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Prediction errors from a linear model tend to be larger when extrapolation is involved, particularly

when the model is wrong. This article considers the problem of extrapolation and interpolation

errors when a linear model tree is used for prediction. It proposes several ways to curtail the size

of the errors, and uses a large collection of real datasets to demonstrate that the solutions are

effective in reducing the average mean squared prediction error. The article also provides a proof

that, if a linear model is correct, the proposed solutions have no undesirable effects as the training

sample size tends to infinity.
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1. INTRODUCTION

Given a training sample {(x1, y1), (x2, y2), . . . , (xn, yn)}, the purpose of linear re-
gression is to find a linear model approximation f̂ (x) of a function f (x) = E( y |x)
that can be used to predict the value of a new y given x. When x lies outside the
convex hull of the xi-values, the prediction is called extrapolation. The latter
usually produces larger prediction errors than interpolation, for which x lies
inside the convex hull.

We consider the situation where f̂ (x) is constructed using a regression tree
algorithm, such as CART [Breiman et al. 1984], M5’ [Wang and Witten 1997],
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Fig. 1. GUIDE piecewise cubic model for full professor salary. At each intermediate node, a case

goes to the left child node if and only if the condition is satisfied. Beneath each leaf node are the

sample mean of full professor salary and the name of the selected regressor variable.

or GUIDE [Loh 2002]. These algorithms employ a divide-and-conquer strategy
to find f̂ (x): first partition the training sample into several pieces and then
estimate the function within each partition (represented by a leaf node of the
tree) with a linear model estimated from the training data in the partition. Thus,
f̂ (x) consists of one or more linear pieces, and extrapolation occurs whenever x
lies within a partition but outside the convex hull of the data in that partition
(note that x may lie within the convex hull of the whole training sample, in
which case the problem may also be viewed as one of interpolation).

To illustrate the difficulties, let us examine some data on the 1995 salaries of
full professors in U.S. colleges taken from StatLib (http://lib.stat.cmu.edu).
We use a subset of 694 colleges with complete observations on twenty-five vari-
ables, including instructional expenditure per student (InstExp), number of
applications received (AppsRec) and accepted (AppsAcc), number of associate
(NAssocProf) and full professors (NFullProf), percent of faculty with PhDs
(PFacPhD), and percent of new students from the top 10% of their high-school
class (Top10).

Figure 1 shows a regression tree, constructed with version 4 of the GUIDE
algorithm, where a cubic or lower-order polynomial in the best single predictor
variable is fitted at each node. The order of the polynomial is decided by sequen-
tially testing the statistical significance of the highest order term (starting with
the cubic), and stopping when the test is significant at the five percent level. In
the tree diagram, the mean full professor salary is printed beneath each leaf
node, together with the name of the selected polynomial predictor variable. The
fitted polynomials are shown in Figure 2 with the data points. An advantage
of fitting a polynomial rather than a multiple linear model is that the latter
cannot be presented graphically in this way.

One notable characteristic of the graphs is the nonuniform distributions of
the data points. In node 4, for instance, the upswing of the cubic polynomial is
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Fig. 2. Data and fitted functions in the leaf nodes of the GUIDE model in Figure 1.

essentially determined by two points on the right. Similarly, the downturn of the
quadratic in node 7 is determined by two points on the right. Finally, in node 13,
the slope of the fitted line is largely controlled by one point on the left. These
high-leverage points, as they are called, have the potential to produce large
extrapolation errors. Outlier deletion is not a solution here, because the outliers
are not errors. For example, the two outliers with large values of NFullProf in
node 7 are associated with large public schools that typically do not pay very
high salaries.

The above problems are not rare, especially when the data partitions are
generated by automated algorithms. One way to reduce the size of the extrap-
olation errors is to truncate the fitted functions. We study four simple methods
for doing this. To be effective, they need to have two desirable properties: (i) re-
duced average prediction error when extrapolation is harmful and (ii) little or
no increase in average prediction error when extrapolation is harmless. The
methods are presented in Section 2, where they are applied to various types
of GUIDE models and evaluated on a set of fifty-two real datasets. Truncation
is shown to be generally helpful in reducing average prediction mean squared
error (MSE), although the degree of improvement varies from one algorithm to
another.

What happens when f (x) is itself a linear model? Will truncation make mat-
ters worse? Fortunately, the answer to the latter question is “no”, at least as
long as the sample size is sufficiently large. This is established theoretically
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in Section 3, where we prove that the effect of truncation on prediction MSE
vanishes asymptotically as the training sample size tends to infinity. We com-
pare the truncated GUIDE methods with M5’, random forest, and two spline
methods, with and without truncation, in Section 4, and conclude with some
remarks in Section 5.

2. THE METHODS

In real applications, the value of the y variable is likely to be bounded above,
below, or both. For example, college professor salaries cannot be arbitrarily
high and there is a natural lower bound of zero. One way to avoid catastrophic
extrapolation errors is to force f̂ (x) to lie between the bounds of the train-
ing sample. There are three obvious ways to do this. Let y(1) = min1≤i≤n yi

and y(n) = max1≤i≤n yi denote the smallest and largest y-values, respec-
tively, in the training sample in the node, and let rn = y(n) − y(1) denote its
range.

Type 1. Truncate f̂ (x) outside the range of the training sample y-values in
the node: max[min{ f̂ (x), y(n)}, y(1)]. This method is used in Kim et al. [2007].

Type 2. Given a constant c ≥ 0, truncate f̂ (x) outside ( y(1) − crn, y(n) + crn):

max[min{ f̂ (x), y(n) + crn}, y(1) − crn].

We use c = 0.1 in the empirical comparisons below.

Type 3. Truncate f̂ (x) outside the range of the y-values of the entire training
sample, that is, the range at the root node of the tree.

These methods would be effective in controlling extrapolation errors in three
of the five nodes in Figure 2. In nodes 7 and 12, however, they are ineffective
at the extreme right, because the value of f̂ (x) stays within the range of the
training data in each graph. An alternative solution is to make f̂ (x) continuous
but flat (i.e., constant) once x falls outside the range of its sample values in the
node. We call this Winsorization because of its similarity to a technique in robust
estimation where outliers are moved in closer to the bulk of the data; see, for
example, Hampel et al. [1986, p. 179].

Type 4. If x is outside the range of the training sample in the node, replace
it with x0, where x0 is the training sample value in the node nearest to x, and
define f̂ (x) = f̂ (x0). For ease of computation when x is multidimensional, x0

is defined as the point that is coordinate-wise nearest to x. That is, x0 is the
point, on the smallest hyper-rectangle containing the training sample in the
node, that is nearest to x.

Before we evaluate the effectiveness of these methods, we need to distinguish
between ordered variables (e.g., percent of faculty with PhDs) and unordered
variables (e.g., type of college: I, IIA, or IIB). An ordered variable will be called
a linear predictor and an unordered one a categorical predictor. If desired, each
categorical predictor is converted into a set of 0-1 dummy variables when a
model is fitted to the data in a node. These dummy variables are not used to
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split the nodes; splits on categorical variables are on subsets of the categories.
We consider the following seven models for fitting the data in the nodes of a
GUIDE tree.

Gm: Multiple linear regression model using all the variables (including dummy
variables) in each node.

Gs: Multiple linear regression model using forward-and-backward stepwise se-
lection of variables (including dummy variables) in each node.

Gp: Two-predictor multiple linear regression model using the best pair of vari-
ables (including dummy variables) in each node.

Ga: Simple analysis of covariance (ANCOVA) model using in each node the best
single linear predictor and stepwise selection of dummy variables from the
categorical predictors.

G1: Simple polynomial regression model of highest order 1 using the best single
linear predictor in each node.

G2: Simple polynomial regression model of highest order 2 (quadratic) using
the best single predictor in each node.

G3: Simple polynomial regression model of highest order 3 (cubic) using the
best single predictor in each node.

Figure 1 is obtained using G3. Model Ga is the same as G1 if there are no
categorical variables.

Combining the four truncation methods with the seven node model methods
gives a total of twenty-eight variants of the GUIDE algorithm. We identify them
by concatenating the name of the model with that of the truncation method. For
example, the variant employing model Gm and truncation method 1 is named
Gm1. To ensure that the cross-validation error estimates for pruning are valid,
the truncation methods are built into the GUIDE tree construction algorithm—
it is not applied post-hoc, after the pruned tree is found.

We evaluate the prediction accuracy of the variants by applying them to
fifty-two real datasets. Their sources and characteristics are listed in Tables I
and II. The datasets in the second table come with their own test sets, while
those in the first table do not. We use two-fold cross-validation to estimate the
prediction MSE of each method on the forty-six datasets in Table I. Specifically,
each dataset is randomly divided into two roughly equal-sized subsets. Each
algorithm is trained on one subset, and the other subset is used as a test sample
to give an estimate of the MSE. The process is repeated with the roles of the
two subsets reversed to obtain another estimate of MSE. The average of the
two estimates gives the cross-validation estimate of the MSE of the algorithm.
For the six datasets in Table II, the MSE is estimated directly from the test
sets.

To measure the effect of the truncation methods, we first divide the estimated
MSE of each truncation-model variant by that of the same method without
truncation, for each dataset. This gives a measure of the effectiveness of trun-
cation for each truncation-model variant on the dataset. The geometric mean
of these measures over the datasets gives a sense of the average effectiveness
of the variant. The geometric mean is a better summary than the arithmetic
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Table I. Forty-Six Datasets without Separate Test Samples. N Denotes the Number of

Training Cases, L the Number of Linear Predictors, C the Number of Categorical Predictors,

and F = L + Number of Dummy Variables

Name N L C F Reference

Abalone 4177 7 1 9 [Blake and Merz 1998]

Ais 202 11 1 19 [Cook and Weisberg 1994]

Alcohol 2467 12 6 29 [Kenkel and Terza 2001]

Amenity 3044 19 2 24 [Chattopadhyay 2003]

Attend 838 7 2 37 [Cochran 2002]

Baseball 263 18 2 63 Statlib

Baskball 96 4 0 4 [Simonoff 1996]

Boston 506 13 0 13 [Belsey et al. 1980]

Boston2 506 13 1 104 [Belsey et al. 1980]

Budget 1729 10 0 10 [Bollino et al. 2000]

Cane 3775 6 3 56 [Denman and Gregory 1998]

Cardio 375 6 3 26 [Bryant and Smith 1996]

College 694 23 1 25 Statlib

County 3114 12 1 57 [Harrell 2001]

Cps 534 7 3 16 [Berndt 1991]

Cpu 209 6 1 35 [Blake and Merz 1998]

Deer 654 10 3 22 [Onoyama et al. 1998]

Diabetes 375 14 1 16 [Harrell 2001]

Diamond 308 1 3 12 [Chu 2001]

Edu 1400 5 0 5 [Martins 2001]

Enroll 258 6 0 6 [Liu and Stengos 1999]

Fame 1318 21 1 27 [Cochran 2000]

Fat 252 14 0 14 [Penrose et al. 1985]

Fishery 6806 11 3 22 [Fernandez et al. 2002]

Hatco 100 12 1 14 [Hair et al. 1998]

Insur 2182 4 2 18 [Hallin and Ingenbleek 1983]

Labor 2953 18 0 18 [Aaberge et al. 1999]

Laheart 200 13 3 23 [Afifi and Azen 1979]

Medicare 4406 21 0 21 [Deb and Trivedi 1997]

Mpg 392 6 1 8 [Blake and Merz 1998]

Mpg2001 849 5 5 63 www.fueleconomy.gov

Mumps 1523 3 0 3 Statlib

Mussels 201 3 1 7 [Cook 1998]

Ozone 330 8 0 8 [Breiman and Friedman 1988]

Price 159 15 0 15 [Blake and Merz 1998]

Rate 144 9 0 9 [Lutkepohl et al. 1999]

Rice 171 13 2 17 [Horrace and Schmidt 2000]

Scenic 113 9 1 12 [Neter et al. 1996]

Servo 167 2 2 10 [Blake and Merz 1998]

Smsa 141 9 1 12 [Neter et al. 1996]

Strike 625 4 1 21 Statlib

Ta 324 3 3 73 Authors

Tecator 215 10 0 10 Statlib

Tree 100 8 0 8 [Rawlings 1988]

Triazine 186 28 0 28 [Torgo 1999]

Wage 3380 13 0 13 [Schafgans 1998]
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Table II. Six Datasets with Separate Test Samples. N Denotes the Number of Training Cases,

N ′ the Number of Test Cases, L the Number of Linear Predictors, C the Number of Categorical

Predictors, and F = L + Number of Dummy Variables

Name N N ′ L C F Reference

Cps95 21252 42504 8 6 32 ftp.stat.berkeley.edu/pub/datasets/fam95.zip

Engel 11986 11986 5 0 5 [Delgado and Mora 1998]

Houses 6880 13760 8 0 8 [Pace and Barry 1997]

Labor2 5443 5443 17 0 17 [Laroque and Salanie 2002]

Pole 5000 10000 26 0 26 [Weiss and Indurkhya 1995]

Spouse 11136 11136 21 0 21 [Olson 1998]

Fig. 3. Barchart of geometric means of mean squared prediction error relative to no truncation

for the forty-six datasets in Table I. The vertical line at the end of each bar is an approximate 95%

confidence interval for the geometric mean.

mean because the measures are bounded between 0 and infinity, with unity
representing no effect.

A barchart of the geometric means for the GUIDE and three other methods
(introduced in Section 4 below) based on the forty-six datasets in Table I is
shown in Figure 3. The corresponding barchart for the six datasets in Table II
is shown in Figure 4. A 95% confidence interval is drawn as a vertical line at the
end of each bar. We see that truncation seldom increases prediction MSE. On
the other hand, it is quite beneficial for Gm, G2, and particularly G3. The effects
are more pronounced in Figure 4, where the test sample sizes are larger, and
hence provide more opportunities for extrapolation errors. The confidence in-
tervals in this barchart show that truncation is almost never harmful. Overall,
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Fig. 4. Barchart of geometric means of mean squared prediction error relative to no truncation

for the six datasets in Table II. The vertical line at the end of each bar is an approximate 95%

confidence interval for the geometric mean.

truncation type 3 appears to be best for Gm, Gs, Gp, and Ga, all of which employ
two or more linear predictors in the nodes. For G1, G2, and G3, which employ a
simple polynomial in each node, the best truncation method is type 2 by a small
margin.

3. THEORETICAL PROPERTIES

The empirical results suggest that when truncation is not beneficial, it is quite
harmless. At worst, the prediction MSE is increased by one or two percent.
This behavior can be explained by an asymptotic analysis. We prove here that,
under weak regularity conditions when the true f (x) is linear, any increase in
prediction MSE due to truncation vanishes in the limit as the training sample
size tends to infinity.

Let β0 be a constant scalar and β1 be a fixed p-dimensional vector (all
vectors are column vectors here). For any p-dimensional vector x, define
f (x) = β0 + xtβ1, where the superscript t denotes matrix transposition. Let
{(x1, y1), . . . , (xn, yn)} be a training sample such that {x1, x2, . . . , xn} is a random
sample of p-dimensional vectors from a distribution FX and yi = f (xi) + εi,
i = 1, 2, . . . , n, where ε = (ε1, ε2, . . . , εn)t is a vector of n independent variables
with mean 0 and variance σ 2. Define β = (β0, βt

1)t and let β̂ = (β̂0, β̂t
1)t denote
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the least squares estimate of β. The design matrix of the training sample is

Z =

⎛
⎜⎜⎜⎜⎝

1 xt
1

1 xt
2

...
...

1 xt
n

⎞
⎟⎟⎟⎟⎠

=

⎛
⎜⎜⎜⎜⎝

1 x11 x12 . . . x1p

1 x21 x22 . . . x2p

...
...

...
...

...

1 xn1 xn2 . . . xnp

⎞
⎟⎟⎟⎟⎠

,

where xi = (xi1, xi2, . . . , xip)t . If Z t Z is invertible,

β̂ = (Z t Z )−1 Z t y = β + (Z t Z )−1 Z tε. (1)

Let x∗ = (x∗1, x∗2, . . . , x∗p)t be another independent observation from FX

and y∗ = f (x∗) + ε∗ for some independent ε∗ with mean 0 and variance σ 2.
The least squares prediction for y∗ is ŷ = β̂0 + xt

∗β̂1 and the expected squared
prediction error is MSE( ŷ) = E∗( y∗− ŷ)2 = E∗{ f (x∗)− ŷ}2+σ 2. Here E∗ denotes
expectation taken over x∗ and ε∗, with the training sample held fixed. For any
vector x, let |x| denote the Euclidean norm of x. Define the (p + 1) × (p + 1)
random matrix

C =

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

1 x11 x12 . . . x1p

x11 x2
11 x11x12 . . . x11x1p

x12 x12x11 x12x12 . . . x12x1p

...
...

... . . .
...

x1p x1px11 x1px12 . . . x2
1p

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

.

We assume the following two conditions throughout.

Condition 3.1. The expected matrix E(C) is nonsingular.

Condition 3.2. E∗|x∗|2 < ∞.

The first condition ensures that E(C) is invertible. The second condition is
necessary for the existence of certain expectations.

For j = 1, 2, . . . , p, define aj (n) = min1≤i≤n xi j and bj (n) = max1≤i≤n xi j . Let
Rn = ∩p

j=1[aj (n), bj (n)] be the smallest p-dimensional hyper-rectangle contain-

ing the set of points represented by the vectors {x1, x2, . . . , xn}. The Winsorized
predicted value ẏ is given by ẏ = β̂0 + xt

wβ̂1, with the j th element of xw being

xwj =
⎧⎨
⎩

x∗ j , aj (n) ≤ x∗ j ≤ bj (n)
aj (n), x∗ j < aj (n)
bj (n), x∗ j > bj (n)

for j = 1, 2, . . . , p. Note that xw = x∗ if x∗ ∈ Rn. The expected squared prediction
error of ẏ is MSE( ẏ) = E∗{ f (x∗) − ẏ}2 + σ 2.

We first prove two important lemmas. The result in the first lemma was
derived by Lai et al. [1977] under weaker assumptions, but its proof is much
harder.

LEMMA 3.3. Under Conditions 3.1 and 3.2, β̂ → β with probability one as
the training sample size tends to infinity.
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PROOF. Since

Z t Z =

⎛
⎜⎜⎜⎜⎜⎝

1
∑

i xi1
∑

i xi2 . . .
∑

i xip∑
i xi1

∑
i x2

i1

∑
i xi1xi2 . . .

∑
i xi1xip

...
...

... . . .
...∑

i xip
∑

i xipxi1
∑

i xipxi2 . . .
∑

i x2
ip

⎞
⎟⎟⎟⎟⎟⎠

,

we see that (n−1 Z t Z )−1 → [E(C)]−1 with probability one. Further,

n−1 Z tε =

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

n−1
∑

i εi

n−1
∑

i xi1εi

n−1
∑

i xi2εi

...

n−1
∑

i xipεi

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

→ 0 almost surely.

Hence, it follows from Eq. (1) that β̂ = β + (n−1 Z t Z )−1(n−1 Z tε) → β with
probability one.

LEMMA 3.4. As n → ∞, x∗ − xw → 0 with probability one.

PROOF. For each j = 1, 2, . . . , p, let aj (0) < bj (0) be the endpoints of the
support of the distribution of x∗ j . Thus, aj (0) ≤ x∗ j ≤ bj (0) with probability
one. On the other hand, aj (n) → aj (0) and bj (n) → bj (0) with probability one,
as n → ∞. Since x∗ j = xwj if aj (n) ≤ x∗ j ≤ bj (n), it follows that x∗ j − xwj → 0
with probability one, for every j = 1, 2, . . . , p.

Let R̄n denote the complement of the set Rn and let I (A) denote the indicator
function for the event A, that is, I (A) = 1 if the event A occurs, otherwise
I (A) = 0.

THEOREM 3.5 (TRUNCATION TYPE 4). Under Conditions 3.1 and 3.2, MSE( ŷ)−
MSE( ẏ) → 0 as n → ∞ for almost every training sample sequence.

PROOF. Observe that

MSE( ŷ) − MSE( ẏ)

= E∗( ŷ − ẏ){ ŷ + ẏ − 2 f (x∗)}I (x∗ ∈ R̄n)

= E∗(x∗ − xw)t β̂1{2(β̂0 − β0) + 2xt
∗(β̂1 − β1) + (xw − x∗)t β̂1}I (x∗ ∈ R̄n)

= 2E∗(x∗ − xw)t β̂1(β̂0 − β0)I (x∗ ∈ R̄n)

+ 2E∗xt
∗(β̂1 − β1)(x∗ − xw)t β̂1 I (x∗ ∈ R̄n)

+ E∗{(xw − x∗)t β̂1}2 I (x∗ ∈ R̄n)

= 2(β̂0 − β0)β̂t
1 E∗(x∗ − xw)I (x∗ ∈ R̄n)

+ (β̂1 − β1)t E∗x∗(x∗ − xw)t I (x∗ ∈ R̄n)β̂1

+ β̂t
1 E∗(x∗ − xw)(x∗ − xw)t I (x∗ ∈ R̄n)β̂1.
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The terms on the right side of the last equation converge to 0 by Lemmas 3.3
and 3.4, the inequality |x∗ − xw| ≤ |x∗ − x1| ≤ |x∗| + |x1|, and the dominated
convergence theorem.

A similar result holds for truncation types 1, 2, and 3. Given a constant c ≥ 0,
define

ỹc =

⎧⎪⎨
⎪⎩

y(n) + crn, ŷ > y(n) + crn

ŷ , y(1) − crn ≤ ŷ ≤ y(n) + crn

y(1) − crn, ŷ < y(1) − crn.

THEOREM 3.6 (TRUNCATION TYPES 1, 2, AND 3). Under Conditions 3.1 and 3.2,
MSE( ŷ) − MSE( ỹc) → 0 as n → ∞ for each c ≥ 0 and almost every training
sample sequence.

PROOF. As in the previous proof, write

MSE( ŷ) − MSE( ỹc) = E∗[( ŷ − ỹc){2 f (x∗) − ŷ − ỹc}{I ( ŷ > y(n) + crn)

+ I ( ŷ < y(1) − crn)}].
Let z∗ = (1, x∗1, x∗2, . . . , x∗p)t and An be the event that ŷ > y(n) + crn. Then

|E∗( ŷ − ỹc){2 f (x∗) − ŷ − ỹc}I (An)|
= |E∗( ŷ − y(n) − crn)(2 f (x∗) − ŷ − y(n) − crn)I (An)|
= |E∗( ŷ − y(n) − crn){2( f (x∗) − ŷ) + ( ŷ − y(n) − crn)}I (An)|
≤ 2E∗| ŷ − y(n) − crn| | f (x∗) − ŷ |I (An) + E∗( ŷ − y(n) − crn)2 I (An)

≤ 2E∗| ŷ − y1| | f (x∗) − ŷ |I (An) + E∗( ŷ − y1)2 I (An)

= 2E∗|zt
∗β̂ − y1| |zt

∗(β − β̂)|I (An) + E∗(zt
∗β̂ − y1)2 I (An)

≤ 2E∗(|z∗| |β̂ − β| + |z∗| |β| + | y1|)|z∗| |β̂ − β| + E∗(|z∗| |β| + | y1|)2 I (An)

= 2|β̂ − β|{(|β̂ − β| + |β|)E∗|z∗|2 + | y1|E∗|z∗|} + E∗(|z∗| |β| + | y1|)2 I (An).

Since β̂ → β and I (An) → 0 with probability one for each x∗, the first term on the
right side of the last inequality converges to 0. The second term also converges
to 0 by the dominated convergence theorem, because E∗(|z∗| |β| + | y1|)2 < ∞.
Therefore, E∗( ŷ − ỹc){2 f (x∗)− ŷ − ỹc}I ( ŷ > y(n) +crn) → 0. It follows similarly
that E∗( ŷ − ỹc){2 f (x∗) − ŷ − ỹc}I ( ŷ < y(1) − crn) → 0. This completes the
proof.

4. COMPARISON WITH OTHER METHODS

So far, we have been studying the effectiveness of truncation versus no trun-
cation for GUIDE. We now use the same datasets to compare the performance
of the methods with other methods. Based on the conclusions in Section 2, we
focus our attention on the GUIDE variants Gm3, Gs3, Gp3, Ga3, G12, G22, and G32.
The other methods are

rpart: R [R Development Core Team 2005] implementation of the CART algo-
rithm [Breiman et al. 1984].

rF: R implementation of the random forest algorithm [Breiman 2001] with
the default of 500 trees.
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Fig. 5. Dot plots of log(MSE/average MSE), where the average MSE is over the fifteen methods.

Methods are ordered according to their means, which are joined by a dashed broken line. The

medians are joined by a solid broken line. Each dot or symbol refers to one dataset.

gam: R implementation of generalized additive model [Hastie and Tibshirani
1990].

mar: R implementation of multivariate adaptive regression splines
[Friedman 1991].

mc: M5’ [Witten and Frank 2005; Wang and Witten 1997] with constant node
models. This is a modified version of the M5 algorithm [Quinlan 1992].

mcb: mc with bagging using the default of 10 trees.

mm: M5’ with multiple linear node models.

mmb: mm with bagging using the default of 10 trees.

Also included are gam3, mar3, and mm3, the type-3 truncated versions of gam,
mar, and mm, respectively. The barcharts in Figures 3 and 4 show that type-3
truncation is beneficial for these three methods too, although not as much as
for the GUIDE methods.

For each dataset, we first normalize the estimated MSE of each method by
dividing it by the average value over the fifteen methods: Gm3, Gs3, Gp3, Ga3, G12,
G22, G32, rpart, rF, gam3, mar3, mc, mcb, mm3, and mmb. We call each of these values
a “relative MSE.” Then we take the (natural) log of the relative MSE. Besides
being easier to visualize, the log scale renders differences between any two
methods independent of the normalization. The results are shown graphically
in Figure 5. The bagged version of M5’ (mmb) has the smallest mean log relative
MSE, followed by Gs3, mm3, and Gm3. The piecewise-constant methods, mc and
rpart, have the highest means. Note that there is substantial variability in
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Fig. 6. Boxplots of number of leaf nodes ordered by medians

Fig. 7. Average of log(relative MSE) versus mean number of nodes. The mean number of nodes

for Gm3 and Gs3 are 2.8 and 3.3, respectively.

each method across datasets. For example, although mmb is best in terms of this
measure of performance, there is one dataset (Rate) for which its MSE is higher
than the average MSE for all the methods. No method is best for all datasets.

Another important aspect of the methods that we have not considered is the
size of the tree structures. Obviously, if two methods have the same prediction
accuracy, the one yielding trees with fewer leaf nodes is preferred. Figure 6
shows boxplots of the number of leaf nodes for the regression tree methods
and Figure 7 shows a plot of the average of the log relative MSE versus the
average number of leaf nodes. The mc method has the largest average of 35.5
leaf nodes, followed by mm3 and rpart with 10.7 and 7.7 leaf nodes, respectively.
The Gm3 and Gs3 methods have the lowest averages of 2.8 and 3.3 leaf nodes,
respectively.
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Fig. 8. Barchart of geometric means of mean squared prediction error of truncated vs untruncated

and bagged vs unbagged methods for all fifty-two datasets. The vertical line at the end of each bar

is an approximate 95% confidence interval for the geometric mean.

5. CONCLUSION

We have demonstrated empirically that there is usually some reduction in MSE
from truncating or Winsorizing the predicted values from a model. Our results
indicate that the amount of reduction tends to increase with the size of the test
sample. In particular, the reduction is less if we had used ten-fold, instead of
two-fold, cross-validation in in Section 2. This is probably due to the number of
extrapolation errors increasing with the test sample size.

We have also established theoretically that truncation and Winsorization do
not cause any harm asymptotically, in the case of a linear model. Thus, it is
safe to routinely use truncation in real applications with large training sample
sizes.

The empirical results provide further evidence that no single method is best
for all datasets. Even the method with the best average performance, mmb, is
below average for one dataset. On the other hand, bagging can be expected to
improve the average performance of a method. Thus mmb is better than mm, mcb
is better than mc, and rF is better than rpart, on average. But bagging does not
always improve a method for every dataset. For example, Figure 5 shows that
mcb is worse than mc on the Smsa dataset, and rF is worse than rpart on the
Diamond dataset.

A more surprising result is that the accuracy of ensemble methods is not as
great as might be expected. As Figure 5 shows, the non-ensemble mar is only
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slightly inferior on average to rF. Similarly, several GUIDE methods are better,
on average, than the ensemble methods mcb and rF. To compare the benefits
from ensembling with those from truncation, we show the geometric means,
over the fifty-two datasets, of the reduction in MSE of the truncated versus
untruncated and ensemble versus nonensemble methods in Figure 8. The en-
semble method rF yields the largest average reduction (about 30 percent) over
rpart. The reductions are less for mc and mm (20 and 10 percent, respectively).
Overall, truncation or ensembling yields the most improvement for the least ac-
curate methods. It remains to be seen how much ensembling can help to reduce
the prediction error of the GUIDE methods.
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