fit a regression tree to the

observations there and use the fitted values from the latter tree for imputation.

Rubin (1987) proposed imputing the missing values multiple times to obtain

variance estimates. Although there are many simulation studies on multiple im-

putation (MI), almost all used normally distributed data and missingness mech-

anisms defined by logistic regression models (see, e.g., Allison (2000); Schafer

and Graham (2002); Carpenter, Kenward and White (2007); Burgette and Re-

iter (2010); White and Carlin (2010)). Little is known about the performance

of the methods in actual settings where variables are not normally distributed

(e.g., categorical variables) and probabilities of missingness are not determined

by logistic regression.

To our knowledge, only three published simulation studies used real data

(Ambler, Omar and Royston (2007); Yu, Burton and Rivero-Arias (2007); An-

dridge and Little (2010)). None had more than 20 X variables and only one had

missing values in X. To evaluate the methods under more demanding and most

realistic conditions, we use a U.S. Consumer Expenditure (CE) Survey data set

as the test-bed. The data contain more than 500 X variables, many with sub-

stantial numbers of missing values. We consider nine new CRTF methods based

on the CART and GUIDE (Loh (2002, 2009); Loh and Zheng (2013)) algorithms

and compare them against AMELIA and MICE on the data as well as on sim-

ulated data derived from them. Missing values in the X variables are real, not

artificially simulated as MAR. For balance, we also compare the methods under

ideal conditions for the parametric methods.

The remainder of the article is organized as follows. Section 2 describes

the CE data, Section 3 introduces the methods and Section 4 applies them to

the data. Section 5 reports on the simulation experiments and the results, and

Section 6 summarizes the conclusions and discusses some potential extensions.

2. 2013 CE Data

The CE Survey is a longitudinal survey sponsored by the U.S. Bureau of
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Labor Statistics. It collects information on consumers’ expenditures and incomes

as well as characteristics of the consumers. We use a subset of the public-use

microdata of the 2013 CE Survey. Answers from 25,822 consumer units (CUs),

roughly equivalent to households, were obtained on more than 600 questions.

Each CU is associated with a sampling weight named FINLWT21 whose values

do not vary greatly (coefficient of variation 0.375). Details on the survey may be

found in Bureau of Labor Statistics (2016, Chap. 6).

We consider as Y the variable INTRDVX, which is the amount of interest

and dividend income received by the CU during the past 12 months. Variables

are potentially subject to four types of missingness, as reflected in the “missing

value flag variable” codes given in Table 1. The variables are often identified

by underscores at the end of their names; e.g, INTRDVX is the flag variable

associated with INTRDVX. To protect respondent confidentiality, the CE Sur-

vey replaces INTRDVX values greater than $32,000 (called the “upper critical

value”) with $98,338 (called the “upper topcode value”) and assigns code T to

INTRDVX . In our analysis, we omit CUs with INTRDVX codes A and T.

This yields a sample size of 4,609, of which 1,771 CUs have INTRDVX = C,

i.e., INTRDVX is missing. Topcoding is discussed in Section 6 below.

There are 587 neither constant nor completely missing X variables that may

be used to estimate the population mean of Y . About 20% of these X variables

have missing values; 67 of them have more than 95% missing values. No CU has

complete responses on all 587 variables, which include both variables defined at

the CU level (e.g., housing tenure) and variables defined for geographical areas.

The latter variable type includes STATE, REGION and PSU. The STATE iden-

tifier is subject to confidentiality restrictions in some cases. PSUs are generally

counties or small clusters of counties. In this data set, each “A” size PSU is a

cluster with a population of over 2.7 million people, and is self-representing (i.e.,

selected with probability one) under the CE design. Only “A” size PSUs are

identified publicly and other PSU labels are coded as missing for confidentiality

reasons. This paper treats PSU membership as a fixed effect, instead of a random

effect, in the models for missing value imputation.

3. Estimation Methods

Thirteen methods are compared on their ability to estimate the population

mean µ of INTRDVX accurately and quickly. All except the first three are new

and all except the first four are based on CRTF.
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SIM. This is the “simple” weighted mean of the non-missing Y values with

weights proportional to FINLWT21. It yields an estimate of $1,900 for the 2013

CE data.

MICE. This is the R version (van Buuren and Groothuis-Oudshoorn (2011)) of

MICE with default options, including five multiple imputations. Multicollinear-

ity in linear regression and quasi-complete separation in logistic regression can

severely limit the number of variables it can employ. After much trial and error,

19 X variables were found to work with the software: AGE REF, BATHRMQ,

BEDROOMQ, BLS URBN, BUILDING, CUTENURE, EARNCOMP, EDUC

REF, ETOTA, FAM TYPE, MARITAL1, NO EARNR, NUM AUTO, OCCU-

COD1, REF RACE, REGION, ROOMSQ, SEX REF, and ST HOUS. Their def-

initions are given in the Supplementary Material. Only 5 of the 19 variables have

missing values and only 1 (OCCUCOD1) has a substantial number of missing

values (1,697).

AME. This is AMELIA (Honaker, King and Blackwell (2011)) with default

parameters except that the empirical prior level is set at 5. The prior shrinks

the covariances of the data but keeps the means and variances the same. The

level of 5 was suggested by AMELIA author M. Blackwell for dealing with many

missing values, small sample sizes, large correlations, and categorical variables

with many levels.

AIPW. This is the IPW method that uses AMELIA to impute missing X vari-

ables and then uses logistic regression to estimate missing propensities.

GCT. This is an IPW method that uses a GUIDE classification tree (Loh (2009))

to estimate πi, the probability that INTRDVX is non-missing (i.e., INTRDVX

= D). Figure 1 shows the tree constructed using all 587 X variables (definitions

of the variables are given in the Supplementary Material). The estimate of πi
in each terminal node is the proportion of non-missing INTRDVX values in the

node. Substituting these estimates in (1.1) yields an estimate of $1,942 for µ. The

terminal nodes can also serve as adjustment cells for conditional mean imputation

in (1.2).

RCT. This is GCT with the CART algorithm—specifically RPART (Therneau,

Atkinson and Ripley (2015))—instead of GUIDE. Section 4.1 reviews the key

differences between CART and GUIDE.

GCF. This is another IPW method where, instead of using a single tree to esti-

mate πi, it uses a GUIDE classification forest (Loh (2014)), which is an ensemble

of 500 unpruned classification trees with each constructed from a bootstrap sam-

ple of the data. GUIDE forest is similar to Random forest (Breiman (2001))
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Figure 1. GUIDE classification tree for predicting INTRDVX . At each split, an obser-
vation goes to the left branch if and only if the condition is satisfied. The symbol ‘≤∗’
stands for ‘≤ or missing’. Set S1 = {10, 12, 15, 17, 22, 25, 26, 34, 36, 39, 42, 45, 47,
53, 55, 8}. Set S2 = {1,102, 1,109, 1,110, 1,423}. Set S3 = {1, 11, 7, 8}. Set S4 = {18,
2, 22, 24, 27, 42, 47, 48, 51, 8}. Predicted classes printed below terminal nodes; sample
sizes for INTRDVX = C and D, respectively, beside nodes.

except for the former using the unbiased split selection method of GUIDE. The

R implementation of Random forest (Liaw and Wiener (2002)) is not directly

applicable here because it does not allow variables with missing values and cat-

egorical variables with more than 32 levels.

GRT. This is a conditional mean imputation method that uses a GUIDE piece

- wise - constant weighted least-squares regression tree (Loh (2002)) to impute

missing INTRDVX values, with weights given by the variable FINLWT21. Fig-

ure 2 shows the result based on all 587 X variables. It is constructed from the
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2,838 CUs with non-missing values in INTRDVX. Using the mean INTRDVX

values in the terminal nodes as ŷj in (1.2) with wi = FINLWT21 yields an esti-

mated µ of $1,919.

RRT. This is a version of GRT where RPART is used instead of GUIDE.

GRF. This is an alternative to GRT that uses a GUIDE regression forest (Loh

(2012, 2014)) of 500 unpruned regression trees to perform conditional mean im-

putation.

GMICE. Burgette and Reiter (2010) and Wallace, Anderson and Mazumdar

(2010) used the R package tree (Ripley (2016)) and RPART, respectively, to im-

plement CART-MICE. Neither is applicable here because their execution times

grow exponentially with the the number of categorical levels if the response vari-

able is also categorical with more than two levels. GMICE is CART-MICE with

GUIDE in place of CART with ten iterations and a single imputation.

DRT and DRF. If parametric models are employed to model the missing

propensity and the mean of the response variable (such as logistic regression

and linear regression, respectively), an estimate is said to be “doubly robust” if

it is consistent as long as at least one of the two models is correctly specified.

A standard method to achieve this is to fit a linear regression model to the re-

sponse variable and then add an IPW estimate constructed from its residuals

(Robins and Rotnitzky (1995); Little and An (2004); Kang and Schafer (2007)).

Although the methods studied here are not specifically based on any parametric

models, we can nonetheless use the double robustness approach to construct new

estimators, as follows. Let ŷi be the predicted value of yi from GRT or GRF

and let ε̂i = yi − ŷi if i ∈ S1 (i.e., if yi is observed). The resulting doubly robust

estimate, denoted by DRT and DRF, respectively, is(∑
i∈S

wt

)−1∑
i∈S

wiŷi +

(∑
i∈S1

π̂−1i wi

)−1 ∑
i∈S1

π̂−1i wiε̂i.

4. Application to CE Data

The tree for predicting INTRDVX in Figure 1 first splits on INC ANK

(flag variable for percent income rank). CUs with INC ANK = D are sent to

the left node where they are split on RETSURVI (imputation descriptor variable

for the amount of retirement, survivor or disability pensions in past 12 months).

The 140 CUs with RETSURVI 6= 100 are sent to the right terminal node, where

129 and 11 have INTRDVX = C and D, respectively. Thus the probability p

that INTRDVX is non-missing in this node is estimated by 11/140. Let t denote
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Figure 2. GUIDE regression tree for predicting INTRDVX. At each split, an observation
goes to the left branch if and only if the condition is satisfied. The symbol ‘≤∗’ stands
for ‘≤ or missing’. For splits on categorical variables, values not present in the training
sample go to the right. Set S1 = {12, 13, 17, 29, 36, 48, 53, 6, 8, NA}. Sample size (in
italics) and mean of INTRDVX printed below nodes.

a terminal node of the tree and p(t) the proportion of non-missing INTRDVX in

t. Let wi denote the sampling weight FINLWT21 for unit i in t. Setting π̂i = p(t)

for all CUs in t in (1.1) gives the IPW (GCT) estimate of $1,942. The terminal

nodes can serve as adjustment cells for hot deck imputation.

The tree can also be used to impute missing values in INTRDVX. Specifically,

CUs with missing INTRDVX in a terminal node can be imputed with the mean

INTRDVX (weighted by FINLWT21) of the CUs with observed responses in the

node. Using the node weighted mean as ŷj in (1.2) yields the same estimate of

$1,942.

A number of missing-data flag variables (FEDR NDX, INC ANK, IRAX ,



440 LOH ET AL.

LIQUIDX , ROYESTX , SLOC AXX, and SLRF NDX) appear in Figure 1,

showing that missing-data flag variables for asset and income variables are im-

portant predictors of the missingness propensity of INTRDVX. This illustrates

the flexible way in which tree methods can explore the use of both observed

values and related missing-variable flags as predictors in a response propensity

model. It is impossible for logistic regression to do this given the large numbers

of predictor variables and their missing values.

A complement to the classification tree for the flag variable INTRDVX

is the regression tree for variable INTRDVX in Figure 2. Unlike classification

models, the regression model uses only the subset of 2,838 CUs with non-missing

INTRDVX. It splits first on AGE REF (age of reference person). If AGE REF

≤ 57 or missing, the CU goes to the left terminal node (after pruning) which

contains 1,433 CUs with a weighted mean INTRDVX of $803. Otherwise, if

AGE REF is non-missing and > 57, the tree splits on STOCKX (value of all

directly-held stocks, bonds, and mutual funds). The 26 CUs there with STOCKX

> $343,792 go to the right terminal node where they have a weighted mean

INTRDVX of $14,385. Using these weighted terminal node means for ŷ in (1.2)

gives the GRT estimate of $1,919.

4.1. Differences between CART and GUIDE

At each node, CART searches for the best split on each X variable and

then selects the “variable-split set” pair that most reduces node impurity. If X

is ordinal with m distinct values, CART evaluates (m − 1) splits of the form

“X ≤ x0”, with x0 being a midpoint between consecutively ordered values. If X

is categorical with m levels, CART searches through (2m−1−1) splits of the form

“X ∈ A” to find the subset A that yields the best split on X. Thus the number

of splits to be evaluated increases exponentially with m if X is categorical. For

example, STATE has 238 − 1 ≈ 2 × 1011 splits because it has 39 values. Other

variables with many levels include HHID (household identifier), PSU (primary

sampling unit), OCCUCOD1 (occupation of reference person), and OCCUCOD2

(spouse occupation), with 46, 21, 15, and 15 levels, respectively. Consequently,

CART is known to be biased toward selecting variables that allow more splits

(Loh and Shih (1997); Kim and Loh (2001)). GUIDE uses a two-step approximate

solution that avoids the bias. It first selects an X variable to split the node by

means of chi-squared tests of association with Y . Then it finds the best split on

the selected X. See Loh (2002, 2009, 2014) for the additional steps GUIDE uses

to reduce the search space for categorical variables with large m.
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Another major difference between GUIDE and CART is how they deal with

missing values in the X variables. If X has missing values, GUIDE creates a

“missing” level to use in the chi-squared tests for variable selection as well as for

split set selection. This allows every observation to be used. CART, on the other

hand, uses only observations with non-missing values in (X,Y ) to find the best

split on each X. Then it uses a system of surrogate splits on other X variables to

send observations with missing values through the split. This approach is biased

toward selecting variables with more missing values (Kim and Loh (2001)). There

is some evidence that the GUIDE approach yields higher average classification

accuracy than CART’s (as implemented in RPART); see Loh (2009).

4.2. Results

To allow comparison with MICE, we applied the 13 methods to 3 nested

sets of X variables. The smallest is the set of 19 variables mentioned in Sec. 3

for which MICE does not fail. They are far from ideal because only 5 variables

among them have missing values (and only 1 has a substantial number of missing

values). The second set consists of 52 X variables, obtained by combining the

above 19 with the top 20 X variables determined by the GUIDE importance

ranking method (Loh (2012); Loh, He and Man (2015)) for predicting INTRDVX

and INTRDVX, respectively. The third is the full set of 587 variables.

SIM estimates the population mean of INTRDVX by $1,900 for all three sets

because it does not use any auxiliary variables. Estimates for the other methods

are shown in the top half of Table 2 and graphed in Figure 3. Every method

works on the set of 19 variables but MICE fails for the other two sets. The

estimates range from a low of $1,674 (GCF, 52 variables) to a high of $2,184

(AME, 52 variables). In Figure 3, SIM is indicated by a solid line and its value

plus and minus one standard error of $146 (estimated using balanced repeated

replicate weights) by dotted lines. A large majority of the estimates lie within

one standard error of SIM and all are within two standard errors. Qualitatively

similar results (reported in the Supplementary Material) were obtained with the

2014 CE data.

Table 2 also gives the computation times on a Linux computer with a 2.4

GHz AMD Opteron 16-core processor and 64 GB memory. For 19 predictors,

MICE is the slowest, taking 430 sec. for five imputations—more than 4,000 times

slower than RCT, which is fastest at 0.1 sec. AME is the next slowest at 139 sec.

for the same 19 predictors. For 52 predictors AME took 18 hours, and for 587

predictors it was terminated after executing for 6 months.
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Table 2. Estimates (weighted by FINLWT21) and computation times of mean INTRDVX
for 3 sets of predictor variables for the 2013 CE data. Results for AIPW, AME and MICE
are based on 5 multiple imputations. AIPW and AME did not yield any results for 587
variables after more than 6 months.

19 variables 52 variables 587 variables
Est. Sec. Est. Sec. Est. Sec.

AIPW 2,055 122 1,900 72,029 - -
AME 2,088 139 2,184 111,068 - -
GCT 1,949 9 1,960 17 1,942 283
GCF 1,731 97 1,674 171 1,750 2,669
GRT 2,042 8 2,011 18 1,919 273
GRF 2,007 226 1,997 344 1,948 2,457
DRT 2,016 17 2,051 35 1,990 565
DRF 1,975 235 2,039 361 1,960 2,739
GMICE 2,094 57 2,005 434 2,002 76,874
MICE 2,031 430 Fail - Fail -
RCT 1,900 1 1,898 1 1,920 19
RRT 1,940 1 1,940 1 1,930 7
SIM 1,900 - 1,900 - 1,900 -

Figure 3. Estimates of mean INTRDVX (weighted by FINLWT21) for 2013 CE data
using 19, 52 and 587 predictor variables. The solid line marks the value of the SIM
estimate of $1,900 and the dotted lines mark SIM plus and minus one standard error of
$146 (calculated from balanced repeated replication weights).
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5. Simulation Experiments

Simulation experiments were carried out to examine the bias and mean

squared error of the methods. To avoid issues due to sampling weights, equal-

probability sampling was used throughout.

5.1. Experimental design

Studies that try to simulate real conditions usually start with a data set D
and then generate artificial populations in two steps:

Step I. Impute the missing Y values in D and treat the resulting data set as a

finite population P1 so that the mean µ of Y is known.

Step II. Generate a population P2 from P1 by making some X and Y values in

P1 missing.

To make P2 as similar toD as possible, the way these two steps are carried out

is important. Often, MICE is used in Step I and a logistic regression propensity

model is fitted to the missing value flag variable in D to estimate the probability

that the variable itself is missing in Step II. These choices have three undesirable

consequences.

1. Use of MICE in Step I limits the number of variables with missing values to no

more than a few, due to problems with multicollinearity and quasi-complete sepa-

ration. It is inapplicable to the CE data without prior variable selection. Besides,

to impute a Y variable, MICE necessarily imputes all X variables with linear and

logistic regression models. This imposes parametric relationships among the X

variables in P1 that do not exist in D. Therefore, the simulated data often do

not resemble the data.

2. In Step II, logistic regression propensity models cannot be constructed from

X variables with missing values. Either the missing values must be imputed first

or the propensity models must be built from subsets of variables or subsets of

data. Neither solution is desirable. Imputing the X variables (e.g., with MICE)

distorts the data and building propensity models from subsets of data requires

the artificial assumption that the X variables are MAR. Some studies solve this

problem by using only completely observed X variables for propensity modeling

(Burgette and Reiter (2010)), but this is artificial too because the probability

of a missing value in Y often depends on X variables with missing values—see,

for example, the classification tree model in Figure 1, where many predictors of

missingness in INTRDVX are missing value flags of other variables.

3. Linear and logistic regression models with prespecified fixed sets of predictor

variables are inapplicable if the number of variables exceeds the sample size.
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To overcome these difficulties, we started with D the 2013 CE data consisting

of 4,609 units and Y = INTRDVX. We skipped Step I by defining P1 as the subset

of 2,838 units in D with observed INTRDVX values. This allows the mean µ of

Y to be computed without imputation. In Step II, we fit a GUIDE classification

forest to the 4,609 units and 587 predictor variables in D, using the missing

value flag associated with Y as dependent variable. Then we used the fitted

model to estimate the probability that Y is missing for each unit in P1. Finally,

we generated P2 from P1 by making each value of Y in P1 independently missing

according to these probabilities.

We used the same subsets of 19, 52, and 587 X variables as in Section 4.2

in the simulations. Each trial consisted of generating a simulated population P2
as described and drawing a simple random sample without replacement from it.

Each method was applied to the sample to impute the missing INTRDVX values

(for conditional mean imputation) or to estimate πi (for IPW) and then finally

to estimate µ. We used sampling fractions of 5%, 10%, and 25% but report only

the results for 10% sampling because the other results are qualitatively similar.

Importantly, in our simulations Y is MAR only when all 587 X variables are

included. When 19 and 52 variables are used, Y is not MAR. Therefore our

study allows the methods to be evaluated in a fully realistic situation where the

X variables are not MAR and where Y is either MAR or not.

5.2. Simulation results

5.2.1. Data models

We used M = 500 simulation trials. For trial m, let µm denote the popula-

tion mean of Y and µ̂m denote its estimate. The estimated bias and root mean

squared error (RMSE) are

Bias = M−1
∑
m

(µ̂m − µm),

RMSE =

{
M−1

∑
m

(µ̂m − µm)2

}1/2

.

Figure 4 displays the bias and RMSE (with 2 simulation standard error bars)

of the methods. Again, MICE failed for 52 and 587 variables and AIPW and

AME did not finish after running for 6 months. The following observations are

apparent from the plots.

1. For the 19-variable situation, MICE is the worst by far, in both bias and

RMSE. This seems to contradict conventional wisdom (White and Carlin (2010)),
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Figure 4. Bias and RMSE (with 2-SE bars) for populations generated from 19, 52 and
587 X variables. MICE failed for 52 and 587 variables. Computations for AME and
AIPW were aborted after 6 months for 587 variables. Dashed lines separate GUIDE
from non-GUIDE methods.

but the X and Y variables here are not MAR (Y is MAR with respect to 587

variables, not 19). On the other hand, only 1 of the 19 X variables has a sub-

stantial number of missing values. We conclude that MICE is more dependent

on the MAR assumption than the other methods.

2. For the same 19-variable situation, AIPW and AME have low biases and

RMSEs. But for 52 variables, neither is unbiased and AME is tied with RCT for

having the largest RMSE.

3. Among tree methods, RCT has the largest RMSE and RRT the largest bias.

Thus tree algorithms are not alike in performance. The variable selection bias of

CART is likely a contributing factor.

4. GUIDE-based methods tend to perform relatively well in terms of bias and

RMSE, although the long computation times of GMICE (Table 2) puts it at a

practical disadvantage. GCF and DRF seem to have the lowest bias.
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5.2.2. Parametric models and correlated predictors

To see how the methods compare under conditions ideal for AIPW, AME

and MICE, we repeated the simulation experiments with parametric models. The

simulation population was based on the subset of the CE data with completely

observed values in the above 19-variable set. The Y variable was generated from

a linear model with normal errors and its values were made missing according

to a logistic regression model. Five percent of the values in each of variables

AGE REF, BLS URBN, EDUC REF, NO EARNR, NUM AUTO, and ETOTA

were made MCAR. Equal-probability samples without replacement were drawn

from the population at the 10% sampling rate.

Two linear models were employed. The first was trivial (Y = ε), where the

X variables had no effect. The results show that the biases of all methods were

within two simulation standard errors of 0. The RMSE of AME was the largest,

being about 20% larger than the lowest value (from RRT); MICE and RCT were

tied for second largest. The second linear model was non-trivial, with regression

coefficients estimated from the data. In this case, only AIPW, AME and MICE

had biases within two simulation standard errors of 0; they also have the lowest

RMSE. SIM, GCT and RRT were the worst, in both bias and RMSE. The other

methods had RMSE ranging between 10–30% that of MICE. Details about the

simulation and results are in the Supplementary Material.

Because AIPW, AME and MICE are based on linear and logistic regres-

sion, a final simulation experiment was performed to see the effect of correlation

among the predictor variables. Four transportation variables in the CE data with

correlations greater than 0.9850 were selected as X variables. The data were sim-

ulated the same way (i.e., linear model for Y with logistic missing propensity and

MCAR for X) with the X variables restricted to these four. The results, given

in the Supplementary Material, show that only AME, DRF, GCT, RCT, RRT,

and SIM had biases within two SEs of 0; and GCF, GCT, RCT, RRT, and SIM

had the largest RMSEs.

6. Conclusion

6.1. Summary of results

We introduced several techniques to use classification and regression tree

methods for mean estimation of incomplete data. Some employ regression trees

to estimate conditional means in adjustment cells defined by the nodes of the

trees. Others employ classification trees to estimate the propensity for item
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missingness, for use in inverse probability weighting. We applied these methods

to fit models to the variable INTRDVX (interest and dividend income) and its

missingness indicator from the U.S. Consumer Expenditure Survey. Of special

importance was the fact that several potential predictor variables were themselves

subject to relatively high item-missingness rates.

In addition, using this U.S. Consumer Expenditure Survey data set as a

test bed, we performed several simulation experiments to compare the methods

with AIPW, AME and MICE. A major feature of the experimental design is the

novelty of ensuring that the predictor variables are naturally missing, i.e., not

constrained to be MAR, in the simulation populations. The results demonstrate

that CRTF methods have the following desirable properties that make them

deserving of serious consideration for analysis of incomplete data.

1. They are often competitive with AIPW and AME, and superior to MICE in

terms of bias and mean squared error for mean estimation. One reason is the

nonparametric nature of CRTF models. Another is the ability of the models to

avoid the need for imputation of predictor variables, thereby preventing propa-

gation of imputation errors. In contrast, AIPW, AME and MICE are based on

normality and multivariate linear model assumptions that are seldom satisfied in

real and complex data and they all require imputation of predictor and outcome

variables.

2. Even under conditions ideal for AIPW, AME and MICE (namely, logistic

missing propensity and linear regression mean models), the CRTF methods com-

pare quite favorably. If the mean model is not constant, CRTF methods other

than GCT and RRT have RMSEs that are 10–30% larger than those of AME

and MICE. On the other hand, if the mean model is constant, CRTF methods

except for RCT tend to have lower RMSEs than AME and MICE. Finally, if

the predictor variables are highly correlated, AIPW and MICE are biased but

AIPW, AME and MICE have the lowest RMSEs. Among CRTF methods, DRF,

DRT, GRF, and GRT are the best performers under these parametric conditions,

with efficiency losses in RMSE in the 0–30% range.

3. CRTF methods have no sample size limitations. In contrast, parametric

methods typically require the sample size to be substantially larger than the

number of parameters.

4. CRTF methods are not hindered or crippled by multicollinearity or quasi-

complete separation. In fact, collinearity is often used to advantage in tree algo-

rithms; e.g., CART surrogate splits (Breiman et al. (1984)) and GUIDE linear

splits (Loh (2009)).
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5. For cases that involve large numbers of candidate predictors, CRTF methods

can be orders of magnitude faster compared to traditional methods. Because

the speed advantage increases nonlinearly with number of variables, it can be

invaluable for imputation of multiple data sets, bootstrapping, and other variance

estimation techniques in large surveys.

Little and Vartivarian (2003) extended the ideas of Little (1986) to out-

line two strategies for reducing the number of adjustment cells for nonresponse:

(a) choosing cells that are homogeneous with respect to the probability of re-

sponse, and (b) choosing cells that are homogeneous with respect to the outcome

variable. They observed that weighting based on either of these methods of

grouping removes nonresponse bias in estimating population means. Classifica-

tion and regression trees do this naturally. For example, the terminal nodes of

the classification tree in Figure 1 constitute cells that are homogeneous with re-

spect to the estimated probability of response, and the regression tree in Figure

2 gives cells that are homogeneous with respect to the outcome variable.

6.2. Potential extensions

The work here can be extended in several directions. First, the current work

used design information in only limited ways, including use of the labels of certain

self-representing primary sampling units as potential categorical predictors; use of

survey weights in weighted least squares estimation of regression trees and forests;

and use of balanced repeated replication to compute a standard error for the SIM

estimator in Figure 3. It would be useful to consider further design-adjusted

versions of the procedures proposed here. This includes the use of weights in the

growth of individual classification trees or forests. Of special interest would be

evaluation of the extent to which a given procedure may be sensitive to specified

patterns of heterogeneity in the weights. For example, all CRTF algorithms use

approximations; the properties of the resulting procedures can be sensitive to

the extent to which a given data set is consistent with the approximations used

for that procedure; and some weight-heterogeneity patterns may exacerbate that

sensitivity. In addition, several analyses here used some predictor variables that

are equal to membership indicators for certain large primary sample units. It

would be of interest to extend previous literature on the use of stratum and PSU

labels in regression to the current case.

Second, development of appropriate variance estimators would provide im-

portant tools for use in pruning of trees, and for inference related to CRTF-based

estimators of population- and subpopulation-level means and related quantiles,



REGRESSION TREES FOR INCOMPLETE DATA 449

or other population parameters. This would require CRTF-related extensions

of standard theorems on the properties of replication-based variance estimators

under complex sample designs; and may also require complex-sample-design ex-

tensions of post-selection inference approaches developed previously for simple

random samples (Loh et al. (2016)). Of special importance would be conditioning

arguments arising from the fact that the structure of a given tree is data-driven

and not determined a priori.

Pending rigorous theoretical development in those areas, one could consider

ad hoc procedures based on standard methods of balanced repeated replica-

tion (BRR) developed for the U.S. Consumer Expenditure Survey and other

large-scale complex surveys. For general background on BRR methods, see, e.g.,

Krewski and Rao (1981), Shao (1996), Wolter (2007) and references cited therein.

For discussion of BRR methods applied to CE, see Bureau of Labor Statistics

(2016). In particular, for a population mean estimator µ̂ considered in the cur-

rent paper, one could compute that estimator separately for the full sample and

for each of the CE half-sample replicates, and then use customary BRR proce-

dures to compute the resulting replication-based variance estimator. In addition,

one could consider ad hoc estimation of the variance of µ̂ based on bootstrap

methods, with the bootstrap draws aligned appropriately with the salient fea-

tures of the complex sample design. For example, in CE applications based

on public-use datasets, one could consider resampling of pseudo-PSUs within

pseudo-strata, with membership of individual consumer units within the pseudo-

PSUs and pseudo-strata determined by the structure of the 44 BRR replicates.

Finally, one could consider similar approaches to variance estimation for the mean

or other estimator associated with a particular node of a tree. In the latter case,

however, due to the data-driven nature of tree construction, the calculation and

interpretation of numerical results would be conditional on a specific tree.

Third, the current paper focused on estimation of the means of the “interest

and dividend” variable, and a related missing-data flag, for the U.S. Consumer

Expenditure Survey. Some users of CE data, however, are interested in carrying

out econometric analyses based on, for example, regression, generalized linear

models and more complex hierarchical models. For those situations, one may

need to impute simultaneously a substantial number of missing income and ex-

penditure variables for a given consumer unit. For such cases, evaluation criteria

for the properties of the resulting imputation procedure may be more complex,

as discussed in, e.g., Rubin (1996).

Finally, the current analysis focused only on the subpopulation of units that
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did not have INTRDVX values above the topcoding threshold of $32,000. It

would be of interest to explore the use of classification trees to model the joint

and conditional probabilities that a consumer unit (a) has a true INTRDVX

value below the $32,000 threshold and (b) provides a non-missing INTRDVX

item response. In addition, it would be of interest to explore the use of regression

trees or forests to analyze public-use data sets that replace large item responses

with a single reported value. For example, the CE public-use data set replaced

INTRDVX values above $32,000 with the single value $98,338, and a related

multiply-imputed public-use data set replaced the above-threshold INTRDVX

values with the same value $55,632 for each of the multiple imputations.

Supplementary Materials

The online supplementary materials give definitions of the predictor vari-

ables, population mean estimates from the 2014 CE data, and results of simula-

tion experiments with parametric models.
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