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Tree-Structured Classification Via Generalized

WEI-YIN LOH and NUNTA VANICHSETAKUL*

Discriminant Analysis

The problem of constructing classification rules that can be represented as decision trees is considered. Each object to be
classified has an associated x vector containing possibly incomplete covariate information. Tree construction is based on the
information provided in a “learning sample” of objects with known class identities. The x vectors in the learning sample may
have missing values as well. Procedures are proposed for each of the components of classifier construction, such as split selection,
tree-size determination, treatment of missing values, and ranking of variables. The main idea is recursive application of linear
discriminant analysis, with the variables at each stage being appropriately chosen according to the data and the type of splits
desired. Standard statistical techniques used as basic building blocks include analysis of variance, linear and canonical discrim-
inant analysis, and principal component analysis. A new method of tree-structured classification is obtained by assembling the
pieces. This method can accommodate prior probabilities as well as unequal misclassification costs and can yield trees with
univariate, linear combination, or linear combination with polar coordinate splits. The method is compared with the CART
method of Breiman, Friedman, Olshen, and Stone (1984). Some of the operational differences are that the new method (a)
can have multiple splits per node, (b) is nonrandomized, (c) uses a direct stopping rule, (d) handles missing values by estimation,
(e) allows both ordered and unordered variables in the same linear combination split, (f) is not invariant of monotone
transformations of the individual variables, and (g) is computationally faster. Simulation experiments suggest that the two methods
have comparable classification accuracy. The Boston housing data are analyzed in a classification context for illustration.

KEY WORDS: Cross-validation; Decision tree; Discriminant analysis; Machine learning; Misclassification; Missing values;
Principal components; Recursive partitioning.

1. INTRODUCTION
11 The Problem and Classical Solutions

We have a k vector of measurements x = (x, . . .,
x;)' on an object belonging to one of J classes, and wish
to predict its class label. A “learning sample” of n other
objects whose x vectors and class labels are known is as-
sumed available. This problem has been variously called
discrimination (Hand 1981), identification (Gordon 1981,
p- 3), and classification (Breiman, Friedman, Olshen, and
Stone 1984). We adopt the latter term. Its scope is very
broad and examples include the following: (a) remote
sensing of crops using high altitude photographs, (b) med-
ical diagnosis based on health history and vital measure-
ments, (c) speech recognition via waveform data, (d) ship
identification from radar profiles, (e) analysis of chemical
compounds via mass spectra, and (f) weather prediction
using past data (e.g., see Breiman et al. 1984; Hand 1981).

To predict the class of an object a classification rule is
needed. This is constructed using the information in the
learning sample and any given prior probabilities and mis-
classification costs. When the class probability densities
are known, the best rule is the maximum likelihood or
Bayes rule. Most practical methods, however, explicitly
or implicitly estimate the densities from the data.
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The earliest and best-known method is linear discrimi-
nant analysis (LDA). If the x vectors come from normal
distributions with equal covariance matrices, LDA is
asymptotically Bayes. When equal priors and constant mis-
classification costs are assumed and the data are spheri-
cized, LDA partitions the x space into J disjoint portions,
with each portion containing one sample class mean such
that every point in a portion is closer to the mean it con-
tains than to the other means (e.g., see Gnanadesikan
1977, chap. 4). Other methods, such as density estimation
and nearest-neighbor techniques, estimate the class den-
sities nonparametrically. Although effective, these meth-
ods have been criticized (see Breiman et al. 1984, p. 17)
for their (a) dependence on the metric |x|| used; (b) in-
ability to treat categorical variables and missing observa-
tions naturally; (c) high computational cost, since the
learning sample must be recalled every time a new object
is classified; and (d) limited function as ‘black boxes,”
yielding little information about the data.

1.2 The CART Method

The CART method of Breiman et al. (1984) addresses
these criticisms by having a binary decision tree as a clas-
sifier. The latter is obtained by recursively partitioning the
learning sample, which induces a corresponding partition
of the x space. At each stage the sample is split according
to the answers to questions such as “Is x; < ¢?” (univariate
split), “Is 2, a,x; < ¢?” (linear combination split), and
“Does x; € A?” (if x; is a categorical variable). The
method searches over essentially all constants ¢, coeffi-
cients {a,}, and subsets A to find the best split, with the
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goodness of a split measured by how much it decreases
the impurity of the subsamples.

Splitting stops at a node when it is pure or contains less
than a prespecified number of cases. The bottom nodes
are then recombined or “‘pruned upwards” to give the final
tree. The amount pruned is determined by cross-validation
(CV) using a cost-complexity function that balances the
apparent error rate with the tree size. A by-product of this
procedure is a CV estimate of the error rate. Besides the
best split, a set of surrogate or alternative splits on other
variables are obtained at each node to direct cases with
missing values down the tree. Finally, a ranking of the
importance or discriminatory power of the variables is
calculated, with the importance of a variable measured by
how effectively the surrogate splits based on it decrease
tree impurity. Classifying new objects is therefore rapid,
the learning sample is not needed afterwards, and the tree
structure provides additional information about the data.

1.3 The Proposed Methods

Though flexible and powerful, CART has some less
desirable properties. (a) Being based on sort-and-search
principles, it can be slow with large data sets. (b) It is
typically not more accurate than LDA (Breiman et al.
1984, sec. 5.7). Further, the dual use of CV for error
estimation and tree construction means that (c) the CV
estimate is not genuine, (d) run-time is not saved if the
estimate is waived, and (e) the tree is randomized if fewer
than n-fold CV is used, because its size then depends on
the random-number seed used to form the CV samples
(10- or 25-fold CV is common for practical reasons).

We propose and investigate alternative procedures for
each of the main steps of classification-tree construction.
The goal is an algorithm sharing the best features of LDA
and CART, namely the speed of linear techniques and the
visual information of decision trees. One immediate pos-
sibility for a tree with linear combination splits is to re-
cursively partition the x space using linear discriminant
functions. But this inevitably leads to almost singular co-
variance matrices in the subsamples as they become more
homogeneous and reside in subspaces. Further, some sim-
ple data sets are not amenable to linear partitions, such
as two spherically distributed classes with one class
containing the other (see Sec. 3.4). We address the first
problem by a dimensional reduction through principal
components, and the second by transforming to polar coor-
dinate splits with a suitably chosen origin. To obtain uni-
variate splits (which is really where tree-structured
representation is humanly comprehensible), we use uni-
variate F ratios for variable selection and linear discrim-
inant analysis to partition the selected coordinate axis.
Finally, to avoid a randomized solution (and save com-
putations when CV error estimation is not desired), we
employ a direct stopping rule.

2. METHODOLOGICAL DETAILS
21 Priors and Misclassification Costs

Let {n(j),j = 1, ..., J} be the class priors, either
estimated or given. The estimated posterior probabilities
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{p(jl®),j=1,...,7}atnode tare then p(j | ) = p(j,
1)/2; p(i, ), where N; is the number of class j objects in
the sample, N(¢) is the number of class j objects in ¢, and
p(j, ) = w(j)N[(t)N;*. Let C(i | j) be the cost of mis-
classifying a class j object as class i, and assume that C(i
|j) = 0ifi = j, and is nonnegative otherwise. The CART
method deals with unequal misclassification costs in two
ways. One (symmetric Gini) makes the cost matrix sym-
metric. The other (altered priors) converts the misclassi-
fication costs into unit costs by altering the priors to

w() = (i) /3 Como,

where C(j) = 2, C(i | j).

We propose a third option for dealing with unequal
misclassification costs that is intimately related to our use
of discriminant functions to split a node. It is called the
normal theory option (described in Sec. 2.2). It does not
give linear splits with nonconstant misclassification costs.

1)

2.2 Splitting Rule

We use a modified version of LDA to generate linear
combination splits. To avoid near-singular covariance
matrices, a principal component analysis of the correlation
matrix is done at each node. Linear discriminant functions
are calculated from those principal components whose ei-
genvalues exceed f times the largest eigenvalue (f is user-
specified and is .05 in our examples).

Specifically, a split is selected at node ¢ via the discrim-
inant functions

dfy) = 27y — 327 + In{p(jl O}, (2)
where y denotes a vector in the space of the larger principal
components, fi; is the sample mean vector of the jth class,
and 2, is the pooled estimate of the covariance matrix at
the node. Each node is split into J subnodes, and an object
is channeled into the ith subnode if the latter minimizes
the estimated expected misclassification cost:

J

Zl C(i | expld(y)} = min

Smsjj=

1 C(m | jexpld(y)}-

This is the aforementioned normal theory option. [It is
the optimal strategy if y = x and we have normal densities
in the node (see Anderson 1984). Greer (1979) and Vapnik
(1982, chap. 10) discussed optimal strategies for restricted
families of rules according to various optimality criteria.
Their strategies require linear and discrete programming
for implementation.] The same formulas apply to the al-
tered-priors option as well, except that then C(i | j) would
be taken as 1 for i # j, and the priors changed according
to (1).

A univariate split is found in two steps. First, we find
the variable x ;. (say) with the largest F ratio of between-
to within-classes variance. If this F ratio is greater than or
equal to F, (a user-specified threshold), we use the afore-
mentioned discriminant functions to split the node, with
the quantities in (2) referring to values along this coor-
dinate only. (We usually use F, = 4, because it coincides
with the F-to-enter value in the stepwise discriminant anal-
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ysis program in BMDP.) If the largest F ratio is less than
F, (suggesting that the class means are close relative to
the spreads), we look for splits based on dispersion: Each
x,;is transformed into z; = |x; — X,|, where X, is the node
mean for the ith coordinate, and the F ratios based on the
z;’s are computed. Suppose that z ;.. has the largest Fratio,
say Fi... If Fi.. = F;, the node is split using (2) withy =
Z;», and so on; this typically produces 2J — 1 subnodes,
because whenever the condition a < |x — ¢| < b along a
branch is a union of two disjoint intervals, it is split into
two branches, each of the form d < x < e. Otherwise, if
Fi < F,, the node is split into two according as x;» < or
> X;» (a guard against premature stopping).

The preceding steps are ineffective when there is angular
or radial symmetry in the node. Therefore, we propose
polar coordinate splits as a third split option. With this,
the same steps are followed, except that a transformation
to polar coordinates is made whenever spherical symmetry
is detected. Let y again be the vector consisting of the
larger principal component coordinates. Suppose that y
has the largest F ratio F . of between- to within-class vari-
ances among the y/’s. If F, = F,, a linear combination
split is used at the node. Otherwise, each y, is transformed
intow; = |y, — Vi ;|. Suppose that w .. has the largest F
ratio, say Fp... If Fi.. < F, we 51mply split the node in two
according as y » < or > ., again to avoid early stopping—
an example where this is effective is two-dimensional data
distributed at the corners of a square with sides parallel
to the axes, such that the data for one class are located at
a pair of diagonally opposite corners and that for the sec-
ond class at the remaining corners. Otherwise, if Fi. =
Fy, then some spherical symmetry probably exists among
the x variables, and a split on polar coordinates could be
effective. The symmetry, however, may not be present in
every variable. To weed out the “noise” variables, Le-
vene’s (1960) homogeneity test of the x; variances is per-
formed. (Consider data in three dimensions, with the classes
uniformly distributed along concentric cylindrical shells
around one axis; the variable corresponding to this axis
would be found insignificant by Levene’s test and identi-
fied as noise.) Suppose that m variables are found signif-
icant. If m = 1, the node is split on w... If m = 0, all of
the x variables are transformed to polar coordinates (r,
01, . .., 6c-1). If m > 1, only the significant x variables
are transformed to polar coordinates (r, 6,, . . . , 6,,_;).
In each of the latter two cases, the best univariate split
from the w’s, r and 6’s is found. The formulas of Watson
(1983, pp. 5-6) for the average and dispersion of a set of
angles are used in computing the F ratios for the 6 vari-
ables.

Categorical variables are transformed into ordered ones.
If x;, say, is a categorical variable with ¢ categories, it is
converted into ¢ — 1 dummy variables. The largest dis-
criminant coordinate (CRIMCOORD value; also called
canonical variate, see Gnanadesikan 1977, p. 86), say u;,
from this (¢ — 1)-dimensional space is obtained. Each (c
— 1)-dimensional dummy vector is mapped into a one-
dimensional u;. Finally, x; is replaced by u; in the sample.
The 0-1 nature of the dummy variables makes it straight-
forward to reexpress the split “Is u; = ¢?” to the form
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“Does x; € A?”, where A is a subset of categories. Using
only the first CRIMCOORD ensures that the dimension
of the variable-space is not increased.

The CART method handles categorical variables by
searching through all possible subsets A for each x;. Be-
cause it does not convert a categorical variable to an or-
dered one, the two variable types cannot appear together
in a linear combination split; that is, a split is either on a
linear combination of ordered variables or on a single
categorical variable. The method proposed here can mix
variable types.

2.3 Stopping and Node Assignment Rules

The CART method uses CV to prune a large tree to its
eventual size. We adopt the direct stopping rule: Stop
splitting if either the node apparent error rate does not
decrease with splitting, or there is at most one class in the
node with sample size = MINDAT. MINDAT is user-
specified and analogous to a corresponding parameter in
CART. Specifically, let ¢;, . . . , t, be the daughter nodes
of ¢ if it is split, and let I(f) denote the class that will be
assigned to node ¢ if it is declared terminal. The first part
of the rule stops splitting at ¢ if

S cuolaptlo =3 {3 cat) 1996 1)}

j=1

Following CART, we assign node ¢ to class i if the latter
minimizes the estimated expected misclassification cost,
that is, if 3/, C(i | j)p(j| 1) = minZL, C(m | )p(j |
1):1 = m =< J}. [Another assignment method was given in
Vanichsetakul (1986).]

3. EXAMPLES

This section compares a FORTRAN implementation of
the proposed method [called FACT (fast algorithm for
classification trees)] with the commercial CART (1984)
computer program (also coded in FORTRAN) in five sim-
ulated situations. Equal priors and (except for Sec. 3.6)
unit misclassification costs are assumed. All of the data in
both the learning and test samples are complete (i.e., with-
out missing observations). Unless stated otherwise, the
Gini criterion is used in CART, and MINDAT = 5, except
for the waveform recognition problem, where it is 10. The
timings include tenfold CV for both methods. The times
are the central processing unit times on a Pyramid 90X
superminicomputer with a floating point accelerator and
running 4.2 BSD UNIX.

The first example consists of normally distributed data,
the second and third examples are from Breiman et al.
(1984), the fourth is from Friedman (1977), and the fifth
has multiple-valued categorical variables.

34 Normal Discrimination Problem

There are 10 variables and 3 classes. The data consist
of normally distributed x vectors with identity covariance
matrix and mean vectors (0, 0, 0, , 0), (3,00,

, 0), and (3/2, 3V3/2, 0, 0) Table 1 gives the
results The error rates for the two methods are not sig-
nificantly different, but the new method is 16 times faster
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Table 1. Example 3.1: Normal Problem

Linear

Univariate combination

splits splits
Criterion ~ CART FACT SE/Speed CART FACT SE/Speed
CV error
estimate 15 13 +.02 11 11 +.02
Test-sample
error
estimate 15 .16 +.01 15 14 +.01
Run time 35m 127s 16.5 34m 69.7s 29.3

NOTE: SE is standard error and “speed” is the relative speed of FACT to CART. Fy = 4, k
=10, J = 3, and n = 300. There are 3,000 test samples, equal priors, unit misclassification
costs, complete samples, and 10-fold CV. The asymptotic Bayes rate = .1153.

with univariate splits and 30 times faster with linear com-
bination splits. Stepwise LDA using BMDP7M (Dixon et
al. 1983) took 22s and gave a test-sample error estimate
of .12 + .01.

3.2 Waveform Recognition Problem

This example is from Breiman et al. (1984, pp. 49-55).
There are 3 classes and 21 variables. Each class consists
of a random convex combination of two triangular wave-
forms, with noise added. Specifically,

uh, (i) + (1 = wh,(i) + &, Class1
uh (i) + (1 — wh;(@) + ¢, Class?2
uh,(i) + (1 — whs(i) + ¢, Class 3,

wherei = 1, ..., 21, uis a uniform random number on
(0, 1), the ¢/’s are independent standard normal noise vari-
ables, and the h/’s are shifted triangular waveforms such
that h,(i) = max(6 — |i — 11|, 0), h,(i) = h,(i — 4), and
hs(i) = h,(i + 4). Breiman et al. reported a test-sample
estimate of .14 for the Bayes error rate. Table 2 shows
that the proposed method is better than CART for both
accuracy and speed. [Breiman et al. (p. 134) reported a
test-sample estimate of .20 for CART with linear combi-
nation splits. This differs from our .30. Another learning
sample gave estimates of .24 for CART and .21 for our
method. ]

3.3 Digit Recognition Problem

X

This is another example of Breiman et al. (1984). There
are seven 0-1 variables, indicating if a light is on or off in

Table 2. Example 3.2: Waveform Problem

Linear
Univariate combination
splits splits
Criterion ~ CART FACT SE/Speed CART FACT SE/Speed
CV error
estimate .31 31 +.03 .24 21 +.02
Test-sample
error
estimate .31 27 *.01 .30 .20 +.01
Run time 76m 252s 18.1 552m 24m 23

NOTE: SE is standard error and “speed” is the relative speed of FACT to CART. Fo = 4, k
= 21,J = 8, and n = 300. There are 2,000 test samples, equal priors, unit misclassification
costs, complete samples, and 10-fold CV.
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the seven lines of a digital display. (See the top left corner
of Fig. 1.) Thus J = 10. Each light has probability .1 of
not doing what it is supposed to do, independently of the
others.

The learning sample comes from the CART demon-
stration package. The variables are specified as categorical
and univariate splits are used. Figures 1 and 2 show the
two trees (the CART tree is obtained with the “twoing”
criterion). Although the proposed method splits every node
into 10 subnodes, the 0-1 nature of the variables forces
all of the samples down only two subnodes at a time. Table
3 shows the accuracy and speed. The slightly higher esti-
mates of error for CART are probably due to one class
not being assigned a terminal node. (See Table 10, Sec.
5, for the results with another learning sample.)

3.4 Spherical Distribution Problem

This example from Friedman (1977) has 2 classes and
10 variables. The first four variables of one class are dis-
tributed uniformly within a four-dimensional spherical slab
centered at the origin, with inner radius 3.5 and outer
radius 4.0; the last six variables are independent standard
normal. The variables in the other class are distributed as
10-dimensional multivariate normal centered at the origin,
with identity covariance matrix. Thus the last six variables
are noise and the first class almost completely surrounds
the second in the space containing the first four variables.

Table 4 shows that CART is more accurate than the
proposed method if univariate splits are used. The better
accuracy of CART is due to the “build a large tree, then
prune” approach. With linear combination and polar co-
ordinate splits, however, the proposed method was able

1

Eq:O?

no

Figure 1. CART Digit Tree. The numbers in boxes are class assign-
ments. The diagram in the upper left corner shows how the variables
are labeled in the digital display.
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zz=0?

yes

I4=0?

no

Figure 2. Digit Tree With the Proposed Method. The numbers in
boxes are class assignments.

to detect the spherical structure and the tree split only
once, on a radius. Note that CART is worse with linear
combination splits than with univariate splits. This may be
the result of pruning and the one-step optimality of the
procedure; that is, the tree with linear combination splits
is overpruned, and the best univariate split at the root
node subsequently yielded better splits than the corre-
sponding best linear combination split.

3.5 Categorical Variable Problem

This problem has three classes and five categorical vari-
ables. Variables x;, . . . , x5 have 8, 3, 3, 3, and 10
categories, respectively. Each variable takes values 1, 2,
and so forth, up to the number of its categories. The class
distributions are

Class 1: Pr(x; = i, x, = j, x5 = k) = 1/72, ‘
Class 2: Pr(x, = =k)=(i +j+ k)/612,
Class 3: Pr(x; = i, x, = j, x5 = k)

=8 —-i+j+ k)/540.

i9x2 = j,x3

Variables x , and x s are uniformly distributed noise. Table
5 shows that the two methods give close to the asymptotic
Bayes rate. The program CART is slightly more accurate,
but much slower.

3.6 Unequal Misclassification Costs

We use two cost matrices given by Breiman et al. (1984,
sec. 4.5) to examine the effect of unequal costs on the
waveform problem. Table 6 gives the results, with cost

719
Table 3. Example 3.3: Digit Problem
Univariate splits

Criterion CART FACT SE/Speed
CV error

estimate 31 .30 +.03
Test-sample

error

estimate .36 .32 *.01
Run time 772s 49s 15.8

NOTE: SE is standard error and “speed” is the relative speed of FACT to CART. Fo = 4, k
=7,J = 10, and n = 200. There are 5,000 test samples, equal priors, unit misclassification
costs, complete samples, and 10-fold CV. The asymptotic Bayes rate = .26.

matrix

C@lj = 3)

—— O
—_O W
O = N

where i is the column and j the row index. Because the
misclassification costs are constant for each row in (3), our
method gives the same tree under either option. It is from
16 to 23 times faster than CART with univariate splits,
and 13 to 18 times faster with linear combination splits.
Our method is as accurate as CART for univariate
splits, but its misclassification cost is about half CART’s
for linear combination splits. Table 7 gives qualitatively
similar results, with the symmetric cost matrix

033
30 1) @)
310

C@lj) =

4. VARIABLE IMPORTANCE RANKING

A tree structure can sometimes look deceptively simple,
and may cause one to think that only those variables that
appear in the splits are important. Real data often exhibit
proxy phenomena, where two or more variables measure
essentially the same thing. With linear combination splits,
this leads to difficulties with interpretation of the coeffi-
cients. With univariate splits, this produces the masking
problem, because only one variable can appear at a time
in a split.

Breiman et al. (1984) introduced the useful idea of an
importance ranking of the variables via surrogate splits,
to detect masking. Suppose that s(f) is the best split at

Table 4. Example 3.4: Spherical Problem

Univariate
splits
_— CART, FACT,

Criterion  CART FACT SE/Speed LC LCand P SE/Speed
CV error

estimate .08 .18 +.01 12 .06 +.01
Test-sample

error

estimate .09 19 +,005 12 .05 +,004
Run time 15m 695s 12.9 2h 87s 80

NOTE: SE is standard error and “speed” is the relative speed of FACT to CART, LC is linear
combination, and P is polar coordinate splits. Fo = 6, k = 10, J = 2, and n = 1,000. There
are 5,000 test samples, equal priors, unit misclassification costs, complete samples, and
10-fold CV. The asymptotic Bayes rate = .0063.
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Table 5. Example 3.5: Categorical Problem Table 7. Waveform Problem
Univariate splits CART FACT
Criterion CART FACT SE/Speed Criterion AP SG AP NT SE/Speed
CV error Univariate splits
i +
Te:f-tg::wt;le e o =08 cv error
error estimate .61 .59 .79 .55 +.07
estimate 57 60 +.01 Te::;gfmp'e
Run time 136m 3758 218 estimate .79 72 .69 72 +.03
NOTE: SE is standard error and “speed"” is the relative speed of FACT to CART. Fp = 4, k Run time 6.8m 10m 48.2s 46.6 s 8-13
= 5,J = 3, and n = 300. There are 5,000 test samples, equal priors, unit misclassification : inati )
costs, complete samples, and 10-fold CV. The asymptotic Bayes rate = .5795. Linear combination splits
CV error
node ¢. A surrogate split s;(f) based on x; is that split on TeZts-t'sfgr?wtgle 53 55 55 53 +.06
x; that best predicts s(#). The importance of a variable is error
measured by how well these surrogate splits decrease tree estimate 61 72 47 47 +.02
Run time 493 m 1.5h 6.8 m 6.1 m 7-15

impurity.

Instead of surrogate splits, we use ratios of variances to
measure the importance of variables. If F;, denotes the
ratio of the between-classes to the total variance of vari-
able x; at node ¢, and p(?) is the estimated probability that
an object will fall into node ¢ (i.e., the proportion of sam-
ples in f), then the importance of x; is defined to be pro-
portional to 2, F;p(t), with the sum over all nonterminal
nodes and the proportionality constant chosen to make
the largest importance value 100.

Table 8 shows that the two methods rank the variables
differently for the digital problem, and suggests that no
single variable is much more important than the others.
Table 9 gives the ranking for the spherical distribution
problem. Both methods are clearly able to identify the last
six variables as noise.

5. MISSING OBSERVATIONS

Surrogate splits are used in CART to direct cases with
missing observations down a tree. We replace missing val-
ues in the learning sample with class means estimated from
the nonmissing values (see BMDPAM, from Dixon et al.

Table 6. Waveform Problem

CART FACT
Criterion AP SG AP NT SE/Speed
Univariate splits
CV error
estimate .35 .34 .63 .63 +.05
Test-sample
error
estimate .54 .56 .54 .54 +.03
Run time 92 m 10.2m 26.5s 339s 16-23
Linear combination splits
CV error
estimate .32 .32 42 42 +.06
Test-sample
error
estimate .61 .61 .33 .33 +.03
Run time 1.1 h 15h 51m 51m 13-18

NOTE: SE is standard error and “speed” is the relative speed of FACT to CART, AP is altered
priors, SG is symmetric Gini, and NT is normal theory. Fo = 4, k = 21, J = 3, and n = 300.
There are 2,000 test samples, equal priors, complete samples, and 10-fold CV. The cost matrix
is Equation (3).

NOTE: SE is standard error and “speed” is the relative speed of FACT to CART, AP is altered
priors, SG is symmetric Gini, and NT is normal theory. Fo = 4, k = 21,J = 3, and n = 300.
There are 2,000 test samples, equal priors, complete samples, and 10-fold CV. The cost matrix
is Equation (4) of Section 3.6.

1983) prior to tree construction. To classify a new object
with missing values, we propose two solutions, depending
on the type of split. For a tree with linear combination or
polar coordinate splits, all missing values are replaced at
the root node by the respective coordinates of the class
centroid closest to the object, in the space of the non-
missing coordinates. The distance of x from the jth cen-
troid in node ¢ is defined by

d(x, j, t) = —In{p(j| 1)}
+ %E {Insi(6) + si2@[x: — X,:()P, ()

where X;;(f) and s3(¢) are the sample mean and variance
of the ith variable in the jth class in ¢, and the sum is over
the nonmissing variables. The motivation is maximum like-
lihood, assuming normal densities. Categorical variables
are included in (5) through their largest CRIMCOORD
values. To estimate a missing categorical value x;, the
corresponding largest CRIMCOORD u; is first estimated
via (5). Then, x; is replaced by the category whose largest
CRIMCOORD is closest to u;. The same procedure is
used for a tree with univariate splits, except that a missing
value is estimated not at ¢, but at the node in which it is
first needed; the sum in (5) is then over all of the non-
missing variables, as well as any previously estimated vari-
ables.

Table 10 shows the effect of missing values on the digit

Table 8. Variable Importance Ranking for the Digit Problem

CART FACT
Variable Importance Variable Importance
x4 100 x3 100
x2 Al x5 82
x5 69 x7 80
x1 40 x4 76
x3 30 x1 54
x7 21 X2 49
X6 20 X6 40
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Table 9. Variable Importance Ranking for the Spherical Problem

Univariate splits

Linear and Polar,

CART FACT Linear, CART FACT
Variable Importance Variable Importance Variable Importance Variable Importance
X 4 100 x 2 100 x 2 100 X 4 100
X 2 91 x 1 92 X 3 98 X 3 75
x 3 85 x 3 79 X 4 91 x 2 66
X 1 61 X 4 62 X 1 89 X 1 64
X 8 12 X 7 1.1 X 9 13 X 7 1.1
x 9 11 x 8 .6 x 5 12 x10 5
x 5 9 x10 4 x 7 10 x 8 2
x10 8 X 5 3 x10 9 X 6 A
x 7 7 X 6 3 x 8 8 X 5 A
X 6 5 X 9 A X 6 7 X 9 .0

recognition problem for a learning sample different from
that of Table 3. Both the learning and test samples have
D% of their values randomly deleted, with p = 0, 5, 10,
25. The test-sample estimates indicate that CART is bet-
ter. Table 11 shows the results for the waveform recognition
problem. Neither method dominates with univariate splits
here, but the proposed method is more effective with lin-
ear combination splits.

As in Breiman et al. (1984), two further experiments
were conducted to investigate the separate effects of miss-
ing values in the learning and test samples for the digit
recognition problem. The first experiment consists of hav-
ing p% of the data missing from the learning sample but
not the test sample. The second is the opposite, with miss-
ing values in the test sample only. Table 12 indicates that
for both methods, missing values are more damaging if
they occur in the test sample than in the learning sample
(see Breiman et al. 1984, table 5.5).

The tentative overall conclusion is that CART handles
missing values better with univariate splits, and the pro-
posed method is better with linear combination splits.

6. DISCUSSION

Our results show that the proposed method is fast and
accurate relative to CART. We now discuss some impli-
cations of the differences in strategies.

1. Splitting by F Ratios Versus Sorting. The CART
approach of exhaustively searching for splits allows it to
select from a much larger class of splits than the proposed
method. Nevertheless, CART’s greater power in this re-
spect is offset by one disadvantage. By optimizing a split

Table 10. Cross-Validation and Test-Sample Error Estimates for the

Digit Problem
CART FACT
p cv TS cv TS
0 .29 .30 31 .32
5 .33 .34 31 .35
10 .36 .36 .35 .39
25 47 .46 .52 .51

NOTE: TS is test sample and SE is standard error. The value p is the percentage missing in
learning and test samples. Fop = 4, n = 200, SE (CV) = .03, and SE (TS) = .01. There are
univariate splits, equal priors, unit costs, and 10-fold CV.

on the data, CART may sometimes find things that are
not really there. The method of splitting by F ratios al-
leviates this problem by restricting the class of splits. To
make up for the restriction, simple transformations such
as absolute deviations and polar coordinates are included.
This may still be deficient in sufficiently complex situa-
tions. But because the sample is recursively partitioned,
the handicap may not be crippling for most applications,
and the simulations seem to bear this out—it is not crucial
for every node to be split optimally, since subsequent splits
have a chance to compensate (see the last sentence of Sec.
3.4).

2. Top-Down Stopping Versus Pruning. The stopping
rule proposed here is similar to those in the AID and
THAID algorithms (see Fielding 1977; Morgan and Mes-
senger 1973), which are precursors of CART. The obvious
advantage of the ““build a large tree, then prune’ approach
is that it insures against stopping too early. A simple ex-
ample is a two-dimensional two-class data set where the
samples of one class are distributed on the white squares
of a checkerboard and those of the second class on the
black squares. This structure would be discovered only
after a large tree is built, and a top-down stopping rule
such as the one proposed here would not find it. One
difficulty that this example illustrates is that although the
CART approach may eventually find good splits in a highly
complex situation, the resulting tree may not be easy to
interpret. The numerous levels of nesting would require
a fair amount of human scrutiny and intelligence to reveal
the checkerboard structure of the data.

3. Missing Value Estimation Versus Surrogate Splits. The
idea of surrogate splits is conceptually excellent. Besides
solving the problem of missing values, surrogates can help
identify the nodes where masking of specific variables oc-
curs. Practical difficulties, however, can affect the way it
is implemented. First, when linear combination splits are
used, it is impractical to find at every node the best sur-
rogate linear combination split for each possible subset of
variables not a superset of those in the original split. (The
CART program computes only univariate surrogate splits
regardless of the split option.) Second, even the use of
univariate surrogate splits for univariate splits may be in-
sufficient. Figure 3 shows a two-class two-variable data set
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Table 11. Cross-Validation and Test-Sample Error Estimates for the
Waveform Problem

Univariate splits Linear combination splits

CART FACT CART FACT
p cv TS cv TS cv TS cv TS
0 .31 31 31 27 24 .30 .22 .20
5 .35 .33 .29 31 34 .31 .25 .20
10 31 .35 27 .35 .33 .34 .23 .20
25 .38 .37 .28 42 40 40 .29 22

NOTE: TS is test sample and SE is standard error. The value p is the percentage missing in
leaming and test samples. Fo = 4, n = 300, SE (CV) = .03, and SE (TS) = .01. There are
equal priors, unit costs, and 10-fold CV.

for which a binary split on x, is optimal. Nevertheless, no
surrogate split on x, of the form “Is x, < ¢?” is effective.
In contrast the missing-value algorithm in Section 5 pre-
dicts x, from x, satisfactorily. For surrogate splits to be
effective here, they must contain more than just binary
partitions of the x, axis.

4. Categorical Variables. Although the CART method
of splitting on categorical variables appears natural, it may
favor such variables over ordered ones. For example, an
ordered variable x, taking m distinct sample values gen-
erates m — 1 possible splits of the sample of the form “Is
x; = £7”. On the other hand, an m-valued categorical
variable x, generates 2"~! — 1 distinct splits of the form
“Does x, € A?”. Therefore, when all other things are
equal, x, is more likely to be split than x;. Transforming
a categorical variable to a CRIMCOORD variable ame-
liorates this condition by reducing the number of splits.

5. Multiple Versus Binary Splits. The use of binary
splits has the following advantages: (a) the split can be
characterized simply with a yes—no type question, (b) cat-
egorical variables can be handled as naturally as ordered
variables, and (c) the idea of surrogate splits is more
straightforward to implement than if each node is split into
varying pieces. On the other hand, binary splitting can
produce a highly nested tree, which may be difficult to
comprehend because the brain needs to keep track of the
many levels of conditioning (see Mingers 1986, p. 21).
Multiple splitting is a double-edged solution: It may reduce
the level of nesting, but it can also attenuate the subsam-
ples so quickly that interesting information is not shown
because the tree is too short. Section 7 contains another
argument for multiple splits.

6. Cross-Validation. The principal benefits of sepa-

Table 12. Test-Sample Error Estimates for the Digit Problem

First experiment,
p% missing in

Second experiment,
p% missing in

learning sample test sample
P CART FACT CART FACT
0 .30 .32 .30 .32
5 .32 .32 .33 .35
10 .30 .32 .36 .39
25 .31 .31 44 .50

NOTE: Fp = 4 and standard error = .01. There are univariate splits, equal priors, unit costs,
and 10-fold CV.
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Figure 3. Data With Two Variables and Two Classes (0, x). The best
splitis on x; estimation of a missing x, value using x, and the algorithm
in Section 5 is more effective than using a surrogate split based on x,.

rating CV from tree construction are that (a) a randomized
solution is avoided, and (b) execution time is substantially
decreased if the CV error estimate is skipped (e.g., in
exploratory analyses).

7. Other Differences. The relative merits of the other
ingredients are not clear. The ability to mix ordered and
categorical variables in a linear combination split removes
to some extent the dichotomy between the two classes of
variables. The richer class of splits that results may also
make the method more powerful than CART when linear
combination splits are requested. We do not know which
method of dealing with unequal misclassification costs is
best. Neither do we know which method of ranking the
importance of variables is superior; both appear satisfac-
tory from the simulation experiments, and ours is cheaper
because it does not use surrogate splits. The implications
of invariance versus noninvariance to transformations are
discussed in the next two sections.

7. TREE INTERPRETATION AND THE EFFECT OF
TRANSFORMATIONS: THE BOSTON HOUSING DATA

So far, we have emphasized accuracy and speed. We
now examine the differences in interpretation between the
trees from the two methods and the effect of transfor-
mations on them by analyzing the 1970 Boston housing
data, reported by Harrison and Rubinfeld (1978). There
are 506 cases (census tracts) and 14 variables, including
the median value of homes in thousands of dollars (MV).
The others are as follows: CRIM, crime rate; DIS, the
weighted distance to employment centers; ZN, the per-
centage of land zoned for lots; CHAS, 1 if on Charles
River, 0 otherwise; AGE, the percentage built before 1940;
B, (Bk — .63)*, Bk = the proportion of blacks in the
population; INDUS, the percentage of nonretail business;



Loh and Vanichsetakul: Tree-Structured Classification

RAD, accessibility to radial highways; RM, the average
number of rooms; NOX, nitrogen oxide concentration;
TAX, tax rate; LSTAT, the percentage of lower-status
population; and P/T, the pupil/teacher ratio.

To set this up as a classification problem, we categorize
MYV into three classes of roughly equal size: low (Class 1)
if In(MV) = 9.84, high (Class 3) if In(MV) > 10.075, and
medium (Class 2) otherwise. Figures 4 and 5 show the two
trees with univariate splits, and Table 13 gives their vari-
able importance rankings. Both trees split on LSTAT first.
This variable effectively splits the sample into two pieces
in Figure 4 and five pieces in Figure 5. The next variables
split are RM and NOX (CART), and RM and AGE (ours).
The CART method splits NOX if LSTAT > 14.4, and
ours splits AGE if LSTAT > 15.7. This observation and
the importance rankings suggest that NOX and AGE are
proxies for each other if LSTAT > 15.

Five of the predictor variables were transformed by Har-
rison and Rubinfeld (1978), namely, In(LSTAT), RM?,
NOX?, In(RAD), and In(DIS) (see Belsley, Kuh, and
Welsch 1980, p. 231; Breiman et al. 1984, p. 218). Figure
6 and Table 13 show the results with these transformations.
(Table 13 also gives the order in which BMDP7M entered
the variables.) The tree is now shorter, and one of the cut
points at the root node in Figure 6 is the same as the
CART cut point in Figure 4. After transformations the
CART tree is indistinguishable from Figure 4, to the ac-
curacy shown (e.g., the cut point at the root node is 14.39
instead of 14.40), because CART is almost invariant of
monotone transformations in the ordered variables when
univariate splits are used. We say ‘‘almost” because al-
though the learning sample is invariantly partitioned, the
cut points at the nodes are not invariant (each is a midpoint
between two ordered data values). Nevertheless, except

LSTAT < 14.47

167
173

166
yes no
27 140
RM < 6.57 139 34 NOX <597
162 4
yes no yes no
25 2 30 110
LSTAT <157 125 14] 3 30 B < .387 1 4
43 119 2 2
yes no yes no
0 25 18 12
INDUS <5.57 18 107| 2 1 6 2 |4
21 22 0 2
yes no
0 0
131 2 3 5
5 16

Figure 4. Boston Housing Tree From CART. This includes pruning
by 10-fold cross-validation, estimated priors, and equal misclassifica-
tion costs. The numbers in boxes are class assignments. Triples beside
nodes are the node compositions; for example, there are 167 Class 1,
173 Class 2, and 166 Class 3 cases in the root node.
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167
173
166
LSTAT < 9.1~ 9.1 < LSTAT < 15.7 STAT > 15.7
12
2
2
LSTAT <17.77, GE < 74.17
yes yes 0
0 121
29| 3 2 16
121 2
RM < 6.67 CHAS =07
yes yes no
4 119 2
19 1] 1 2 |5
5 2 0
RAD < 117
<]
4
19| 2
3

Figure 5. Boston Housing Tree With the Proposed Method. F, = 4.
There are estimated priors and equal misclassification costs. The num-
bers in boxes are class assignments. Triples beside nodes are the
node compositions; for example, there are 167 Class 1, 173 Class 2,
and 166 Class 3 cases in the root node.

for transformations that are highly nonlinear over the in-
tervals between ordered data values containing the cut
points, the CART tree is practically invariant.

Table 14 shows how the learning sample is classified by
the three trees. The apparent error rates are similar, with
the CART tree being slightly lower. The CV error esti-
mates are also similar, .24 = .02, .26 = .02, and .24 *+ .02
for Figures 4, 5, and 6, respectively. The three trees gave
identical predictions for 416 (82.2%) of the sample cases,
of which 355 were correctly predicted.

Sensitivity to transformations has its advantages and dis-
advantages. When the goal is data exploration, a method
sensitive to transformations obviously allows many more
views of the data structure through its trees than one that
is insensitive. Variability among the trees can help uncover
masked variables as well as signal noisy data. The trade-
off is difficulty in deciding which tree to select. This may
be done on the basis of smallest CV error estimate, which
is then not unlike the use of CV in CART to select its
“right-sized” tree, except that selection is manual rather
than automatic and the trees are not necessarily nested.
A method insensitive to monotone transformations may
be preferred if the objective is to construct a tree-struc-
tured classifier but one does not want to worry about what
transformations to use. This distinction between CART
and the proposed method vanishes with linear combination
splits.

Because our method is built from linear discriminant
analysis, it may be a good idea to always include trans-
formations (such as those of Hoaglin, Mosteller, and Tu-
key 1983) that improve the symmetry of the sample mar-
ginal distributions. The present example is one illustration.

Tree interpretation may be easier when the root node
is split into as many subnodes as the number of classes.
The node compositions in Figures 5 and 6 show that the
first split typically produces three subtrees, each with one
class dominant. Subsequent splits on a subtree merely try
to separate minority cases. (Later nodes do not have three
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Table 13. Variable Importance Ranking: Boston Housing Data

FACT

CART Untransformed

Transformed

BMDP7M

Variable Importance Variable Importance Variable

Importance Untransformed Transformed

LSTAT 100 LSTAT 100 In(LSTAT) 100 LSTAT In(LSTAT)
RM 69 RM 44 RM? 39 RM RM?
P/T 62 NOX 34 AGE 30 P/T P/T
INDUS 61 AGE 32 NOX? 29 NOX B

AGE 58 TAX 31 INDUS 28 DIS NOX?
CRIM 55 INDUS 31 TAX 28 B In(DIS)
DIS 54 P/T 24 P/T 21 AGE ZN
NOX 53 RAD 20 In(DIS) 18 ZN AGE
TAX 53 CRIM 18 CRIM 16

RAD 36 B 17 B 156

B 34 ZN 14 In(RAD) 14

ZN 12 DIS 14 ZN 11

CHAS 5 CHAS 3 CHAS 1

splits each, because the F ratios are weighted by the es-
timated node class priors and so can yield empty sub-
nodes.) Thus to understand where most of the cases in a
particular class go, the tree may be read top—-down. For
example, in Figure 6 the sample is split into three groups
according to the value of LSTAT: (a) housing values are
high (Class 3) in more affluent tracts (left branch of tree);
(b) values in less affluent tracts (right branch) are either
low (Class 1) or medium (Class 2), depending on age; and
(c) tracts with average values of LSTAT (middle branch)
are mostly white: Where this is the case, housing values
are largely determined by the number of rooms. A bot-
tom—up approach is required to interpret the CART tree
in Figure 4.

O =N
—

19
1031 2
b2

Figure 6. Boston Housing Tree With the Proposed Method Using
Transformed Variables. F, = 4. There are estimated priors and equal
misclassification costs. The numbers in boxes are class assignments.
Triples beside nodes are the node compositions; for example, there
are 167 Class 1, 173 Class 2, and 166 Class 3 cases in the root node.

The CART and FACT trees took 8.5 minutes and 30
seconds, respectively, to build.

8. CONCLUSION

In the examples the speed of the proposed method rel-
ative to CART ranges from a minimum of 7 (Table 7) to
a maximum of 80 (Table 4), with a median of 16. As noted
in point (d) of Section 1.3, these ratios are multiplied by
a factor of 10 if the CV estimate of error is not required
(because 10-fold CV was used). The test-sample error es-
timates show that neither method dominates on accuracy:
CART wins 8 times and ours 17 times, with 3 ties. The
better accuracy of one over the other is usually not sig-
nificant, but when it is (Tables 2, 4, 6, and 11) there is an
apparent pattern: CART is better with univariate splits,
and ours is better with linear combination splits.

These observations are admittedly based on a handful
of examples, and the usual words of caution about gen-
eralizations are in order. On the theoretical side, Breiman
et al. (1984, theorem 12.19) proved that under mild reg-
ularity conditions, rules based on recursive partitioning
are Bayes risk consistent. We have not yet identified sit-
uations in which these conditions hold for the methods
proposed here. Like CART (Breiman et al., p. 327), no
theoretical justifications are claimed for our splitting and
stopping rules.

Tree-structured methods that allow univariate and non-
univariate splits are really two tools in one: a classification
rule and data-exploratory technique. Nonunivariate splits

Table 14. Classifications of Learning Sample by the Three Trees

CART FACT 1 FACT 2
Actual 1 2 3 1 2 3 1 2 3
1 128 37 2 128 38 1 14 23 3
2 10 144 19 144 127 32 23 116 34
3 2 29 135 2 26 138 5 25 136
Total 140 210 156 144 191 171 169 164 173

81.3% correct 77.7% correct 77.7% correct

NOTE: “FACT 1" and “FACT 2" refer to the trees in Figures 5 and 6, respectively. Column
and row headings are the predicted and actual class labels, respectively.
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would be the choice when the emphasis is on classification
accuracy. The CART and our methods are then no dif-
ferent from non-tree-structured methods, because trees
with such splits are typically difficult to comprehend. When
the purpose is data exploration, however, a tree with uni-
variate splits offers another way of data summary [called
data-base compression by computer scientists; e.g., see
Michie (1982, p. 223)] that supplements correlation matri-
ces and two-dimensional scatterplots. In this case, com-
putational efficiency and sensitivity to transformations may
be desirable (e.g., compare ordinary regression vs. regres-
sion based on ranks).

Further details on the proposed method (including class
probability trees and alternative terminal node assignment
rules) are provided in Loh and Vanichsetakul (1986) and
Vanichsetakul (1986). Wolberg, Tanner, Loh, and Vanich-
setakul (1987) applied it to a medical diagnosis problem.

More information on the FACT computer program may
be obtained from the first author.

[Received January 1986. Revised July 1987.]
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Comment

We regard the publication of this article in the Journal
of the American Statistical Association as an important
forward step, indicating an interest by the mainstream
statistical community in the tree-structured approach to
regression and classification. This certainly would not have
been possible 10 years ago, when CART was originally
developed. We also applaud the interest shown by Loh
and Vanichsetakul in this methodology. We never re-
garded the CART approach as being the last word in re-
cursive partitioning technology, which has evolved over
the past 25 years beginning with the pioneering work of
Morgan, Sonquist, Messenger and others at the University

* Leo Breiman is Professor, Department of Statistics, University of
California, Berkeley, CA 94720. Jerome H. Friedman is Professor, De-
partment of Statistics, and Group Leader, Stanford Linear Accelerator
Center, Stanford University, Stanford, CA 94305.

of Michigan. This evolution has taken place in the social
sciences and the fields of electrical engineering, pattern
recognition, and most recently Artificial Intelligence. We
feel that the statistical community can contribute greatly
to advances in this area.

From a purely technical point of view, however, we
cannot regard the approach presented in this article as a
step forward in this evolution. It uses a splitting rule de-
rived by analogy to separation of normal distributions with
equal covariance matrices, and F ratios to decide when to
split and when to stop splitting. To this, special devices
are added: If the F ratio based on separation of means is

© 1988 American Statistical Association
Journal of the American Statistical Association
September 1988, Vol. 83, No. 403, Theory and Methods
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not large enough, then the predictor variables are trans-
formed and the splits are based on dispersion. Polar co-
ordinate splits are introduced to deal with possible radial
symmetry; Levene’s test of homogeneity of variances of
the variables is performed to weed out noise variables.
Categorical variables are handled by the introduction of
0-1 dummy variables, and missing data are handled by
analogy to maximum likelihood, assuming normal densi-
ties.

The principal motivation given for this is computational.
By sacrificing CART’s thorough nonparametric approach,
it is possible to greatly increase execution speed. This may
be important in academic settings, where computational
resources are often scarce. In industrial applications, how-
ever, the cost of collecting and organizing the data is usu-
ally much greater than even the most computationally
intensive statistical-analysis procedures. In situations
where one has an interest in the information to be learned
from the data (as opposed to simply using it as a test bed
for trying out procedures), scrimping on the analysis phase
is being penny wise and pound foolish. We have seldom
encountered industrial problems for which computing time
for statistical data analysis was an issue. Issues such as
accuracy and interpretability are much more important.
Also, the less-thorough approach remains viable only to
the extent that it is much faster than the thorough one.
As algorithmic improvements are made to the latter, the
motivation for the former diminishes. (A new, faster ver-
sion of CART will soon be released.)

In addition to the issue of computational speed, this
article offers many opinions concerning the efficacy of the
approach presented. Unfortunately, we have difficulty
finding any with which we can basically agree. Lack of
space precludes a complete discussion of all of the issues,
so we will only touch on a few. One general theme
throughout the article is that splitting based on linear com-
binations of the variables is generally superior to univari-
ate splits. Our experience has been to the contrary.
Besides the obvious interpretability of models based on
univariate splits (which is the biggest single advantage of
the tree-structured approach) we have found that in most
applications where recursive partitioning has higher ac-
curacy than traditional methods, that advantage is
achieved through univariate rather than linear combina-
tion splitting. Linear combination splitting was introduced
in Friedman (1977). There, linear discriminant functions
were applied recursively in a manner similar to that de-
scribed in this article. This was later supplanted by the far
more thorough algorithm implemented in CART. In both
cases,-the principal reason for introducing linear combi-
nation splits was to make recursive partitioning competi-
tive with classical linear procedures in settings appropriate
for the latter. It does this to some extent, but in these
situations one is usually better off with the appropriate
classical procedure. Although linear combination splitting
has strong intuitive appeal, it does not seem to achieve
this promise in practice except for the settings mentioned
previously. Most of the examples used for comparisons in
this article, however, are taken from just these settings.
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The overwhelming majority of CART users prefer uni-
variate splitting in practice even when computation is not
an issue.

Another opinion seen throughout this article is that mul-
tiway splitting is generally superior to binary splitting. Pro-
posals for recursive partitioning using multiway splits have
appeared in the past (see Henrichon and Fu 1969). As
Friedman (1977) argued, multiway splitting does not make
as effective use of the conditional information potentially
present in the tree as does binary splitting. This article
also asserts that multiway splits are more easily inter-
preted. We do not think so, but interpretability is clearly
in the eye of the beholder.

The two ways that the procedure presented in this article
(FACT) gains speed over CART is by using an ad hoc
top—down stopping rule, and by not implementing sur-
rogate splits. Top—down stopping rules were used in all of
the early predecessors of CART (AID, THAID, etc.).
They were highly criticized (with good reason) on this
point, and this was the principal reason for their lack of
acceptance in the statistical community. The optimal com-
plexity tree-pruning algorithm (based on cross-validatory
choice) implemented in CART is probably the most im-
portant contribution of Breiman et al. (1984) to the evo-
lution of tree-structured methodology. It tends to produce
right-sized trees reliably.

In the course of the research that led to CART, almost
two years were spent experimenting with different stop-
ping rules. Each stopping rule was tested on hundreds of
simulated data sets with different structures. Each new
stopping rule failed on some data set. It was not until a
very large tree was built and then pruned, using cross-
validation to govern the degree of pruning, that we ob-
tained something that worked consistently. The procedure
presented in this article faces a similar predicament. It
works well in four cases and does poorly on the fifth.

A large part of this article is concerned with trying to
persuade the reader that one does not gain accuracy with
CART through its thorough but computationally intensive
nonparametric approach. This is done by comparing the
two procedures on several examples. These mostly origi-
nate from Breiman et al. (1984). The simulated data ex-
amples used in Breiman et al. were deliberately chosen to
have a simple and intuitive structure, on which almost any
classification procedure would do fairly well. Unfortu-
nately, this article uses these as serious test beds for ac-
curacy comparisons, along with an example with normally
distributed data, an example where there is some simple
spherical symmetry, and an example with five categorical
variables. The Boston housing data, which is essentially a
3-4 variable data set, is also used.

As Breiman et al. (1984) repeatedly emphasized,
CART’s most marked superiority to traditional methods
is in the analysis of complex nonlinear data sets with many
variables. The data sets used in the examples here are not
of this type, but (with one exception) are fairly linear and
amenable to classical linear procedures. The CART
method has been applied to a variety of complex data bases
in different fields (see Breiman et al. for some examples);
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CART’s performance on these contributes mainly to its
attractiveness.

Still, to look at the examples actually used, the claim
that in the univariate case both procedures have compa-
rable accuracy is suspect. In four of the five examples the
accuracy is comparable. In the spherical example CART
has a test set accuracy of .09, compared with .19 for FACT.
The authors attribute the better accuracy of CART here
to the “build a large tree, then prune” approach. This is
one of the few points on which we agree. It is true that
the polar coordinate split does well in this particular case,
because of its good match to the spherical symmetry built
into the example. It is not likely that nonlinear decision
boundaries will exhibit such nice symmetry in practice.

The article expresses several odd disparaging opinions
concerning CART:

1. Categorical Variables. Because FACT (with its mul-
tiple splits) cannot handle categorical variables in a clean,
elegant way, it is forced to use the usual linear regression
trick of coding a C-value categorical variable into C-
dummy 0-1 variables, and including the latter in linear
combination splits. It is then commented, “The method
proposed here can mix variable types” (p. 717). In the
summary the authors give another unsubstantiated argu-
ment in favor of their recoding method.

2. Transformations of Variables. Because of CART’s
nonparametric approach, the models produced are invari-
ant under all univariate monotone transformations of any
or all of the predictor variables. There appears to be almost
universal agreement that this is an attractive feature. The
FACT method does not have this property. The article
attempts to turn this into a virtue by stating “When the
goal is data exploration, a method sensitive to transfor-
mations obviously allows many more views of the data
structure through its trees than one that is insensitive” (p.
723). We leave it to the reader to sort out the logic in this
statement.

3. Cross-Validation. The cross-validation used in
CART is criticized on several grounds. For example, ‘“the
tree is randomized . . . because its size then depends on
the random-number seed used to form the cross-validation
samples” (p. 716). In this day of bootstrapping and data
resampling, this criticism is a strange anachronism. Of
course, the question is ‘“how dependent?” Data are, by
the very nature of the statistical enterprise, random. How
much does changing the random-number seed in boot-
strapping or cross-validation change the results as com-
pared to the inherent randomness of the data? Our
experience, based on many simulations, is that the relative
effect is minor.

Another criticism is that “the dual-use of cross-valida-
tion . . . means that the CV estimate is not genuine” (p.
716). As pointed out in Breiman et al. (1984, p. 81), this
was thoroughly investigated through many simulations,
and it was concluded that this is not an issue.
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4. Surrogate splits in CART are mainly used to handle
missing data values. Based on the simulations, this article
concludes that CART’s missing-value algorithm is better.
Later (in the summary) the authors attempt to explain
why theirs should be superior.

It is important to keep in mind that for most problems
there is a wide variety of sensible (and sometimes even
not sensible) methods that have comparable accuracy. In
these situations, methods can be evaluated by their inter-
pretability and the insight they provide. On this basis it is
difficult to beat simple nonparametric binary recursive par-
titioning represented by parsimonious trees. To the extent
that CART has achieved popular appeal, it is due to this
aspect rather than its increased accuracy in some situa-
tions. This tends to be especially true if one wants to
present the results to nonclassically trained statisticians.

One does occasionally encounter classification problems
for which the (optimal) decision boundaries are highly
nonlinear (or nonquadratic). In these cases recursive par-
titioning has the potential to achieve substantially higher
accuracy than classical approaches. It is, however, in just
these situations that CART’s thorough (time-consuming)
nonparametric approach (namely, investigating all poten-
tial splits and bottom—up optimal complexity tree pruning)
is essential. (The spherical example in this article provides
a simple illustration of this.) Of course, one seldom knows
in advance the precise nature of the underlying class
boundaries. One must therefore choose whether to use a
computationally fast procedure that has difficulty detect-
ing and dealing with these (perhaps infrequent) occur-
rences, or to apply a computationally intensive but
thorough method knowing that it will often provide no
better performance than the faster methods, because of
the underlying simplicity of the problem.

What one pays for with the computing time spent for
computationally intensive nonparametric procedures
(such as CART, bootstrapping, etc.) is insurance for those
situations where one’s expectations (assumptions) are vi-
olated. An emerging trend in modern statistics has been
methods that substitute computation for unverifiable as-
sumptions. This is motivated by the fact that the cost for
computation is decreasing roughly by a factor of two every
year, whereas the price paid for incorrect assumptions is
remaining the same.

We thank the editors of JASA for inviting us to make
these comments. We hope this publication, by bringing
recursive partitioning methodology to the attention of stat-
isticians, will stimulate research and development on what
we consider an important area of data analysis.
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Rejoinder

A major difficulty with the evaluation of any tree-struc-
tured method is that there are at least three different cri-
teria that can be used, namely, classification accuracy,
computational speed, and interpretability of the trees.
When we first thought of the basic idea for our method,
we were sure it would run fast, but we did not know if it
would be accurate. The results reported in the article, as
well as others we have obtained since then, indicate that
its accuracy is much better than we had hoped. Of course,
it is possible that we are entirely misled by these examples,
but we doubt it. We admit that we do not have as extensive
experience with our method as Breiman and Friedman
have with CART, although the FACT program will be
almost three years old by the time our article is published.

The discussants may be correct in saying that in indus-
trial settings computational efficiency is not a prime con-
sideration, but surely this must depend on the size of the
data set and the number of times a method is applied.

Interpretability of a tree is much harder to define, be-
cause it must ultimately depend on the consumer. What
one person finds interpretable may make no sense to an-
other. A tree is only interpretable if the consumer knows
what each variable measures, on its own as well as relative
to the other variables. Perhaps the most that a computer
program can be expected to do, as far as this issue is
concerned, is to allow univariate splits.

Another factor that makes it almost impossible to say
whether one method produces more interpretable trees
than another is that there are often many trees that seem
to describe a data set equally well—compare the CART
and FACT trees for the housing and digit problems in our
article, for example. After all, a tree is only a sequential
way of summarily describing a data set. Just as there are
many ways to describe a picture in a sequence of steps,
there ought to be different but equally correct ways to
summarize data with a tree structure.

The lack of a definition of correctness is not a handicap.
On the contrary, the consumer can often learn more about
data from a set of different trees, all of which make sense,
than from a single one. And that is where we feel that a
method that is noninvariant to transformations can be ad-
vantageous.

We now address some of the discussants’ more specific
comments.

1. It is not true that our approach cannot be made in-
variant of monotone transformations in the individual
variables. Just as in all rank-based methods, one can sim-
ply recode the data into ranks, run FACT on the ranked
observations, and then retransform back to the original
units (using linear interpolation between ranks if neces-
sary). The result would be no less invariant than CART’s.

2. Tree selection by cross-validation pruning or some
other method is almost mandatory for CART, because of
its splitting approach. A similar kind of selection is possible

with FACT by first getting a set of FACT trees (each
possibly using a different set of variable transforms), along
with their associated cross-validation estimates of error.
The final tree can then be selected on the basis of its error
estimate and its interpretability. Given the speed superi-
ority of our method over CART, the increased computer
time required could still be less than that for one CART
run.

3. We believe that splitting based on linear combina-
tions of the variables should generally yield better classi-
fication accuracy than univariate splits. The reason the
discussants find this to be false in the case of CART could
be either (a) because its search algorithm is getting trapped
in local maxima (see Breiman et al. 1984, p. 132, last
sentence), or (b) because using univariate surrogate splits
to predict a linear combination split when there are missing
values is poor strategy (see Sec. 6, item 3 of our article).

4. The discussants argue that the way cross-validation
is used in CART is similar to bootstrapping in general.
We feel there are two big differences. First, bootstrappers
typically use hundreds or thousands of bootstrap samples,
compared to the 10 or 25 cross-validation samples typical
in CART. Second, the major use of the bootstrap has been
in estimating the error of a solution, rather than in con-
structing the solution itself, which is why CART uses cross-
validation. A randomized estimate of error seems more
acceptable than a decision tree with a random number of
nodes.

We thank all concerned for the opportunity to add these
comments. An improved version of FACT, with many
additional features, should be ready for distribution by the
time this gets into print.

© 1988 American Statistical Association
Journal of the American Statistical Association
September 1988, Vol. 83, No. 403, Theory and Methods
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