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Abstract: Although regression trees were originally designed for
large datasets, they can profitably be used on small datasets as
well, including those from replicated or unreplicated complete fac-
torial experiments. We show that in the latter situations, regression
tree models can provide simpler and more intuitive interpretations
of interaction effects as differences between conditional main ef-
fects. We present simulation results to verify that the models can
yield lower prediction mean squared errors than the traditional
techniques. The tree models span a wide range of sophistication,
from piecewise constant to piecewise simple and multiple linear,
and from least squares to Poisson and logistic regression.

1. Introduction.

Experiments are often conducted to determine if changing the values of
certain variables leads to worthwhile improvements in the mean yield
of a process or system. Another common goal is estimation of the mean
yield at given experimental conditions. In practice, both goals can be
attained by fitting an accurate and interpretable model to the data.
Accuracy may be measured, for example, in terms of prediction mean
squared error, PMSE =

∑
i E(µ̂i − µi)

2, where µi and µ̂i denote the
true mean yield and its estimated value, respectively, at the ith design
point.

We will restrict our discussion here to complete factorial designs
that are unreplicated or are equally replicated. For a replicated ex-
periment, the standard analysis approach based on significance tests
goes as follows. (i) Fit a full ANOVA model containing all main effects
and interactions. (ii) Estimate the error variance σ2 and use t-intervals
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to identify the statistically significant effects. (iii) Select as the “best”
model the one containing only the significant effects.

There are two ways to control a given level of significance α: the
individual error rate (IER) and the experimentwise error rate (EER)
(Wu and Hamda [22, p. 132]). Under IER, each t-interval is constructed
to have individual confidence level 1 − α. As a result, if all the effects
are null (i.e., their true values are zero), the probability of concluding
at least one effect to be non-null tends to exceed α. Under EER, this
probability is at most α. It is achieved by increasing the lengths of
the t-intervals so that their simultaneous probability of a Type I error
is bounded by α. The appropriate interval lengths can be determined
from the studentized maximum modulus distribution if an estimate
of σ is available. Because EER is more conservative than IER, the
former has a higher probability of discovering the right model in the
null situation where no variable has any effect on the yield. On the
other hand, if there are one or more non-null effects, the IER method
has a higher probability of finding them. To render the two methods
more comparable in the examples to follow, we will use α = 0.05 for
IER and α = 0.1 for EER.

Another standard approach is AIC, which selects the model that
minimizes the criterion AIC = n log(σ̃2) + 2ν. Here σ̃ is the maximum
likelihood estimate of σ for the model under consideration, ν is the
number of estimated parameters, and n is the number of observations.
Unlike IER and EER, which focus on statistical significance, AIC aims
to minimize PMSE. This is because σ̃2 is an estimate of the residual
mean squared error. The term 2ν discourages over-fitting by penalizing
model complexity. Although AIC can be used on any given collection
of models, it is typically applied in a stepwise fashion to a set of hierar-

chical ANOVA models. Such models contain an interaction term only
if all its lower-order effects are also included. We use the R implemen-
tation of stepwise AIC [14] in our examples, with initial model the one
containing all the main effects.

We propose a new approach that uses a recursive partitioning al-
gorithm to produce a set of nested piecewise linear models and then
employs cross-validation to select a parsimonious one. For maximum
interpretability, the linear model in each partition is constrained to con-
tain main effect terms at most. Curvature and interaction effects are
captured by the partitioning conditions. This forces interaction effects
to be expressed and interpreted naturally—as contrasts of conditional
main effects.

Our approach applies to unreplicated complete factorial experiments
too. Quite often, two-level factorials are performed without replications
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to save time or to reduce cost. But because there is no unbiased esti-
mate of σ2, procedures that rely on statistical significance cannot be
applied. Current practice typically invokes empirical principles such
as hierarchical ordering, effect sparsity, and effect heredity [22, p. 112]
to guide and limit model search. The hierarchical ordering principle
states that high-order effects tend to be smaller in magnitude than
low-order effects. This allows σ2 to be estimated by pooling estimates
of high-order interactions, but it leaves open the question of how many
interactions to pool. The effect sparsity principle states that usually
there are only a few significant effects [2]. Therefore the smaller esti-
mated effects can be used to estimate σ2. The difficulty is that a good
guess of the actual number of significant effects is needed. Finally, the
effect heredity principle is used to restrict the model search space to
hierarchical models.

We will use the GUIDE [18] and LOTUS [5] algorithms to construct
our piecewise linear models. Section 2 gives a brief overview of GUIDE
in the context of earlier regression tree algorithms. Sections 3 and 4
illustrate its use in replicated and unreplicated two-level experiments,
respectively, and present simulation results to demonstrate the effec-
tiveness of the approach. Sections 5 and 6 extend it to Poisson and
logistic regression problems, and Section 7 concludes with some sug-
gestions for future research.

2. Overview of regression tree algorithms.

GUIDE is an algorithm for constructing piecewise linear regression
models. Each piece in such a model corresponds to a partition of the
data and the sample space of the form X ≤ c (if X is numerically
ordered) or X ∈ A (if X is unordered). Partitioning is carried out re-
cursively, beginning with the whole dataset, and the set of partitions
is presented as a binary decision tree. The idea of recursive partition-
ing was first introduced in the AID algorithm [20]. It became popular
after the appearance of CART [3] and C4.5 [21], the latter being for
classification only.

CART contains several significant improvements over AID, but they
both share some undesirable properties. First, the models are piecewise
constant. As a result, they tend to have lower prediction accuracy than
many other regression models, including ordinary multiple linear re-
gression [3, p. 264]. In addition, the piecewise constant trees tend to be
large and hence cumbersome to interpret. More importantly, AID and
CART have an inherent bias in the variables they choose to form the
partitions. Specifically, variables with more splits are more likely to be
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chosen than variables with fewer splits. This selection bias, intrinsic to
all algorithms based on optimization through greedy search, effectively
removes much of the advantage and appeal of a regression tree model,
because it casts doubt upon inferences drawn from the tree structure.
Finally, the greedy search approach is computationally impractical to
extend beyond piecewise constant models, especially for large datasets.

GUIDE was designed to solve both the computational and the se-
lection bias problems of AID and CART. It does this by breaking the
task of finding a split into two steps: first find the variable X and then
find the split values c or A that most reduces the total residual sum
of squares of the two subnodes. The computational savings from this
strategy are clear, because the search for c or A is skipped for all except
the selected X.

To solve the selection bias problem, GUIDE uses significance tests to
assess the fit of each X variable at each node of the tree. Specifically,
the values (grouped if necessary) of each X are cross-tabulated with
the signs of the linear model residuals and a chi-squared contingency
table test is performed. The variable with the smallest chi-squared p-
value is chosen to split the node. This is based on the expectation that
any effects of X not captured by the fitted linear model would produce
a small chi-squared p-value, and hence identify X as a candidate for
splitting. On the other hand, if X is independent of the residuals, its
chi-squared p-value would be approximately uniformly distributed on
the unit interval.

If a constant model is fitted to the node and if all the X variables are
independent of the response, each will have the same chance of being
selected. Thus there is no selection bias. On the other hand, if the model
is linear in some predictors, the latter will have zero correlation with the
residuals. This tends to inflate their chi-squared p-values and produce
a bias in favor of the non-regressor variables. GUIDE solves this prob-
lem by using the bootstrap to shrink the p-values that are so inflated.
It also performs additional chi-squared tests to detect local interac-
tions between pairs of variables. After splitting stops, GUIDE employs
CART’s pruning technique to obtain a nested sequence of piecewise lin-
ear models and then chooses the tree with the smallest cross-validation
estimate of PMSE. We refer the reader to Loh [18] for the details. Note
that the use of residuals for split selection paves the way for extensions
of the approach to piecewise nonlinear and non-Gaussian models, such
as logistic [5], Poisson [6], and quantile [7] regression trees.
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Table 1

Estimated coefficients and standard errors for 24 experiment.

Estimate Std. error t Pr(>|t|)

Intercept 14.161250 0.049744 284.683 < 2e-16

x1 -0.038729 0.049744 -0.779 0.438529

x2 0.086271 0.049744 1.734 0.086717

x3 -0.038708 0.049744 -0.778 0.438774

x4 0.245021 0.049744 4.926 4.45e-06

x1:x2 0.003708 0.049744 0.075 0.940760

x1:x3 -0.046229 0.049744 -0.929 0.355507

x1:x4 -0.025000 0.049744 -0.503 0.616644

x2:x3 0.028771 0.049744 0.578 0.564633

x2:x4 -0.015042 0.049744 -0.302 0.763145

x3:x4 -0.172521 0.049744 -3.468 0.000846

x1:x2:x3 0.048750 0.049744 0.980 0.330031

x1:x2:x4 0.012521 0.049744 0.252 0.801914

x1:x3:x4 -0.015000 0.049744 -0.302 0.763782

x2:x3:x4 0.054958 0.049744 1.105 0.272547

x1:x2:x3:x4 0.009979 0.049744 0.201 0.841512

3. Replicated 24 experiments.

In this and the next section, we adopt the usual convention of letting
capital letters A, B, C, etc., denote the names of variables as well as
their main effects, and AB, ABC, etc., denote interaction effects. The
levels of each factor are indicated in two ways, either by “−” and “+”
signs, or as -1 and +1. In the latter notation, the variables A, B, C,
. . . , are denoted by x1, x2, x3, . . . , respectively.

We begin with an example from Wu and Hamada [22, p. 97] of a 24

experiment on the growth of epitaxial layers on polished silicon wafers
during the fabrication of integrated circuit devices. The experiment
was replicated six times and a full model fitted to the data yields the
results in Table 1.

Clearly, at the 0.05-level, the IER method finds only two statistically
significant effects, namely D and CD. This yields the model

ŷ = 14.16125 + 0.24502x4 − 0.17252x3x4 (1)

which coincides with that obtained by the EER method at level 0.1.
Figure 1 shows a half-normal quantile plot of the estimated effects.

The D and CD effects clearly stand out from the rest. There is a hint of
a B main effect, but it is not included in model (1) because its p-value
is not small enough. The B effect appears, however, in the AIC model

ŷ = 14.16125+0.08627x2− 0.03871x3 +0.24502x4 − 0.17252x3x4. (2)
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Fig 1. Half-normal quantile plot of estimated effects from replicated 24 silicon wafer
experiment.

Note the presence of the small C main effect. It is due to the presence
of the CD effect and to the requirement that the model be hierarchical.

The piecewise constant GUIDE tree is shown on the left side of
Figure 2. It has five leaf nodes, splitting first on D, the variable with the
largest main effect. If D = +, it splits further on B and C. Otherwise,
if D = −, it splits once on C. We observe from the node sample means
that the highest predicted yield occurs when B = C = − and D =
+. This agrees with the prediction of model (1) but not (2), which
prescribes the condition B = D = + and C = −. The difference in the
two predicted yields is very small though. For comparison with (1) and
(2), note that the GUIDE model can be expressed algebraically as

ŷ = 13.78242(1− x4)(1 − x3)/4 + 14.05(1 − x4)(1 + x3)/4

+ 14.63(1 + x4)(1 − x2)(1 − x3)/8 + 14.4775(1 + x4)(1 + x2)/4

+ 14.0401(1 + x4)(1 − x2)(1 + x3)/8

= 14.16125 + 0.24502x4 − 0.14064x3x4 − 0.00683x3

+ 0.03561x2(x4 + 1) + 0.07374x2x3(x4 + 1). (3)

The piecewise best simple linear GUIDE tree is shown on the right
side of Figure 2. Here, the data in each node are fitted with a simple
linear regression model, using the X variable that yields the small-
est residual mean squared error, provided a statistically significant X
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D = –

C = –

13.78 14.05

B = –

C = –

14.63 14.04

14.48
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14.14
+0.49x4

14.01
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Fig 2. Piecewise constant (left) and piecewise best simple linear or stepwise linear
(right) GUIDE models for silicon wafer experiment. At each intermediate node, an
observation goes to the left branch if the stated condition is satisfied; otherwise it
goes to the right branch. The fitted model is printed beneath each leaf node.

exists. If there is no significant X, i.e., none with absolute t-statistic
greater than 2, a constant model is fitted to the data in the node. In
this tree, factor B is selected to split the root node because it has the
smallest chi-squared p-value after allowing for the effect of the best
linear predictor. Unlike the piecewise constant model, which uses the
variable with the largest main effect to split a node, the piecewise linear
model tries to keep that variable as a linear predictor. This explains
why D is the linear predictor in two of the three leaf nodes of the tree.
The piecewise best simple linear GUIDE model can be expressed as

ŷ = (14.14246 + 0.4875417x4)(1 − x2)(1 − x3)/4

+ 14.0075(1− x2)(1 + x3)/4

+ (14.24752 + 0.2299792x4)(1 + x2)/2

= 14.16125 + 0.23688x4 + 0.12189x3x4(x2 − 1)

+ 0.08627x2 + 0.03374x3(x2 − 1) − 0.00690x2x4. (4)

Figure 3, which superimposes the fitted functions from the three leaf
nodes, offers a more vivid way to understand the interactions. It shows
that changing the level of D from − to + never decreases the predicted
mean yield and that the latter varies less if D = − than if D = +.
The same tree model is obtained if we fit a piecewise multiple linear
GUIDE model using forward and backward stepwise regression to select
variables in each node.

A simulation experiment was carried out to compare the PMSE of
the methods. Four models were employed, as shown in Table 2. Instead
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Fig 3. Fitted values versus x4 (D) for the piecewise simple linear GUIDE model
shown on the right side of Figure 2.

Table 2

Simulation models for a 24 design; the βi’s are uniformly distributed and ε is
normally distributed with mean 0 and variance 0.25; U(a, b) denotes a uniform

distribution on the interval (a, b); ε and the βi’s are mutually independent.

Name Simulation model β distribution
Null y = ε
Unif y = β1x1 + β2x2 + β3x3 + β4x4 + β5x1x2 + β6x1x3 +

β7x1x4 + β8x2x3 + β9x2x4 + β10x3x4 + β11x1x2x3 +
β12x1x2x4+β13x1x3x4+β14x2x3x4+β15x1x2x3x4+ε

U(−1/4, 1/4)

Exp y = exp(β1x1 + β2x2 + β3x3 + β4x4 + ε) U(−1, 1)
Hier y = β1x1+β2x2+β3x3+β4x4+β1β2x1x2+β1β3x1x3+

β1β4x1x4 + β2β3x2x3 + β2β4x2x4 + β3β4x3x4 +
β1β2β3x1x2x3 + β1β2β4x1x2x4 + β1β3β4x1x3x4 +
β2β3β4x2x3x4 + β1β2β3β4x1x2x3x4 + ε

U(−1, 1)
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Fig 4. Barplots of relative PMSE of methods for the four simulation models in
Table 2. The relative PMSE of a method at a simulation model is defined as its
PMSE divided by the average PMSE of the six methods at the same model.

of performing the simulations with a fixed set of regression coefficients,
we randomly picked the coefficients from a uniform distribution in each
simulation trial. The Null model serves as a baseline where none of the
predictor variables has any effect on the mean yield, i.e., the true model
is a constant. The Unif model has main and interaction effects indepen-
dently drawn from a uniform distribution on the interval (−0.25, 0.25).
The Hier model follows the hierarchical ordering principle—its interac-
tion effects are formed from products of main effects that are bounded
by 1 in absolute value. Thus higher-order interaction effects are smaller
in magnitude than their lower-order parent effects. Finally, the Exp

model has non-normal errors and variance heterogeneity, with the vari-
ance increasing with the mean.

Ten thousand simulation trials were performed for each model. For
each trial, 96 observations were simulated, yielding 6 replicates at each
of the 16 factor-level combinations of a 24 design. Each method was
applied to find estimates, µ̂i, of the 16 true means, µi, and the sum
of squared errors

∑
16

1
(µ̂i − µi)

2 was computed. The average over the
10,000 simulation trials gives an estimate of the PMSE of the method.
Figure 4 shows barplots of the relative PMSEs, where each PMSE is
divided by the average PMSE over the methods. This is done to over-
come differences in the scale of the PMSEs among simulation models.
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Except for a couple of bars of almost identical lengths, the differences in
length for all the other bars are statistically significant at the 0.1-level
according to Tukey HSD simultaneous confidence intervals.

It is clear from the lengths of the bars for the IER and AIC methods
under the Null model that they tend to overfit the data. Thus they are
more likely than the other methods to identify an effect as significant
when it is not. As may be expected, the EER method performs best
at controlling the probability of false positives. But it has the high-
est PMSE values under the non-null situations. In contrast, the three
GUIDE methods provide a good compromise; they have relatively low
PMSE values across all four simulation models.

4. Unreplicated 25 experiments.

If an experiment is unreplicated, we cannot get an unbiased estimate
of σ2. Consequently, the IER and ERR approaches to model selection
cannot be applied. The AIC method is useless too because it always
selects the full model. For two-level factorial experiments, practitioners
often use a rather subjective technique, due to Daniel [11], that is
based on a half-normal quantile plot of the absolute estimated main
and interaction effects. If the true effects are all null, the plotted points
would lie approximately on a straight line. Daniel’s method calls for
fitting a line to a subset of points that appear linear near the origin and
labeling as outliers those that fall far from the line. The selected model
is the one that contains only the effects associated with the outliers.

For example, consider the data from a 25 reactor experiment given
in Box, Hunter, and Hunter [1, p. 260]. There are 32 observations on
five variables and Figure 5 shows a half-normal plot of the estimated
effects. The authors judge that there are only five significant effects,
namely, B, D, E, BD, and DE, yielding the model

ŷ = 65.5 + 9.75x2 + 5.375x4 − 3.125x5 + 6.625x2x4 − 5.5x4x5. (5)

Because Daniel did not specify how to draw the straight line and
what constitutes an outlier, his method is difficult to apply objectively
and hence cannot be evaluated by simulation. Formal algorithmic meth-
ods were proposed by Lenth [16], Loh [17], and Dong [12]. Lenth’s
method is the simplest. Based on the tables in Wu and Hamada [22,
p. 620], the 0.05 IER version of Lenth’s method gives the same model
as (5). The 0.1 EER version drops the E main effect, giving

ŷ = 65.5 + 9.75x2 + 5.375x4 + 6.625x2x4 − 5.5x4x5. (6)
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Fig 5. Half-normal quantile plot of estimated effects from 25 reactor experiment.
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Fig 6. Piecewise constant GUIDE model for the 25 reactor experiment. The sample
y-mean is given beneath each leaf node.
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Fig 7. Piecewise simple linear GUIDE model for the 25 reactor experiment. The
fitted equation is given beneath each leaf node.
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Fig 8. GUIDE piecewise multiple linear (left) and stepwise linear (right) models.

The piecewise constant GUIDE model for this dataset is shown in
Figure 6. Besides variables B, D, and E, it finds that variable A also
has some influence on the yield, albeit in a small region of the design
space. The maximum predicted yield of 95 is attained when B = D = +
and E = −, and the minimum predicted yield of 45 when B = − and
D = E = +.

If at each node, instead of fitting a constant we fit a best simple linear
regression model, we obtain the tree in Figure 7. Factor E, which was
used to split the nodes at the second and third levels of the piecewise
constant tree, is now selected as the best linear predictor in all three
leaf nodes.

We can try to further simplify the tree structure by fitting a multiple
linear regression in each node. The result, shown on the left side of
Figure 8, is a tree with only one split, on factor D. This model was also
found by Cheng and Li [8], who use a method called principal Hessian
directions to search for linear functions of the regressor variables; see
Filliben and Li [13] for another example of this approach.

We can simplify the model even more by replacing multiple linear
regression with stepwise regression at each node. The result is shown
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by the tree on the right side of Figure 8. It is almost the same as the
tree on its left, except that only factors B and E appear as regressors
in the leaf nodes. This coincides with the Box, Hunter, and Hunter
model (5), as seen by expressing the tree model algebraically as

ŷ = (60.125 + 3.125x2 + 2.375x5)(1 − x4)/2

+ (70.875 + 16.375x2 − 8.625x5)(1 + x4)/2

= 65.5 + 9.75x2 + 5.375x4 − 3.125x5 + 6.625x2x4 − 5.5x4x5.(7)

An argument can be made that the tree model on the right side of
Figure 8 provides a more intuitive explanation of the BD and DE
interactions than equation (7). For example, the coefficient for the x2x4

term (i.e., BD interaction) in (7) is 6.625 = (16.375− 3.125)/2, which
is half the difference between the coefficients of the x2 terms (i.e., B
main effects) in the two leaf nodes of the tree. Since the root node is
split on D, this matches the standard definition of the BD interaction
as half the difference between the main effects of B conditional on the
levels of D.
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Fig 9. Plots of fitted values from the Box, Hunter, and Hunter (BHH) model versus
fitted values from four GUIDE models for the unreplicated 25 example.
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Fig 10. Barplots of relative PMSEs of Lenth and GUIDE methods for four simu-
lation models. The relative PMSE of a method at a simulation model is defined as
its PMSE divided by the average PMSE of the five methods at the same model.

How do the five models compare? Their fitted values are very similar,
as Figure 9 shows. Note that every GUIDE model satisfies the hered-
ity principle, because by construction an nth-order interaction effect
appears only if the tree has (n + 1) levels of splits. Thus if a model
contains a cross-product term, it must also contain cross-products of
all subsets of those variables.

Figure 10 shows barplots of the simulated relative PMSEs of the five
methods for the four simulation models in Table 2. The methods being
compared are: (i) Lenth using 0.05 IER, (ii) Lenth using 0.1 EER, (iii)
piecewise constant GUIDE, (iv) piecewise best simple linear GUIDE,
and (v) piecewise stepwise linear GUIDE. The results are based on
10,000 simulation trials with each trial consisting of 16 observations
from an unreplicated 24 factorial. The behavior of the GUIDE models
is quite similar to that for replicated experiments in Section 3. Lenth’s
EER method does an excellent job in controlling the probability of
Type I error, but it does so at the cost of under-fitting the non-null
models. On the hand, Lenth’s IER method tends to over-fit more than
any of the GUIDE methods, across all four simulation models.

5. Poisson regression.

Model interpretation is much harder if some variables have more than
two levels. This is due to the main and interaction effects having more
than one degree of freedom. We can try to interpret a main effect by
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decomposing it into orthogonal contrasts to represent linear, quadratic,
cubic, etc., effects, and similarly decompose an interaction effect into
products of these contrasts. But because the number of products in-
creases quickly with the order of the interaction, it is not easy to
interpret several of them simultaneously. Further, if the experiment
is unreplicated, model selection is more difficult because significance
test-based and AIC-based methods are inapplicable without some as-
sumptions on the order of the correct model.

To appreciate the difficulties, consider an unreplicated 3×2×4×10×3
experiment on wave-soldering of electronic components in a printed
circuit board reported in Comizzoli, Landwehr, and Sinclair [10]. There
are 720 observations and the variables and their levels are:

1. Opening: amount of clearance around a mounting pad (levels
‘small’, ‘medium’, or ‘large’)

2. Solder: amount of solder (levels ‘thin’ and ‘thick’)
3. Mask: type and thickness of the material for the solder mask

(levels A1.5, A3, B3, and B6)
4. Pad: geometry and size of the mounting pad (levels D4, D6, D7,

L4, L6, L7, L8, L9, W4, and W9)
5. Panel: panel position on a board (levels 1, 2, and 3)

The response is the number of solder skips, which ranges from 0 to 48.
Since the response variable takes non-negative integer values, it is

natural to fit the data with a Poisson log-linear model. But how do we
choose the terms in the model? A straightforward approach would start
with an ANOVA-type model containing all main effect and interaction
terms and then employ significance tests to find out which terms to
exclude. We cannot do this here because fitting a full model to the data
leaves no residual degrees of freedom for significance testing. Therefore
we have to begin with a smaller model and hope that it contains all
the necessary terms.

If we fit a second-order model, we obtain the results in Table 3.
The three most significant two-factor interactions are between Opening,
Solder, and Mask. These variables also have the most significant main
effects. Chambers and Hastie [4, p. 10]—see also Hastie and Pregibon
[14, p. 217]—determine that a satisfactory model for these data is one
containing all main effect terms and these three two-factor interactions.
Using set-to-zero constraints (with the first level in alphabetical order
set to 0), this model yields the parameter estimates given in Table 4.
The model is quite complicated and is not easy to interpret as it has
many interaction terms. In particular, it is hard to explain how the
interactions affect the mean response.
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Table 3

Results from a second-order Poisson loglinear model fitted to solder data.

Term Df Sum of Sq Mean Sq F Pr(>F)

Opening 2 1587.563 793.7813 568.65 0.00000

Solder 1 515.763 515.7627 369.48 0.00000

Mask 3 1250.526 416.8420 298.62 0.00000

Pad 9 454.624 50.5138 36.19 0.00000

Panel 2 62.918 31.4589 22.54 0.00000

Opening:Solder 2 22.325 11.1625 8.00 0.00037

Opening:Mask 6 66.230 11.0383 7.91 0.00000

Opening:Pad 18 45.769 2.5427 1.82 0.01997

Opening:Panel 4 10.592 2.6479 1.90 0.10940

Solder:Mask 3 50.573 16.8578 12.08 0.00000

Solder:Pad 9 43.646 4.8495 3.47 0.00034

Solder:Panel 2 5.945 2.9726 2.13 0.11978

Mask:Pad 27 59.638 2.2088 1.58 0.03196

Mask:Panel 6 20.758 3.4596 2.48 0.02238

Pad:Panel 18 13.615 0.7564 0.54 0.93814

Residuals 607 847.313 1.3959

Table 4

A Poisson loglinear model containing all main effects and all two-factor
interactions involving Opening, Solder, and Mask.

Regressor Coef t Regressor Coef t

Constant -2.668 -9.25

maskA3 0.396 1.21 openmedium 0.921 2.95

maskB3 2.101 7.54 opensmall 2.919 11.63

maskB6 3.010 11.36 soldthin 2.495 11.44

padD6 -0.369 -5.17 maskA3:openmedium 0.816 2.44

padD7 -0.098 -1.49 maskB3:openmedium -0.447 -1.44

padL4 0.262 4.32 maskB6:openmedium -0.032 -0.11

padL6 -0.668 -8.53 maskA3:opensmall -0.087 -0.32

padL7 -0.490 -6.62 maskB3:opensmall -0.266 -1.12

padL8 -0.271 -3.91 maskB6:opensmall -0.610 -2.74

padL9 -0.636 -8.20 maskA3:soldthin -0.034 -0.16

padW4 -0.110 -1.66 maskB3:soldthin -0.805 -4.42

padW9 -1.438 -13.80 maskB6:soldthin -0.850 -4.85

panel2 0.334 7.93 openmedium:soldthin -0.833 -4.80

panel3 0.254 5.95 opensmall:soldthin -0.762 -5.13
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Fig 11. GUIDE piecewise constant Poisson regression tree for solder data. “Panel”
is abbreviated as “Pan”. The sample mean yield is given beneath each leaf node. The
leaf node with the lowest mean yield is painted black.

Figure 11 shows a piecewise constant Poisson regression GUIDE
model. Its size is a reflection of the large number of variable inter-
actions in the data. More interesting, however, is the fact that the tree
splits first on Opening, Mask, and Solder—the three variables having
the most significant two-factor interactions.

As we saw in the previous section, we can simplify the tree structure
by fitting a main effects model to each node instead of a constant. This
yields the much smaller piecewise main effect GUIDE tree in Figure 12.
It has only two splits, first on Solder and then, if the latter is thin, on
Opening. Table 5 gives the regression coefficients in the leaf nodes and
Figure 13 graphs them for each level of Mask and Pad by leaf node.

Because the regression coefficients in Table 5 pertain to conditional
main effects only, they are simple to interpret. In particular, all the
coefficients except for the constants and the coefficients for Pad have
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Fig 12. GUIDE piecewise main effect Poisson regression tree for solder data. The
number beneath each leaf node is the sample mean response.

positive values. Since negative coefficients are desirable for minimizing
the response, the best levels for all variables except Pad are thus those
not in the table (i.e, whose levels are set to zero). Further, W9 has
the largest negative coefficient among Pad levels in every leaf node.
Hence, irrespective of Solder, the best levels to minimize mean yield
are A1.5 Mask, large Opening, W9 Pad, and Panel position 1. Finally,
since the largest negative constant term occurs when Solder is thick,
the latter is the best choice for minimizing mean yield. Conversely, it
is similarly observed that the worst combination (i.e., one giving the
highest predicted mean number of solder skips) is thin Solder, small
Opening, B6 Mask, L4 Pad, and Panel position 2.

Given that the tree has only two levels of splits, it is safe to conclude
that four-factor and higher interactions are negligible. On the other
hand, the graphs in Figure 13 suggest that there may exist some weak
three-factor interactions, such as between Solder, Opening, and Pad.
Figure 14, which compares the fits of this model with those of the
Chambers-Hastie model, shows that the former fits slightly better.

6. Logistic regression.

The same ideas can be applied to fit logistic regression models when the
response variable is a sample proportion. For example, Table 6 shows
data reported in Collett [9, p. 127] on the number of seeds germinat-
ing, out of 100, at two germination temperatures. The seeds had been
stored at three moisture levels and three storage temperatures. Thus
the experiment is a 2 × 3 × 3 design.

Treating all the factors as nominal, Collett [9, p. 128] finds that a
linear logistic regression model with all three main effects and the inter-
action between moisture level and storage temperature fits the sample
proportions reasonably well. The parameter estimates in Table 7 show
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Table 5

Regression coefficients in leaf nodes of Figure 12.

Solder thick Solder thin
Opening small Opening not small

Regressor Coef t Coef t Coef t
Constant -2.43 -10.68 2.08 21.50 -0.37 -1.95
mask=A3 0.47 2.37 0.31 3.33 0.81 4.55
mask=B3 1.83 11.01 1.05 12.84 1.01 5.85
mask=B6 2.52 15.71 1.50 19.34 2.27 14.64
open=medium 0.86 5.57 aliased - 0.10 1.38
open=small 2.46 18.18 aliased - aliased -
pad=D6 -0.32 -2.03 -0.25 -2.79 -0.80 -4.65
pad=D7 0.12 0.85 -0.15 -1.67 -0.19 -1.35
pad=L4 0.70 5.53 0.08 1.00 0.21 1.60
pad=L6 -0.40 -2.46 -0.72 -6.85 -0.82 -4.74
pad=L7 0.04 0.29 -0.65 -6.32 -0.76 -4.48
pad=L8 0.15 1.05 -0.43 -4.45 -0.36 -2.41
pad=L9 -0.59 -3.43 -0.64 -6.26 -0.67 -4.05
pad=W4 -0.05 -0.37 -0.09 -1.00 -0.23 -1.57
pad=W9 -1.32 -5.89 -1.38 -10.28 -1.75 -7.03
panel=2 0.22 2.72 0.31 5.47 0.58 5.73
panel=3 0.07 0.81 0.19 3.21 0.69 6.93
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Fig 14. Plots of observed versus fitted values for the Chambers-Hastie model in
Table 4 (left) and the GUIDE piecewise main effects model in Table 5 (right).
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Table 6

Number of seeds, out of 100, that germinate.

Germination Moisture Storage temp. (oC)
temp. (oC) level 21 42 62

11 low 98 96 62
11 medium 94 79 3
11 high 92 41 1
21 low 94 93 65
21 medium 94 71 2
21 high 91 30 1

that only the main effect of storage temperature and its interaction
with moisture level are significant at the 0.05 level. Since the storage
temperature main effect has two terms and the interaction has four, it
takes some effort to fully understand the model.

Table 7

Logistic regression fit to seed germination data using set-to-zero constraints.

Coef SE z Pr(> |z|)
(Intercept) 2.5224 0.2670 9.447 < 2e-16
germ21 -0.2765 0.1492 -1.853 0.06385
store42 -2.9841 0.2940 -10.149 < 2e-16
store62 -6.9886 0.7549 -9.258 < 2e-16
moistlow 0.8026 0.4412 1.819 0.06890
moistmed 0.3757 0.3913 0.960 0.33696
store42:moistlow 2.6496 0.5595 4.736 2.18e-06
store62:moistlow 4.3581 0.8495 5.130 2.89e-07
store42:moistmed 1.3276 0.4493 2.955 0.00313
store62:moistmed 0.5561 0.9292 0.598 0.54954

A simple linear logistic regression model, on the other hand, is com-
pletely and intuitively explained by its graph. Therefore we will fit a
piecewise simple linear logistic model to the data, treating the three-
valued storage temperature variable as a continuous linear predictor.
We accomplish this with the LOTUS [5] algorithm, which extends the
GUIDE algorithm to logistic regression. It yields the logistic regres-
sion tree in Figure 15. Since there is only one linear predictor in each
node of the tree, the LOTUS model can be visualized through the fit-
ted probability functions shown in Figure 16. Note that although the
tree has five leaf nodes, and hence five fitted probability functions, we
can display the five functions in three graphs, using solid and dashed
lines to differentiate between the two germination temperature levels.
Note also that the solid and dashed lines coincide in the middle graph
because the fitted probabilities there are independent of germination
temperature.
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Fig 15. Piecewise simple linear LOTUS logistic regression tree for seed germina-
tion experiment. The fraction beneath each leaf node is the sample proportion of
germinated seeds.

The graphs show clearly the large negative effect of storage tem-
perature, especially when moisture level is medium or high. Further,
the shapes of the fitted functions for low moisture level are quite dif-
ferent from those for medium and high moisture levels. This explains
the strong interaction between storage temperature and moisture level
found by Collett [9].

7. Conclusion.

We have shown by means of examples that a regression tree model can
be a useful supplement to a traditional analysis. At a minimum, the
former can serve as a check on the latter. If the results agree, the tree
offers another way to interpret the main effects and interactions beyond
their representations as single degree of freedom contrasts. This is espe-
cially important when variables have more than two levels because their
interactions cannot be fully represented by low-order contrasts. On the
other hand, if the results disagree, the experimenter may be advised
to reconsider the assumptions of the traditional analysis. Following are
some problems for future study.

1. A tree structure is good for uncovering interactions. If interac-
tions exist, we can expect the tree to have multiple levels of splits.
What if there are no interactions? In order for a tree structure to
represent main effects, it needs one level of splits for each variable.
Hence the complexity of a tree is a sufficient but not necessary
condition for the presence of interactions. One way to distinguish
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Fig 16. Fitted probability functions for seed germination data. The solid and dashed
lines pertain to fits at germination temperatures of 11 and 21 degrees, respectively.
The two lines coincide in the middle graph.

between the two situations is to examine the algebraic equation
associated with the tree. If there are no interaction effects, the co-
efficients of the cross-product terms can be expected to be small
relative to the main effect terms. A way to formalize this idea
would be useful.

2. Instead of using empirical principles to exclude all high-order ef-
fects from the start, a tree model can tell us which effects might
be important and which unimportant. Here “importance” is in
terms of prediction error, which is a more meaningful criterion
than statistical significance in many applications. High-order ef-
fects that are found this way can be included in a traditional
stepwise regression analysis.

3. How well do the tree models estimate the true response surface?
The only way to find out is through computer simulation where
the true response function is known. We have given some simula-
tion results to demonstrate that the tree models can be compet-
itive in terms of prediction mean squared error, but more results
are needed.

4. Data analysis techniques for designed experiments have tradition-
ally focused on normally distributed response variables. If the
data are not normally distributed, many methods are either in-
applicable or become poor approximations. Wu and Hamada [22,
Chap. 13] suggest using generalized linear models for count and
ordinal data. The same ideas can be extended to tree models.
GUIDE can fit piecewise normal or Poisson regression models
and LOTUS can fit piecewise simple or multiple linear logistic
models. But what if the response variable takes unordered nom-
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inal values? There is very little statistics literature on this topic.
Classification tree methods such as CRUISE [15] and QUEST
[19] may provide solutions here.

5. Being applicable to balanced as well as unbalanced designs, tree
methods can be useful in experiments where it is impossible or
impractical to obtain observations from particular combinations
of variable levels. For the same reason, they are also useful in re-
sponse surface experiments where observations are taken sequen-
tially at locations prescribed by the shape of the surface fitted
up to that time. Since a tree algorithm fits the data piecewise
and hence locally, all the observations can be used for model fit-
ting even if the experimenter is most interested in modeling the
surface in a particular region of the design space.
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