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A regression tree approach to identifying
subgroups with differential
treatment effects
Wei-Yin Loh,a*† Xu Heb and Michael Manc

In the fight against hard-to-treat diseases such as cancer, it is often difficult to discover new treatments that benefit
all subjects. For regulatory agency approval, it is more practical to identify subgroups of subjects for whom the
treatment has an enhanced effect. Regression trees are natural for this task because they partition the data space.
We briefly review existing regression tree algorithms. Then, we introduce three new ones that are practically
free of selection bias and are applicable to data from randomized trials with two or more treatments, censored
response variables, and missing values in the predictor variables. The algorithms extend the generalized unbiased
interaction detection and estimation (GUIDE) approach by using three key ideas: (i) treatment as a linear
predictor, (ii) chi-squared tests to detect residual patterns and lack of fit, and (iii) proportional hazards model-
ing via Poisson regression. Importance scores with thresholds for identifying influential variables are obtained
as by-products. A bootstrap technique is used to construct confidence intervals for the treatment effects in each
node. The methods are compared using real and simulated data. Copyright © 2015 John Wiley & Sons, Ltd.
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1. Introduction

For many diseases, such as cancer, it is often difficult to find a treatment that benefits all patients. Current
thinking in drug development is to find a subject subgroup, defined by individual characteristics, that
shows a large treatment effect. Conversely, if a treatment is costly or has potential negative side effects,
there is interest to look for subgroups for which it is ineffective. This problem of searching for subgroups
with differential treatment effects is known as subgroup identification [1–3].

To fix ideas, suppose that the response variable Y is uncensored and the treatment variable Z takes
values l = 1, 2,… ,L. Let 𝐗 denote a vector of covariates. Given a subgroup S defined in terms of 𝐗, let
R(S) = maxi,j |E(Y|Z = i, S) − E(Y|Z = j, S)| denote the effect size of S. The goal is to find the maximal
subgroup with the largest value of R(S), where the size of S is measured in terms of its probability of
occurrence P(S). If Y is subject to censoring, we replace the mean of Y by the log-hazard rate so that R(S)
is the largest absolute log-hazard ratio between any two treatments.

Consider, for example, data from a randomized trial of the German Breast Cancer Study Group [4, 5]
with 686 subjects where the response is recurrence-free survival time in days. The trial was designed
as a 2 × 2 factorial comparing three versus six cycles of chemotherapy and presence versus absence of
hormone therapy, but the data contain no information on the number of cycles, presumably because it
was previously found not significant [6]. Median follow-up time was nearly 5 years, and 387 subjects did
not experience a recurrence of the disease during the trial (54% censoring). The variables are hormone
therapy (horTh: yes, no), age (21–80 years), tumor size (tsize: 3–120 mm), number of positive lymph
nodes (pnodes: 1–51), progesterone receptor status (progrec: 0–2380 fmol), estrogen receptor status
(estrec: 0–1144 fmol), menopausal status (menostat: pre, post), and tumor grade (tgrade: 1, 2, 3).
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Figure 1. Gs (left) and Gi (right) tree models and Kaplan–Meier curves for breast cancer data. At each interme-
diate node, an observation goes to the left child node if and only if the displayed condition is satisfied. Sample
sizes are beside terminal nodes; 95% bootstrap confidence intervals of relative risks for therapy versus no therapy

are below nodes.

A standard proportional hazards regression model finds hormone therapy to have a significant positive
effect on survival, with and without adjusting for the covariates [7, 8]. It is interesting, however, to find
out if a subgroup exists where the treatment has no effect.

Parametric and semi-parametric models such as the proportional hazards model do not easily lend
themselves to this problem. Besides, if there are more variables than observations, such as genetic data,
these models cannot be used without prior variable selection. Regression tree models are good alterna-
tives, because they are nonparametric, naturally define subgroups, scale with the complexity of the data,
and are not limited by the number of predictor variables.

Following current medical literature [9, 10], we call a variable prognostic if it provides information
about the response distribution of an untreated subject. That is, it has marginal effects on the response but
does not interact with treatment. Examples are age, family history of disease, and prior therapy. A variable
is predictive if it defines subgroups of subjects who are more likely to respond to a given treatment. That
is, it has interaction effects with the treatment variable. Figure 1 shows two regression tree models and
the Kaplan–Meier curves in the terminal nodes of the trees. In the Gs model on the left, variable pnodes
is prognostic: recurrence probability is reduced if pnodes > 3, with and without treatment. In the Gi
model on the right, variable progrec is predictive: hormone therapy has little effect if progrec ⩽ 21
and an enhanced effect otherwise.

The main goal of this article is to introduce the algorithms that yield the models in Figure 1 and to
compare them against existing solutions, which are briefly reviewed in Section 2. Section 3 presents the
new algorithms for uncensored response variables. Section 4 compares the selection bias and accuracy of
the new and old methods, and Section 5 proposes a bootstrap technique for computing confidence inter-
vals of treatment and other effects in the subgroups. Section 6 extends the algorithms to censored survival
data, and Section 7 obtains importance scores for ranking the variables and thresholds for identifying the
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unimportant ones. Section 8 gives an application to a retrospective candidate gene study where there are
large numbers of missing values, and Section 9 concludes the article with some closing remarks. It is
assumed throughout that the data are obtained from randomized experiments (see, e.g., [11] for regression
tree models for observational data).

2. Previous work

Let ui and 𝐱i denote the (actual but possibly unobserved) survival time and covariate vector of subject i.
Let si be an independent observation from some censoring distribution, and let 𝛿i = I(ui < si) be the event
indicator. The observed data vector of subject i is (yi, 𝛿i, 𝐱i), where yi = min(ui, si), i = 1, 2,… , n. Let
𝜆(y, 𝐱) denote the hazard function at 𝐱 = (x1, x2,… , xM). The proportional hazards model specifies that
𝜆(y, 𝐱) = 𝜆0(y) exp(𝜂), where 𝜆0(y) is a baseline hazard and 𝜂 = 𝛃′𝐱 is a linear function of the covariates.

Assuming that the treatment has two levels (denoted by z = 0, 1), one approach [12] splits each node
t into left and right child nodes tL and tR to maximize the Cox partial likelihood ratio statistic for testing
H0 ∶ 𝜆(y, 𝐱) = 𝜆0,t(y) exp{𝛽0zI(𝐱 ∈ t)} against H1 ∶ 𝜆(y, 𝐱) = 𝜆0,t(y) exp{𝛽1zI(𝐱 ∈ tL) + 𝛽2zI(𝐱 ∈ tR)}.
A related approach, called interaction trees (IT) [13, 14], chooses the split that minimizes the p-value
from testing H0 ∶ 𝛽3 = 0 in the model 𝜆(y, 𝐱) = 𝜆0,t(y) exp{𝛽1z + 𝛽2I(𝐱 ∈ tL) + 𝛽3zI(𝐱 ∈ tL)}. If there
is no censoring, the model is E(y) = 𝛽0 + 𝛽1z + 𝛽2I(𝐱 ∈ tL) + 𝛽3zI(𝐱 ∈ tL). Both methods employ the
greedy search paradigm of evaluating all splits tL = {xj ∈ S} and tR = {xj ∉ S} on every xj and every
S, where S is a half line if xj is ordinal and is a subset of values if xj is categorical. As a result, they are
computationally expensive and biased toward selecting variables that allow more splits. Further, because
𝜆0,t(y) is a function of t and hence of 𝐱, the tree models do not have proportional hazards, and regression
coefficients in different nodes cannot be compared.

Given a binary response variable Y = 0, 1, the virtual twins (VT) method [2] first uses a random forest
[15] model, with Z,X1,… ,XM ,ZX1,… ,ZXM , (1 − Z)X1,… , (1 − Z)XM as split variables to estimate the
treatment effect 𝜏 = P(Y = 1 |Z = 1) − P(Y = 1 |Z = 0) of each subject. Categorical variables are con-
verted to dummy 0–1 variables for splitting. Then, recursive partitioning and regression trees (RPART)
[16] is used to construct a classification or regression tree model to predict 𝜏 for each subject and to obtain
the subgroups. If a classification tree is used, the two classes are defined by the estimated 𝜏 being greater
or less than a prespecified constant; if a regression tree is used, the subgroups are the terminal nodes with
estimated 𝜏 greater than a prespecified constant. Although the basic idea is independent of random forest
and RPART, their use results in VT inheriting all their weaknesses, such as variable selection bias and
(for random forest) lack of a preferred way to deal with missing values.

The subgroup identification based on differential effect search (SIDES) method [3] finds multiple alter-
native subgroups by identifying the best five (default) splits of each node that yield the most improvement
in a desired criterion, such as the p-values of the differential treatment effects between the two child
nodes, the treatment effect size in at least one child node, or the difference in efficacy and safety between
the two child nodes. For each split, the procedure is repeated on the child node with the larger improve-
ment. Heuristic and resampling-based adjustments are applied to the p-values to control for multiplicity
of splits and correlations among the p-values. The method appears to be most useful for generating can-
didate subgroups with large differential effects, but because only variables that have not been previously
chosen are considered for splitting each node, the method may not be effective if the real subgroups are
defined in terms of interval sets of the form {aj < Xj ⩽ bj}.

Most methods can control the minimum node sample size so that the subgroups have sufficient num-
bers of observations. The qualitative interaction tree (QUINT) method [17] deals with this directly by
optimizing a weighted sum of a measure of effect size and a measure of subgroup size. It looks for
‘qualitative interactions’, where one treatment performs better than another in one subgroup and worse
in another subgroup. Like the aforementioned methods, QUINT finds the subgroups by searching over
all possible splits on all predictor variables and hence is subject to selection bias in its splits. QUINT
is currently limited to ordinal Xi and uncensored Y variables. All the methods are limited to two-level
treatment variables.

3. Uncensored data

It is well known that evaluating all possible splits on all variables to optimize an objective function leads
to a bias toward selecting variables that allow more splits [18–20]. This is due to an ordinal variable with
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k unique values yielding k − 1 splits and a categorical variable with the same number of unique values
yielding 2k−1 − 1 splits. As a result, a variable that allows more splits has a greater chance to be selected
than one with fewer splits. Besides increasing the chance of spurious splits, the bias can undermine the
credibility of the results. SIDES tries to control the bias with Bonferroni-type adjustments, but this can
lead to over correction, as in the chi-squared automatic interaction detector (CHAID) [21] classification
tree algorithm, which is biased toward selecting variables with few splits.

The generalized unbiased interaction detection and estimation (GUIDE) algorithm [19,22] overcomes
this problem by using a two-step approach to split selection: first, find the split variable, and then search
for the best split on the selected variable. The first step yields substantial computational savings, because
there is no need to find the best split on each of the other variables. It also eliminates selection bias,
at least in principle, by using chi-squared tests to select the split variable. QUEST [18], CRUISE [23],
CTREE [24], and MOB [25] are other algorithms that employ significance tests for variable selection. In
this section, we introduce three ways to extend GUIDE to subgroup identification for the case where Y
is not censored.

3.1. Gc: classification tree approach

This method requires that Y and Z are binary, taking values, 0, and 1, say. Then, a classification tree may
be used to find subgroups by defining the class variable as V = Y + Z mod 2:

V =
{

0, if {Y = 1 and Z = 1} or {Y = 0 and Z = 0},
1, if {Y = 0 and Z = 1} or {Y = 1 and Z = 0}.

This is motivated by the observation that the subjects for which V = 0 respond differentially to treatment
and those for which V = 1 do not. Thus, a classification tree constructed with V as the response variable
will likely identify subgroups with differential treatment effects. Although any classification tree algo-
rithm may be used, we use GUIDE [22] here because it does not have selection bias, and call it the Gc
method (‘c’ for classification).

3.2. Gs and Gi: regression tree approach

GUIDE linear regression tree [19] offers an alternative approach that permits Y and Z to take more than
two values each. At each node, we fit a model linear in Z (with dummy coding) and select a variable to split
by examining the residual pattern for each level of Z. Suppose, for example, that data (X1,X2,… ,Y ,Z)
are generated from the model

Y = 1.9 + 0.2I(Z = 1) − 1.8I(X1 > 0) + 3.6I(X1 > 0, Z = 1) + 𝜀, (1)

where Z = 0, 1, and 𝜀 is independent normal. The true subgroup being X1 > 0, we should split the data
using X1. Figure 2 shows how this conclusion can be reached by looking at the data. The top row plots Y
and the residuals from fitting the model EY = 𝛽0 + 𝛽1Z. The middle row plots the residuals versus X1 for
each level of Z. The opposite trends in the residual plots indicate that X1 has an interaction with Z. No
other X variable shows such strong patterns. We can quantify the strength of the interaction by forming a
contingency table with the residual signs as rows and grouped values of X1 (obtained by dividing its values
at the sample mean) as shown in the bottom row of the figure and summing the chi-squared statistics over
the levels of Z. By applying this procedure to each Xi, we can rank the variables and select the one with
the largest summed chi-squared to split the data. We call this the Gs method (‘s’ for sum).

Contingency table tests are convenient because they are quick to compute, can detect a large variety
of patterns, and are applicable to categorical X variables, where we use their values for the columns.
Because the latter changes the degrees of freedom (df) of the chi-squared statistics, we need to adjust
for differences in df before summing them. We do this by following GUIDE which uses a double appli-
cation of the Wilson–Hilferty approximation [26] to convert each contingency table chi-squared statistic
to a one-df chi-squared quantile. Specifically, let x and y be chi-squared quantiles with 𝜈 df and 𝜇 df,
respectively. Then [22],

y ≈ 𝜇

[
1 − 2∕(9𝜇) +

√
𝜈∕𝜇

{
(x∕𝜈)1∕3 − 1 + 2∕(9𝜈)

}]3
. (2)

Copyright © 2015 John Wiley & Sons, Ltd. Statist. Med. 2015, 34 1818–1833

1821



W.-Y. LOH, X. HE AND M. MAN

Figure 2. Plots of Y and residuals versus X1 after fitting EY = 𝛽0 + 𝛽1Z to data from model (1). Vertical dashed
lines indicate sample mean of X1.

The approximation provides a ranking of the variables without the need for chi-squared p-values that can
be extremely small and hard to compute accurately. After a variable is selected, a search is carried out for
the best split on the variable that minimizes the sum of squared residuals in the two child nodes, and the
process is applied recursively to each node. One distinct advantage of contingency tables is that missing
values can be dealt with easily as detailed in the following algorithm.

Algorithm 1
Gs split selection.

(1) Fit the least squares model

EY = 𝛽0 +
L−1∑
z=1

𝛽zI(Z = z) (3)

to the data in the node and compute the residuals. Let Sz denote the set of observations with Z = z
in the node.

(2) For each X and z = 1, 2,… ,L.

(a) Form a contingency table from the data in Sz using the signs (positive vs nonpositive) of the
residuals as columns and the (grouped) X values as rows. If X is ordinal, divide its values
into two groups at the mean. Otherwise, if X is categorical, let its values define the groups.
If there are missing values, add an additional ‘missing value’ row.

(b) Compute the chi-squared statistic Wz for testing independence, and let 𝜈z denote its df. Use
(2) to convert Wz to the one-df chi-squared quantile

rz(X) = max

(
0,
[
7∕9 +

√
𝜈z

{(
Wz∕𝜈z

)1∕3 − 1 + 2∕(9𝜈z)
}]3

)
.

(3) Treating
∑L

z=1 rz(X) as a chi-squared variable with L df, use (2) a second time to convert it to a
one-df chi-squared quantile

q(X) = max

(
0,

[
7∕9 +

√
L

{(
L−1

∑
z
rz(X)

)1∕3
− 1 + 2∕(9L)

}]3
)
.
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(4) Let X∗ be the variable with the largest value of q(X).

(a) If X∗ is ordinal, let A denote the event that X∗ is missing (if any) and Ā its complement. Then,
search through the values of c for the split A∩ {X∗ ⩽ c} or Ā∩ {X∗ ⩽ c} that minimizes the
sum of the squared residuals of model (3) fitted to the two child nodes produced by the split.

(b) If X∗ is categorical, let g denote its number of categories (including the missing category,
if any). If g < 10, search over all (2g−1 − 1) splits of the form X∗ ∈ S to find the one that
minimizes the sum of squared residuals in the two child nodes. If g ⩾ 10, limit the search to
(g − 1) splits by following a technique in [27, p. 101] for piecewise constant least-squares
regression as follows.

(i) Label an observation as belonging to class 1 if it has a positive residual and as class 2
otherwise.

(ii) Order the X∗ values by their proportions of class 1 subjects in the node.
(iii) Select the split along the ordered X∗ values that yields the greatest reduction in the

sum of Gini indices.

If there are no missing X∗ values in the training data, missing X∗ in cases to be predicted are
imputed with the node mean.

Unlike the basic GUIDE algorithm [19] which divides the values of each ordered X variable into three or
four groups in step 1, we use only two groups here to avoid small cell counts, because each contingency
table is constructed from the data for one treatment level only.

The MOB [25] method can be employed similarly, by fitting a linear model as in step 1 of the afore-
mentioned algorithm and then using its own permutation-based procedures to select the split variables
and split values. Because Gs and MOB are sensitive to both prognostic and predictive variables, how-
ever, they may be ineffective if we wish to find subgroups defined by predictive variables only. To see
this, suppose now that the data (X1,X2,… ,Y ,Z) are generated from the true model

Y = 2I(Z = 1) + I(X1 > 0) + 𝜀 (4)

with 𝜀 independent normal. The simulated data plots in Figure 3 show that Gs and MOB will choose X1
with high probability even though it is prognostic but not predictive. IT overcomes this by adding the
interaction I(Z = 1)I(X > c) to the fitted model and testing for its significance, but this approach requires

Figure 3. Plots of data and residuals from the model (4), where X1 is prognostic.
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searching over the values of c, which produces selection bias and may be impractical if Z takes more than
two levels. To get around these problems, we instead test for lack of fit of the model

EY = 𝛽0 +
∑

k

𝛽kI(Z = k) +
∑

j

𝛾jI(H = j), (5)

where H = X if it is categorical and is the indicator function I(X ⩽ x̄) with x̄ being the sample mean of X
at the node otherwise. Then, we select the most significant X to split the data. Turning an ordinal X into a
binary variable may lead to loss of power, but this is compensated by increased sensitivity to interactions
of all kinds, including those that cannot be represented by cross-products of indicators and by allowing
missing values in X. We call this the Gi method (‘i’ for interaction). The procedure is given next.

Algorithm 2
Gi split selection.

(1) For each X variable at each node:

(a) If X is ordinal, divide its values into two groups at its mean. If X is categorical, let its values
define the groups. Add a group for missing X values if there are any. Let H denote the factor
variable created from the groups.

(b) Carry out a ‘pure error’ lack-of-fit test (see, e.g., [28, Sec. 4.3]) of the model (5) on the data
in the node and convert its p-value to a 1 df chi-squared statistic q(X).

(2) Let X∗ be the variable with the largest value of q(X) and use the procedure in Algorithm 1 step 1
to find the split on X∗ that minimizes the sum of squared residuals of the model EY = 𝜂 +

∑
k 𝛽kI

(Z = k) fitted to the child nodes.

Applying the method to the data in Figures 2 and 3 yields p-values of 3× 10−19 and 0.07, respectively.

4. Bias and accuracy

4.1. Selection bias

It is obviously important that a tree model does not have selection bias if it is used for subgroup iden-
tification. At the minimum, this requires that if all the variables are independent of Y , each Xi has the
same probability of being selected to split each node. We carried out a simulation experiment to com-
pare the methods on this property. The experiment employed two predictors, X1 and X2, and Bernoulli
response and treatment variables Y and Z, each with success probability 0.50. All variables are mutually
independent. The distributions of X1 and X2 ranged from standard normal, uniform on the integers 1–4,
and equi-probable categorical with three and seven levels, as shown in Table I.

Based on 2500 simulation iterations with a sample size of 100 in each iteration, Figure 4 shows the
frequency that each method selects X1 to split the root node. Simulation standard errors are less than
0.01. An unbiased method should select X1 or X2 with equal probability regardless of their distributions.
The results show that IT, QUINT, SIDES, and VT have substantial selection biases (QUINT is limited
to ordinal Xi). IT and QUINT are biased toward selecting the variable that has more splits while SIDES
and VT are the opposite. In contrast, the selection frequencies of Gc, Gs, and MOB are all within three
simulation standard errors. The frequencies of Gi are also within three standard errors, except when X2
is categorical with seven levels where it has a slightly higher chance to be selected.

4.2. Accuracy

We use three simulation models to compare the methods in terms of their accuracy in selecting the correct
variables and the correct subgroups. Each model employs a binary treatment variable Z with P(Z = 0) =

Table I. Four types of distributions of X1 and X2.

Notation Type Distribution

Cont Continuous Standard normal
Ord4 Ordinal Discrete uniform with four levels
Cat3 Categorical Discrete uniform with three levels
Cat7 Categorical Discrete uniform with seven levels
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Figure 4. Simulated probabilities that X1 is selected to split the root node; simulation standard errors less than
0.01. A method is unbiased if it selects X1 with probability 0.50. SI and QU refer to SIDES and QUINT,

respectively. The latter is not applicable to categorical variables.

Figure 5. Models M1 and M3. Sets S1 = {X1 = 0,X2 = 0}, S2 = {X1 = 0,X2 > 0}, S3 = {X1 > 0,X2 = 0}, and
S4 = {X1 > 0,X2 > 0}.

P(Z = 1) and 100 variables 𝐗 = (X1,X2,… ,X100), all mutually independent. Each Xi takes categorical
values 0, 1, or 2 (simulating genetic markers with genotypes AA, Aa, and aa), with X1 and X2 having
identical marginal distribution P(X1 = 0) = 0.4, P(X1 = 1) = 0.465, and P(X1 = 2) = 0.135. The others
have marginal distributions P(Xj = 0) = (1 − 𝜋j)2, P(Xj = 1) = 2𝜋j(1 − 𝜋j), and P(Xj = 2) = 𝜋2

j , with
𝜋j (j = 3, 4,… , 100) independently simulated from a beta distribution with density f (x) ∝ x(1− x)2. The
models for Y are as follows:

M1: P(Y = 1 |𝐗) = 0.4 + 0.05I(Z = 1)
{

4I(X1 ≠ 0) + 3I(X2 ≠ 0) + I(X1 ≠ 0,X2 ≠ 0)
}

M2: P(Y = 1 |𝐗) = 0.3 + 0.2
[
{2I(Z = 1) − 1}I(X1 ≠ 0,X2 ≠ 0)
+I(X3 ≠ 0) + I(X4 ≠ 0)

]
M3: P(Y = 1 |𝐗) = 0.5 + 0.1

[
2{I(Z = 1) + I(X1 ≠ 0) + I(X2 ≠ 0)} − 3

]
.

Figure 5 shows the values of P(Y = 1 |𝐗) for models M1 and M3. Variables X1 and X2 are predictive
in M1 but prognostic in M3. Figure 6 shows the values for model M2 which is more complex; X1 and
X2 are predictive, and X3 and X4 are prognostic. M2 tests the ability of a method to distinguish between
prognostic and predictive variables.

First, we compare the frequencies that X1 and X2 are chosen at the first two levels of splits of a tree.
For each of 1000 simulation iterations, 100 observations of the vector (𝐗,Y ,Z) are simulated from each

Copyright © 2015 John Wiley & Sons, Ltd. Statist. Med. 2015, 34 1818–1833
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Figure 6. Model M2, with predictive X1 and X2 and prognostic X3 and X4. Sets S1 = {X1 = 0,X2 = 0},
S2 = {X1 = 0,X2 > 0}, S3 = {X1 > 0,X2 = 0}, and S4 = {X1 > 0,X2 > 0}.

Figure 7. Probabilities that X1 or X2 are selected at first and second level splits of trees for models M1, M2,
and M3. Long bars are better for M1 and M2, and short bars are better for M3. VT, virtual twins; SI, subgroup

identification based on differential effect search; IT, interaction trees.

model, and a tree is constructed using each method. The frequencies that X1 or X2 is selected to split
the root node (first level split) as well as one or both of its child nodes (2nd level split) are graphed in
Figure 7. QUINT is excluded because it does not allow categorical variables. The AIC pruning penalty
is used instead of the default BIC for IT because the AIC yields trivial trees less often.

For model M1, where X1 and X2 are predictive and there is no other variable associated with Y , all but
SIDES select X1 or X2 to split the root node with comparably high frequency. At the second split level,
the frequencies of Gs, MOB, and VT are distinctly higher than those of Gc, Gi, and IT, while that of
SIDES remains low. Therefore, Gs, MOB, and VT are best, and Gc, Gi, and IT second best for model M1
on this criterion. The situation is different in M2 which has two predictive and two prognostic variables.
Now, Gc, Gi, and IT are excellent with SIDES close behind, and Gs and MOB are very poor. This shows
that the latter two do not distinguish between predictive and prognostic variables. This is confirmed in
M3, which has no predictive variables. Here, the probability that X1 or X2 is selected to split the nodes
should not be different from that of the other 98 variables, but Gs, MOB, and VT pick the former with
high frequencies. Only Gc, Gi, IT, and SIDES perform reliably in this case.

Next, we compare the power of the methods in identifying the correct subgroup. Let S be any subgroup.
Recall from the Introduction Section that the effect size is R(S) = |P(Y = 1 |Z = 1, S) − P(Y = 1 |Z =
0, S)|. The ‘correct’ subgroup S∗ is defined as the maximal (in probability) subgroup S with the largest
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value of R(S). For models M1 and M2, S∗ = {X1 ≠ 0,X2 ≠ 0}; for M3, S∗ is trivially the whole space
because the effect size is constant.

To estimate accuracy, let n(t, y, z) denote the number of training samples in node t with Y = y and
Z = z and define n(t,+, z) =

∑
y n(t, y, z) and nt =

∑
z n(t,+, z). Let St be the subgroup defined by t. The

value of R(St) is estimated by R̂(St) = |n(t, 1, 1)∕n(t,+, 1) − n(t, 1, 0)∕n(t,+, 0)|. The estimate Ŝ of S∗ is
the subgroup St such that R̂(St) is maximum among all terminal nodes. If Ŝ is not unique, we take their
union. The ‘accuracy’ of Ŝ is defined to be P(Ŝ)∕P(S∗) if Ŝ ⊂ S∗ and zero otherwise.

Table II and Figure 8 show the estimated accuracies and probabilities of nontrivial trees based on
samples of size 100 and 1000 simulation iterations. We see the following:

Model M1. MOB, VT, Gs, and Gi are best, in that order. IT and SIDES have very low accuracy, because
of their high tendency to yield trivial trees and hence no subgroups. The other four methods
almost always give nontrivial subgroups.

Model M2. Gi has the highest accuracy, at 0.91, followed by Gc and SIDES at 0.86 and 0.82,
respectively. Gs, MOB, IT, and VT have difficulty distinguishing predictive from prog-
nostic variables; all yield nontrivial trees almost all the time, except for IT which gives a
nontrivial tree 56% of the time.

Table II. Accuracy rates of subgroup selection and frequencies of nontrivial
trees.

Model Type Gi Gs Gc IT SIDES VT

M1 Accuracy 0.322 0.430 0.150 0.015 0.024 0.465
M1 P(nontrivial tree) 0.953 0.983 0.990 0.105 0.232 1.000
M2 Accuracy 0.913 0.204 0.855 0.280 0.819 0.430
M2 P(nontrivial tree) 0.979 0.999 1.000 0.562 0.988 1.000
M3 Accuracy 0.939 0.285 0.519 0.886 0.848 0.279
M3 P(nontrivial tree) 0.104 1.000 0.693 0.133 0.410 1.000

IT, interaction trees; SIDES, subgroup identification based on differential effect search;
VT, virtual twins.

Figure 8. Accuracy rates of subgroup identification and frequencies of nontrivial trees for models M1, M2, and
M3. For accuracy, long bars are better. For frequencies of nontrivial trees, long bars are better for M1 and M2
and short bars are better for M3. VT, virtual twins; SI, subgroup identification based on differential effect search;

IT, interaction trees.

Copyright © 2015 John Wiley & Sons, Ltd. Statist. Med. 2015, 34 1818–1833
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Model M3. Because S∗ is the whole space, the ideal tree is trivial. Gi and IT are best, yielding trivial
trees 90% of the time. In terms of accuracy, Gi, IT, and SIDES are best, having values of
0.94, 0.87, and 0.85, respectively. Gs, MOB, and VT are the worst, because they produce
nontrivial trees all the time.

The aforementioned results suggest that Gi is the overall best method in terms of accuracy. It is best
in models M2 and M3 and fourth best in model M1, where it loses to Gs, MOB, and VT, which are
more accurate when there are no prognostic variables. Gc, IT, and SIDES are dominated by Gi in all
three models.

5. Bootstrap confidence intervals

Naïve point and interval estimates of the treatment means and differences can certainly be calculated
from the training data in each node. Let 𝜇(t, z) denote the true mean response for treatment z in node
t, and let (yi, zi), i = 1, 2,… , nt be the observations in t. Let kz denote the number of observations in t
assigned to treatment z. Then, 𝜇̂(t, z) = k−1

z

∑
zi=z yi is the naïve estimate of 𝜇(t, z). If 𝜎̂(t, z) denotes the

sample standard deviation of the yi among the treatment z observations in t, then 𝜇̂(t, z) ± 2k−1∕2
z 𝜎̂(t, z) is

a naïve 95% confidence interval for 𝜇(t, z). If Z takes only two values, let d(t) = 𝜇(t, 1) − 𝜇(t, 0). Then,
d̂(t) = 𝜇̂(t, 1)− 𝜇̂(t, 0) is the naïve estimate of the treatment effect, and a naïve confidence interval for d(t)
is the usual two-sample t-interval. Because the nodes in the tree are not fixed in advance but are typically
produced by a complex search procedure, however, the validity of these estimates cannot be taken for
granted. For example, SIDES employs adjustments to the naïve p-values of treatment effects in the nodes
to control bias.

To see the extent of the bias for Gi and Gs, we carried out a simulation experiment using models M1
and M2. The experimental design is an r-replicate (r = 2, 4) of a 34 factorial in variables X1,X2,X3,X4,
each taking values 0, 1, and 2 and Z independent Bernoulli with probability 0.50. The binary response Y
is simulated according to models M1 or M2. In each simulation trial, a Gi or Gs tree T is constructed from
the training data. If T is nontrivial, we record the average values of 𝜇̂(t, z) − 𝜇(t, z) and d̂(t) − d(t) over
terminal nodes t and the proportions of times each naïve confidence interval contains the true estimand.
Columns 3–8 of Table III show the estimated bias and coverage probabilities of the intervals over 2000
simulation trials that result in nontrivial trees. The biases are remarkably small (the true means range
from 0.30 to 0.90). We attribute this to Gi and Gs not finding splits that directly maximize or minimize
the treatment effect, unlike SIDES and QUINT. The coverage probabilities, on the other hand, are all too
low, although there is a perceptible improvement as r increases.

To obtain intervals with better coverage, we use a bootstrap method to estimate the standard deviations
of the naïve estimates. Let  denote a given data set, and let T denote the regression tree constructed from
it. Let ∗

j (j = 1, 2,… , J) be a bootstrap training sample from , and let T∗
j be the tree constructed from

Table III. Bias of estimated treatment means and their difference (averaged over nodes of each
tree) and coverage probabilities of naïve and bootstrap 95% intervals, based on 2000 simulations
trials of nontrivial trees, with 100 bootstrap iterations per trial. r is the number of replicates of a 34

design.

Bias of naïve estimates
Coverage probabilities of 95%

of means and difference naïve intervals bootstrap intervals

r Expt 𝜇(t, 0) 𝜇(t, 1) d(t) 𝜇(t, 0) 𝜇(t, 1) d(t) 𝜇(t, 0) 𝜇(t, 1) d(t)

2 M1-Gi 6.8E-3 −2.2E-2 −2.9E-2 0.821 0.811 0.818 0.892 0.955 0.934
M1-Gs 4.4E-3 −1.9E-2 −2.3E-2 0.819 0.800 0.857 0.907 0.952 0.935
M2-Gi 6.8E-3 −2.0E-2 −2.6E-2 0.835 0.846 0.836 0.937 0.947 0.941
M2-Gs 3.5E-4 −1.5E-2 −1.5E-2 0.871 0.861 0.907 0.953 0.965 0.942

4 M1-Gi 3.0E-2 −1.6E-2 −1.9E-2 0.880 0.874 0.889 0.903 0.972 0.957
M1-Gs 3.7E-3 −1.5E-2 −1.9E-2 0.869 0.862 0.888 0.916 0.967 0.955
M2-Gi 1.1E-3 −7.5E-3 −8.6E-3 0.896 0.915 0.911 0.966 0.967 0.963
M2-Gs −3.8E-3 −9.4E-3 −5.7E-3 0.888 0.913 0.916 0.968 0.973 0.950
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∗
j with naïve estimates 𝜇̂∗

j (t
∗, z) for terminal nodes t∗ in T∗

j . Let nz(t ∩ t∗) be the number of treatment z
observations from  that belong to t ∩ t∗ and define

𝜇̄∗
j (t, z) =

∑
t∗

nz(t ∩ t∗) 𝜇̂∗
j (t

∗, z)
/ ∑

t∗
nz(t ∩ t∗).

The bootstrap estimate of the variance of 𝜇̂(t, z) is the sample variance s2
𝜇
(t, z) of {𝜇̄∗

1(t, z), 𝜇̄
∗
2(t, z), …,

𝜇̄∗
J (t, z)} and a 95% bootstrap confidence interval for 𝜇(t, z) is 𝜇̂(t, z)±2s𝜇(t, z). If Z takes values zero and

one, let d̄∗
j (t) = 𝜇̄∗

j (t, 1) − 𝜇̄∗
j (t, 0). Then, a 95% confidence interval for d(t) is d̂(t) ± 2sd(t) where s2

d(t) is
the sample variance of {d̄∗

1(t), d̄∗
2(t), …, d̄∗

J (t)}.
The rightmost three columns of Table III give the simulated coverage probabilities of the bootstrap

intervals using J = 100. There is a clear improvement over the naïve intervals. In particular, the coverage
probabilities of the bootstrap intervals for the treatment effect d(t) are remarkably accurate across the
two models and two methods. The worst performance occurs in model M1 for Z = 0, where the true
treatment mean is 0.40 in all nodes (Figure 5).

6. Censored data

Several obstacles stand in the way of direct extension of Gi and Gs to data with censored response vari-
ables. The obvious approach of replacing least squares fits with proportional hazards models in the nodes
[12,13] is problematic because Gs employs chi-squared tests on residuals and their signs. Although there
are many definitions of such residuals [29], it is unclear if any will serve the purpose here. Besides, as
noted earlier, fitting a separate proportional hazards model in each node yields different baseline cumu-
lative hazard functions. As a result, the whole model no longer has proportional hazards and hence
regression coefficients between nodes cannot be compared. To preserve this property requires a com-
mon estimated baseline cumulative hazard function. We solve these problems with the old trick of using
Poisson regression to fit proportional hazards models.

Let ui and 𝐱i denote the survival time and covariate vector of subject i. Let si be an independent obser-
vation from some censoring distribution, and let 𝛿i = I(ui < si) be the event indicator. The observed data
vector corresponding to subject i is (yi, 𝛿i, 𝐱i), where yi = min(ui, si), i = 1, 2,… , n. Let F(u, 𝐱) and 𝜆(u, 𝐱)
denote the distribution and hazard functions, respectively, at 𝐱. The proportional hazards model specifies
that 𝜆(u, 𝐱) = 𝜆0(u) exp(𝜂), where 𝜆0(u) is the baseline hazard, and 𝜂 = 𝛽′𝐱 is a linear function of the
covariates. Let Λ(u, 𝐱) = ∫ u

−∞ 𝜆(z, 𝐱) dz denote the cumulative hazard function, and let Λ0(u) = Λ(u, 𝟎)
be the baseline cumulative hazard. Then, the density function is f (u, 𝐱) = 𝜆0(u) exp{𝜂 − Λ0(u) exp(𝜂)}.
Letting 𝜇i = Λ0(yi) exp(𝜂i), the log likelihood can be expressed as

n∑
i=1

𝛿i log f
(
yi, 𝐱i

)
+

n∑
i=1

(
1 − 𝛿i

)
log{1 − F(yi, 𝐱i)}

=
n∑

i=1

[
𝛿i{logΛ0(yi) + 𝜂i} − Λ0(yi) exp(𝜂i) + 𝛿i log{𝜆0(yi)∕Λ0(yi)}

]
,

=
n∑

i=1

(𝛿i log𝜇i − 𝜇i) +
n∑

i=1

𝛿i log{𝜆0(yi)∕Λ0(yi)}.

The first term on the right is the kernel of the log likelihood for n independent Poisson variables 𝛿i with
means 𝜇i, and the second term is independent of the covariates (see, e.g., [30,31]). If the Λ0(yi) values are
known, the vector 𝛽 may be estimated by treating the event indicators 𝛿i as independent Poisson variables
distributed with means Λ0(yi) exp(𝛽′𝐱i).

Thus, we can construct a proportional hazards regression tree by iteratively fitting a Poisson regression
tree [32,33], using 𝛿i as Poisson responses, the treatment indicators as predictor variables, and logΛ0(yi)
as offset variable. Gi employs log-linear model goodness-of-fit tests [34, p. 212] to the fitted values to
obtain the split variables and split points. At the first iteration, Λ0(yi) is estimated by the Nelson–Aalen
[35,36] method. After each iteration, the estimated relative risks of the observations from the tree model
are used to update Λ0(yi) for the next iteration (see, e.g., [37, p. 361]). The results reported here are
obtained using five iterations.

Copyright © 2015 John Wiley & Sons, Ltd. Statist. Med. 2015, 34 1818–1833

1829



W.-Y. LOH, X. HE AND M. MAN

The results of applying these techniques to the breast cancer data were shown earlier in Figure 1. Gi
and Gs each splits the data once, at progrec ⩽ 21 and pnodes ⩽ 3, respectively. The corresponding
Kaplan–Meier curves in the figure show that progrec is predictive, and pnodes is prognostic. The
95% bootstrap confidence intervals of exp(𝛽), the relative risk of hormone therapy versus no therapy, are
shown beneath the terminal nodes of the trees. They are constructed as for uncensored response data,
with the regression coefficient 𝛽 replacing the mean response. Specifically, let  and T denote the training
sample and the tree constructed from it. Let ∗

j and T∗
j denote the corresponding jth bootstrap sample and

tree, for j = 1, 2,… , J. Let 𝛽(t) and 𝛽∗j (t
∗) denote the estimates of 𝛽 in nodes t ∈ T and t∗ ∈ T∗

j based
on  and ∗

j , respectively, and let n(A) denote the number of cases in  that belong to any set A. Define

𝛽∗j (t) =
∑

t∗ n(t ∩ t∗) 𝛽∗j (t
∗)
/ ∑

t∗ n(t ∩ t∗). The bootstrap estimate of the variance of 𝛽(t) is the sample

variance s2
𝛽
(t) of {𝛽∗1 (t), 𝛽

∗
2 (t), …, 𝛽∗J (t)} and a 95% bootstrap confidence interval for 𝛽(t) is 𝛽(t) ± 2s𝛽(t).

7. Importance scoring and thresholding

When there are many variables, it may be useful or necessary to reduce their number by some form of
variable selection. One way to accomplish this is to rank them in their order of importance and select a
top-ranked subset. Lack of a proper definition of ‘importance’ has led to many scoring methods being
proposed, but few include thresholds for identifying the noise variables. For example, CART and random
forest use the information from surrogate splits to compute scores but not thresholds.

Following [38], we score the importance of a variable X in terms of the one-df chi-squared statistics
computed during variable selection. Specifically, let qt(X) be the value of q(X) (Algorithms 1 and 2) at
node t and nt be the number of observations in t. We define the importance score of X to be Imp(X) =∑

t ntqt(X) and approximate its null distribution with a scaled chi-squared using the Satterthwaite method
[39]. This procedure is similar to that in [38] except for two changes. First, the latter employs the weight√

nt instead of nt in the definition of Imp(X). The new definition increases the probability that the variable
selected to split the root node is top-ranked. The other change is in the choice of threshold. In [38],
the threshold is the K−1(K − 1)-quantile of the approximating distribution of Imp(X), where K is the
number of predictor variables; the motivation being that 1∕K of the unimportant variable are expected
to be found important. It is difficult to compute the K−1(K − 1)-quantile of the distribution, however, if
K is large. Therefore, the threshold is defined to be the 0.95-quantile instead. For the breast cancer data,
Gi identifies only progrec as important, whereas Gs identifies pnodes, progrec, and estrec in
descending order.

8. Application to data with missing values

Missing values pose two problems for tree construction. The first is how to deal with them during split
selection, and the second is how to send observations with missing values through a split. CART uses
a system of surrogate splits that is biased toward choosing variables with few missing values [23, 40].
For variable selection, Gc, Gi, and Gs create a ‘missing’ category in each contingency table. Each split
has the form x ∈ S, where the set S may contain the missing values. There is some evidence that this
technique is best among classification tree methods if the response variable takes two values [41].

We illustrate the method on a real data set from a retrospective candidate gene study. Owing to con-
fidentiality reasons, the data and solutions are described in general terms here. A total of 1504 subjects
were randomized to treatment or placebo, and the response is survival time in days, with 63% censored.
The explanatory variables consist of 17 continuous-valued baseline measures (a1, a2, and b01–b15)
and 288 categorical variables, of which six are baseline measures (c0–c5) and the rest are genetic vari-
ables (g001–g282), each having two or three levels. More than 95% (1435/1504) of the subjects have
values missing in one or more explanatory variables; only seven variables (a1, a2, b3, c0, c4, b15,
and g272) are completely observed.

Although the overall treatment effect is statistically significant (p-value 0.008), its magnitude is small.
The question is whether there is a subgroup for which the treatment effect is larger. Owing to the large
number of variables, a traditional Cox proportional hazards model is inapplicable without some sort of
variable selection, even if restricted to the subset of complete observations.

The Gs model, shown in Figure 9, splits only once, on a2. If the latter is less than 0.1 or missing, there
is little difference in survival probability between treated and untreated, as shown by the Kaplan–Meier
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Figure 9. Gs model for gene data. At each node, a case goes to the left child node if and only if the stated condition
is satisfied. Sample sizes are beside terminal nodes and 95% bootstrap intervals for relative risk of recurrence for

treatment versus placebo are below the nodes.

curves below the node. Otherwise, the difference is statistically significant: a 95% bootstrap confidence
interval (based on 100 bootstrap iterations) for relative risk (treatment vs placebo) is (0.45, 0.81). The
importance scoring method identifies 27 and 28 important variables for Gi and Gs, respectively. The trees
constructed from these variables, however, are unchanged.

9. Conclusion

Regression trees are natural for subgroup identification because they find subgroups that are interpretable.
But interpretability is advantageous only if the algorithms that produce the trees do not possess selection
bias. We have introduced three algorithms that are practically unbiased in this respect. Gc is simplest
because it can be implemented with any classification tree algorithm (preferably one without selection
bias) by appropriate definition of a class variable. It is limited, however, to binary-valued response and
treatment variables. Further, some modification of the classification tree algorithm is needed to disallow
splits that yield nodes with pure classes.

Gs is a direct descendant of the GUIDE regression tree algorithm. As a result, it is more general than
Gc, being applicable to any kind of ordinal response variables, including those subject to censoring, to
multivalued treatment variables, and to all types of predictors variables, with or without missing values.
If there is no censoring, Gs borrows all the ingredients of GUIDE. The main differences lie in the use
of the treatment variable as the sole predictor in a linear model fitted to each node, the construction of a
separate chi-squared test of the residuals versus each predictor for each treatment level, and the sum of the
Wilson–Hilferty transformed chi-squared statistics to form a single criterion for split variable selection
at each node. As the example in Figure 3 demonstrates, however, Gs can be negatively affected by the
presence of prognostic variables.

Gi is our preferred solution if the goal is to find subgroups defined by predictive variables only. To avoid
being distracted by prognostic variables, Gi uses a chi-squared test of treatment–covariate interaction to
select a split variable at each node. It is therefore similar in spirit to the IT method. But unlike the latter,
which searches for the split variable and the split point at the same time, Gi uses the chi-squared test for
variable selection only. Besides avoiding selection bias, this approach allows missing predictor values
and saves much computation time.

We extend Gi and Gs to censored time-to-event data by fitting a tree-structured proportional hazards
model to the data using Poisson regression. Poisson residuals are easier to employ for our purposes than
those from proportional hazards models. Further, this approach gives a common baseline cumulative
hazard function, thereby allowing comparisons of treatment effects between nodes. The price is increased
computing time because of the need for iterative updates of the estimated baseline cumulative hazard
function, but the expense is not large relative to the other methods, as shown by the average computing

Copyright © 2015 John Wiley & Sons, Ltd. Statist. Med. 2015, 34 1818–1833
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Table IV. Average times (s), over 500 simulation trials of model M1,
to construct one tree on a 2.66 GHz Intel processor.

MOB Gs Gi Gc IT VT SI QU

1.4 4.3 7.0 17.5 127.8 341.1 1601.5 NA

QU does not allow categorical variables.
IT, interaction trees; VT, virtual twins; SI, subgroup identification based on
differential effect search; QU, qualitative interaction tree.

times to construct one tree for model M1 in Table IV (recall that the predictor variables in M1 take three
values each; the speeds of Gc, Gi, and Gs relative to the other methods would be greater if the variables
take more values).

Subgroup identification may be prone to error, especially if the number of predictor variables is large,
because the chance of finding the correct variables can be small, as the results for model M1 in Figure 8
show. If the number of variables is large, it is often helpful to eliminate some of the irrelevant variables
with importance score thresholds and then construct the trees with the remaining ones. Our scoring and
thresholding method is particularly convenient for this purpose because, unlike other approaches, it does
not require data resampling and hence is much quicker.

To our knowledge, there has not been an effective method of confidence interval construction for the
estimates in the nodes of a regression tree. The main difficulty is the numerous levels of selection typically
involved in tree construction. Not surprisingly, naïve intervals that ignore the variability due to selection
are overly optimistic. To solve this problem, we have to account for this extra variability. We do this by
using a bootstrap method to estimate the true standard errors of the estimated treatment effects. Because
each bootstrapped tree is likely different (and different from the original), we do not obtain an interval
for each of its nodes. Instead, we average the bootstrap treatment effects within each node of the original
tree and use the averages to estimate the standard errors of the original treatment effects. We do not yet
have theoretical proof of the consistency of this procedure, but the empirical results are promising.

The methods discussed here cannot be expected to provide definitive subgroup identification, because
the error rates can be quite high in some situations (e.g., model M1). Of course, it would increase con-
fidence if there is a procedure that can indicate the magnitude of the error rate. Until then, the main
utility of the methods is in identifying potential subgroups for scrutiny by domain knowledge experts and
validation by independent trials.

Gi and Gs are implemented in the GUIDE computer program which can be obtained from www.stat.
wisc.edu/~loh/guide.html.
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