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Summary. A regression model is best interpreted visually. Because we are limited
to 2D displays, one way that we can fit a non-trivial model involving several predictor
variables and still visually display it, is to partition the data and fit a simple model
to each partition. We show how this can be achieved with a recursive partitioning
algorithm called GUIDE. Further, we use examples to demonstrate how GUIDE
can (i) explain ambiguities from multiple linear regression, (ii) reveal the effect of
a categorical variable hidden from a sliced inverse regression model, (iii) identify
outliers in data from a large and complex but poorly designed experiment, and
(iv) fit an interpretable Poisson regression model to data containing categorical
predictor variables.

1 Introduction

Regression modeling often requires many subjective decisions, such as choice of
transformation for each variable and the type and number of terms to include
in the model. The transformations may be as simple as powers and cross-
products or as sophisticated as indicator functions and splines. Sometimes,
the transformations are chosen to satisfy certain subjective criteria such as
approximate normality of the marginal distributions of the predictor variables.
Further, model building is almost always an iterative process, with the fit of
the model evaluated each time terms are added or deleted.

In statistical applications, a regression model is generally considered ac-
ceptable if it satisfies two criteria. The first is that the distribution of the resid-
uals agrees with that specified by the model. In the case of least-squares regres-
sion, this usually means normality and variance homogeneity of the residuals.
The whole subject of regression diagnostics is concerned with this problem [3].
This criterion can be hard to achieve, however, in complex datasets without
the fitted model becoming unwieldy. The second criterion, which is preferred
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almost exclusively in the machine learning literature, is that the model has
low mean prediction squared error or, more generally, deviance.

If model selection is completely software-based, the prediction deviance of
an algorithm can be estimated by V -fold cross-validation as follows:

1. Randomly divide the dataset into V roughly equal parts.
2. Leaving out one part in turn, apply the algorithm to the observations in

the remaining V − 1 parts to obtain a model.
3. Estimate the mean prediction deviance of each model by applying the

left-out data to it.
4. Average the V estimates to get a cross-validation estimate for the model

constructed from all the data.

The value of V may be as small as 2 for very large datasets and as large as the
sample size for small datasets. But cross-validation is impractical if the model
is selected not by a computer algorithm but by a person making subjective
decisions at each stage. In this case, penalty-based methods such as AIC [1] are
often employed. These methods select the model that minimizes a sum of the
residual deviance plus a penalty term times a measure of model complexity.
Although the rationale makes sense, there is no, and probably never will be,
consensus on the right value of the penalty term for all datasets.

A separate, but no less important, problem is how to build a regression
model that can be interpreted correctly and unambiguously. In practice, the
majority of consumers of regression models often are more interested in model
interpretation than in optimal prediction accuracy. They want to know which
predictor variables affect the response and how they do it. Sometimes, they
also want a rank ordering of the predictors according to the strength of their
effects, although this question is meaningless without a more precise formula-
tion. Nonetheless, it is a sad fact that the models produced by most regression
techniques, including the most basic ones, are often difficult or impossible to
interpret. Besides, even when a model is mathematically interpretable, the
conclusions can be far from unambiguous.

In the rest of this article, we use four examples to highlight some com-
mon difficulties: (i) effects of collinearity on modeling Boston housing price
(Sect. 2), (ii) inclusion of a categorical predictor variable in modeling New
Zealand horse mussels (Sect. 4), (iii) outlier detection amid widespread con-
founding in U.S. automobile crash tests (Sect. 5), and (iv) Poisson regres-
sion modeling of Swedish car insurance rates (Sect. 6). We propose a divide-
and-conquer strategy to solve these problems. It is based on partitioning the
dataset into naturally interpretable subsets such that a relatively simple and
visualizable regression model can be fitted to each subset. A critical require-
ment is that the partitions be free of selection bias. Otherwise, inferences
drawn from the partitions may be incorrect. Another requirement is that the
solution be capable of determining the number and type of partitions by itself.
In Sect. 3 we present an implementation derived from the GUIDE regression
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tree algorithm [12]. At the time of this writing, GUIDE is the only algorithm
that has the above properties as well as other desirable features.

2 Boston housing data—effects of collinearity

The well-known Boston housing dataset was collected by Harrison and Rubin-
feld [10] to study the effect of air pollution on real estate price in the greater
Boston area in the 1970s. Belsley, Kuh, and Welsch [3] drew attention to the
data when they used it to illustrate regression diagnostic techniques. The data
consist of 506 observations on 16 variables, with each observation pertaining
to one census tract. Table 1 gives the names and definitions of the variables.
We use the version of the data that incorporates the minor corrections found
by Gilley and Pace [8].

Table 1. Variables in Boston housing data

Variable Definition Variable Definition

ID census tract number TOWN township (92 values)
MEDV median value in $1000 AGE % built before 1940
CRIM per capita crime rate DIS distance to employ. centers
ZN % zoned for lots > 25,000 sq.ft. RAD accessibility to highways
INDUS % nonretail business TAX property tax rate/$10K
CHAS 1 on Charles River, 0 else PT pupil/teacher ratio
NOX nitrogen oxide conc. (p.p.109) B (% black - 63)2/10
RM average number of rooms LSTAT % lower-status population

Harrison and Rubinfeld [10] fitted the linear model

log(MEDV) = β0 + β1CRIM+ β2ZN+ β3INDUS+ β4CHAS+ β5NOX
2 + β6RM

2

+ β7AGE+ β8 log(DIS) + β9 log(RAD) + β10TAX+ β11PT + β12B

+ β13 log(STAT)

whose least squares estimates, t-statistics, and marginal correlation between
each regressor and log(MEDV) are given in Table 2. Note the liberal use of the
square and log transformations. Although many of the signs of the coefficient
estimates are reasonable and expected, those of log(DIS) and log(RAD) are
somewhat surprising, because their signs contradict those of their respective
marginal correlations with the response variable. For example, the regression
coefficient of log(DIS) is negative but the plot in Figure 1 shows a positive
slope.

To resolve the contradiction, recall that the regression coefficient of log(DIS)
quantifies the linear effect of the variable after the linear effects of the other
variables are accounted for. On the other hand, the correlation of log(DIS)
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Table 2. Least squares estimates of the coefficients and t-statistics for the regression
model for log(MEDV). The marginal correlation between the response variable and
each predictor is denoted by ρ.

Regressor β t ρ Regressor β t ρ

Constant 4.6 30.0 AGE 7.1E-5 0.1 -0.5
CRIM -1.2E-2 -9.6 -0.5 log(DIS) -2.0E-1 -6.0 0.4
ZN 9.2E-5 0.2 0.4 log(RAD) 9.0E-2 4.7 -0.4
INDUS 1.8E-4 0.1 -0.5 TAX -4.2E-4 -3.5 -0.6
CHAS 9.2E-2 2.8 0.2 PT -3.0E-2 -6.0 -0.5
NOX

2 -6.4E-1 -5.7 -0.5 B 3.6E-4 3.6 0.4
RM

2 6.3E-3 4.8 0.6 log(LSTAT) -3.7E-1 -15.2 -0.8
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Fig. 1. Plot of log(MEDV) versus log(DIS) for Boston data

with the response variable ignores the effects of the other variables. Since it is
important to take the other variables into consideration, the regression coef-
ficient may be a better measure of the effect of log(DIS). But this conclusion
requires the linear model assumption to be correct. Nonetheless, it is hard to
explain the negative linear effect of log(DIS) when we are faced with Figure 1.

The problem of contradictory signs vanishes when there is only one regres-
sor variable. Although it can occur with two regressor variables, the difficulty
is diminished because the fitted model can be visualized through a contour
plot. For datasets that contain more than two predictor variables, we propose
a divide-and-conquer strategy. Just as a prospective buyer inspects a house
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one room at a time, we propose to partition the dataset into pieces such that a
visualizable model involving one or two predictors suffices for each piece. One
difficulty is that, unlike a house, there are no predefined “rooms” or “walls” in
a dataset. Arbitrarily partitioning a dataset makes as much sense as arbitrarily
slicing a house into several pieces. We need a method that gives interpretable
partitions of the dataset. Further, the number and kind of partitions should
be dictated by the complexity of the dataset as well as the type of models to
be fitted. For example, if a dataset is adequately described by a non-constant
simple linear regression involving one predictor variable and we fit a piecewise
linear model to it, then no partitioning is necessary. On the other hand, if we
fit a piecewise constant model to the same dataset, the number of partitions
should increase with the sample size.

The GUIDE regression tree algorithm [12] provides a ready solution to
these problems. GUIDE can recursively partition a dataset and fit a constant,
best polynomial, or multiple linear model to the observations in each partition.
Like the earlier CART algorithm [4], which fits piecewise constant models
only, GUIDE first constructs a nested sequence of tree-structured models and
then uses cross-validation to select the smallest one whose estimated mean
prediction deviance lies within a short range of the minimum estimate. But
unlike CART, GUIDE employs lack-of-fit tests of the residuals to choose a
variable to partition at each stage. As a result, it does not have the selection
bias of CART and other algorithms that rely solely on greedy optimization.

To demonstrate a novel application of GUIDE, we use it to study the linear
effect of log(DIS) after controlling for the effects of the other variables, without

making the linear model assumption. We do this by constructing a GUIDE
regression tree in which log(DIS) is the sole linear predictor in each partition
or node of the tree. The effects of the other predictor variables, which need
not be transformed, can be observed through the splits at the intermediate
nodes. Figure 2 shows the tree, which splits the data into twelve nodes. The
regression coefficients are between -0.2 and 0.2 in all but four leaf nodes. These
nodes are colored red (for slope less than -0.2) and blue (for slope greater than
0.2). We choose the cut-off values of ±0.2 because the coefficient of log(DIS)
in Table 2 is 0.2. The tree shows that the linear effect of log(DIS) is neither
always positive nor always negative—it depends on the values of the other
variables. This explains the contradiction between the sign of the multiple
linear regression coefficient of log(DIS) and that of its marginal correlation.
Clearly, a multiple linear regression coefficient is, at best, an average of several
conditional simple linear regression coefficients.

Figure 3 explains the situation graphically by showing the data and the
twelve regression lines and their associated data points, using blue triangles
and red circles for observations associated with slopes greater than 0.2 and
less than -0.2, respectively, and green crosses for the others. The plot shows
that, after we allow for the effects of the other variables, log(DIS) generally
has little effect on median house price, except in four groups of census tracts
(triangles and circles) that are located relatively close to employment centers
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Fig. 2. GUIDE model for log(MEDV), using log(DIS) as linear predictor in each node.
At each branch, a case goes to the left child node if and only if the given condition
is satisfied. The sample mean of log(MEDV) is printed beneath each leaf node. A blue
colored leaf node indicates a slope coefficient greater than 0.2. Correspondingly, a
red colored leaf node is associated with a slope coefficient less than -0.2.

(log(DIS) < 1). According to Figure 2, the groups denoted by blue triangles are
quite similar. They contain a large majority of the lower-priced tracts and have
high values of LSTAT and CRIM. The two groups composed of red circles, on
the other hand, are quite different from each other. One group contains tracts
in Beacon Hill and Back Bay, two high-priced towns near Boston. The other
group contains tracts with DIS lying within a narrow range and with mostly
below-average MEDV values. Clearly, the regression coefficient of log(DIS) in
Table 2 cannot possibly reveal such details. Unfortunately, this problem is by
no means rare. Friedman and Wall [7], for example, found a similar problem
that involves different variables in a subset of these data.

3 Extension to GUIDE

The basic GUIDE procedure for fitting piecewise constant and piecewise mul-
tiple linear models is described in [12]. We present here an extension to fit
piecewise simple linear models. The same ideas apply to Poisson regression
and to piecewise linear two-predictor models, where the two predictors are
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Fig. 3. Data points and regression lines in the twelve leaf nodes of the Boston data
tree. The blue and red colors correspond to those in Figure 2.

chosen at each node via stepwise regression, subject to the standard F-to-
enter and F-to-remove threshold values of 4.0 [13]. Our extension comprises
four algorithms, starting with Algorithm 1.

Algorithm 1 (Tree construction) These steps are applied recursively to
each node of the tree, starting with the root node that holds the whole dataset.

1. Let t denote the current node. Fit a simple linear regression to each pre-
dictor variable in the data in t. Choose the predictor yielding the smallest
residual mean squared error and record its model R2.

2. Stop if R2 > 0.99 or if the number of observations is less than 2n0, where
n0 is a small user-specified constant. Otherwise, go to the next step.

3. For each observation associated with a positive residual, define the class
variable Z = 1; else define Z = 0.

4. Use Algorithm 2 to find a variable X ′ to split t into left and right subnodes
tL and tR.
a) If X ′ is ordered, search for a split of the form X ′ ≤ x. For every x

such that tL and tR contain at least n0 observations each, find S, the
smallest total sum of squared residuals obtainable by fitting a simple
linear model to the data in tL and tR separately. Select the smallest
value of x that minimizes S.

b) If X ′ is categorical, search for a split of the form X ′ ∈ C, where C is
a subset of the values taken by X ′. For every C such that tL and tR



8 Wei-Yin Loh

have at least n0 observations each, calculate the sample variances of
Z in tL and tR. Select the set C for which the weighted sum of the
variances is minimum, with weights proportional to sample sizes in tL
and tR.

5. Apply step 1 to tL and tR separately.

Algorithm 2 (Split variable selection)

1. Use Algorithms 3 and 4 to find the smallest curvature and interaction

p-values p(c) and p(i) and their associated variables X(c) and {X(i)
1 , X

(i)
2 }.

2. If p(c) ≤ p(i), define X ′ = X(c) to be the variable to split t.
3. Otherwise, if p(c) > p(i), then:

a) If either X
(i)
1 or X

(i)
2 is categorical, define X ′ = X

(i)
1 if it has the

smaller curvature p-value; otherwise, define X ′ = X
(i)
2 .

b) Otherwise, if X
(i)
1 and X

(i)
2 are both ordered variables, search over all

splits of t along X
(i)
1 . For each split into subnodes tL and tR, fit a

simple linear model on X
(i)
1 to the data in tL and tR separately and

record the total sum of squared residuals. Let S1 denote the smallest

total sum of squared residuals over all possible splits of t on X
(i)
1 .

Repeat the process with X
(i)
2 and obtain the corresponding smallest

total sum of squared residuals S2. If S1 ≤ S2, define X ′ = X
(i)
1 ;

otherwise, define X ′ = X
(i)
2 .

Algorithm 3 (Curvature tests)

1. For each predictor variable X :
a) Construct a 2×m cross-classification table. The rows of the table are

formed by the values of Z. If X is a categorical variable, its values
define the columns, i.e., m is the number of distinct values of X . If X

is quantitative, its values are grouped into four intervals at the sample
quartiles and the groups constitute the columns, i.e., m = 4.

b) Compute the significance probability of the chi-squared test of asso-
ciation between the rows and columns of the table.

2. Let p(c) denote the smallest significance probability and let X(c) denote
the associated X variable.

Algorithm 4 (Interaction tests)

1. For each pair of variables Xi and Xj , carry out the following interaction
test:
a) If Xi and Xj are both ordered variables, divide the (Xi, Xj)-space into

four quadrants by splitting the range of each variable into two halves
at the sample median; construct a 2 × 4 contingency table using the
Z values as rows and the quadrants as columns. After dropping any
columns with zero column totals, compute the chi-squared statistic
and its p-value.
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b) If Xi and Xj are both categorical variables, use their value-pairs to
divide the sample space. For example, if Xi and Xj take ci and cj

values, respectively, the chi-squared statistic and p-value are computed
from a table with two rows and number of columns equal to cicj less
the number of columns with zero totals.

c) If Xi is ordered and Xj is categorical, divide the Xi-space into two
at the sample median and the Xj-space into as many sets as the
number of categories in its range—if Xj has c categories, this splits
the (Xi, Xj)-space into 2c subsets. Construct a 2×2c contingency table
with the signs of the residuals as rows and the 2c subsets as columns.
Compute the chi-squared statistic and its p-value, after dropping any
columns with zero totals.

2. Let p(i) denote the smallest p-value and let X
(i)
1 and X

(i)
2 denote the pair

of variables associated with p(i).

After Algorithm 1 terminates, we prune the tree with the method described
in [4, Sec. 8.5] using V -fold cross-validation. Let E0 be the smallest cross-
validation estimate of prediction mean squared error and let α be a positive
number. We select the smallest subtree whose cross-validation estimate of
mean square error is within α times the standard error of E0. To prevent
large prediction errors caused by extrapolation, we also truncate all predicted
values so that they lie within the range of the data values in their respective
nodes. The examples here employ the default values of V = 10 and α = 0.5;
we call this the half-SE rule.

Our split selection approach is different from that of CART, which con-
structs piecewise constant models only and which searches for the best variable
to split and the best split point simultaneously at each node. This requires
the evaluation of all possible splits on every predictor variable. Thus, if there
are K ordered predictor variables each taking M distinct values at a node,
K(M − 1) splits have to be evaluated. To extend the CART approach to
piecewise linear regression, two linear models must be fitted for each candi-
date split. This means that 2K(M − 1) regression models must be computed
before a split is found. The corresponding number of regression models for K

categorical predictors each having M distinct values is 2K(2M−1−1). GUIDE,
in contrast, only fits regression models to variables associated with the most
significant curvature or interaction test. Thus the computational savings can
be substantial. More important than computation, however, is that CART’s
variable selection is inherently biased toward choosing variables that permit
more splits. For example, if two ordered variables are both independent of
the response variable, the one with more unique values has a higher chance
of being selected by CART. GUIDE does not have such bias because it uses
p-values for variable selection.
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4 Mussels—categorical predictors and SIR

In this section, we use GUIDE to re-analyze a dataset, previously studied by
Cook [6], to show that GUIDE can deal with categorical predictor variables as
naturally and easily as continuous variables. The data are from the Division
of Water Science, DSIR, New Zealand [5]. They contain measurements on
two hundred and one horse mussels taken from five Sites in the Marlborough
Sounds, New Zealand, in December 1984. Besides Site, each mussel’s Length,
Width, Depth (all in mm), Gender (male, female, or indeterminate), Viscera
mass, Muscle mass, and Shell mass (all in gm) were recorded, as well as the
type of Peacrab (five categories) found living in its shell.

Cook [6, p. 214] used Muscle as the response variable and Length, Depth,
and Shell as predictors to illustrate his approach to graphical regression. [Note:
Cook used the symbols L, W , and S to denote Length, Depth and Shell, re-
spectively.] With the aid of sliced inverse regression [11] and power transforma-
tions, he finds that the mean of Muscle can be modeled by the one-dimensional
subspace defined by the variable

SIR1 = 0.001 Length+ 0.073 Depth0.36 + 0.997 Shell0.11. (1)

Figure 4 shows the banana-shaped plot of Muscle versus SIR1.
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Fig. 4. Plot of Muscle versus SIR1 (slightly jittered to reduce over-plotting)

The variable Site is not used in formula (1) because, unlike GUIDE, sliced
inverse regression does not easily handle categorical predictor variables. Fig-
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ure 5 shows the result of fitting a GUIDE piecewise best simple linear model
to the data. The tree splits first on Site. If Site is neither 2 nor 3, the tree
splits further on Depth. The best simple linear predictor is Shell at two of
the leaf nodes and Width at the third. Figure 6 shows the data and the fitted
lines in the leaf nodes of the tree. The plots look quite linear.

Site =
2 or 3

20.88
+Shell

Depth
≤ 42.5

6.87
Shell

20.54
Width

Site =
2 or 3

20.88
Shell

Width

12.39
Shell

Width

Fig. 5. Piecewise best simple linear (left) and best two-variable linear (right) least-
squares GUIDE models for mussels data. At each intermediate node, a case goes to
the left child node if and only if the condition is satisfied. Beneath each leaf node
are the sample mean of Muscle and the selected linear predictors.

On the right side of Figure 5 is the piecewise best two-variable GUIDE
model. It splits the data into two pieces, using the same top-level split as the
piecewise best simple linear model. Shell and Width are selected as the best
pair of linear predictors in both leaf nodes. Figure 7 shows shaded contour
plots of the fitted functions and data points. Clearly, the mussels from Sites
2 and 3 tend to have greater Muscle mass than those from Sites 1, 4, and 5.

Since Site is an important predictor in the GUIDE models, we redraw the
SIR plot using different symbols to indicate Site information in panel (a) of
Figure 8. The banana-shaped plot is seen to be an artifact caused by combining
the Sites; the data points within each Site are quite linear. Panel (b) again
employs different symbols to indicate leaf node membership according to the
piecewise best simple linear model in Figure 6. We see that node membership
divides the data into three clusters, with the first cluster belonging to Sites 2
and 3, and the second and third clusters to Sites 1, 4, and 5, depending on
whether or not Depth ≤ 42.5. The first cluster (indicated by circles) clearly
exhibits the most pronounced curvature. This suggests that the nonlinear
relationship between Muscle and SIR1 is mainly due to the observations from
Sites 2 and 3. On the other hand, we saw in Figure 6(a) that at these two Sites,
Muscle varies roughly linearly with Shell. Thus it is likely that the curvature
in Figure 4 is at least partly due to the power transformation of Shell in the
definition of SIR1 in formula (1).
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(b) Site = 1, 4, or 5 & Depth ≤ 42.5

110 120 130 140 150

0
10

20
30

40
50

Width

M
us

cl
e

(c) Site = 1, 4, or 5 & Depth > 42.5

Fig. 6. Data and fitted lines for the piecewise best simple linear GUIDE model on
the left side of Figure 5

5 Crash tests—outlier detection under confounding

The data in this example are obtained from 1,789 vehicle crash tests performed
by the National Highway Transportation Safety Administration (NHTSA) be-
tween 1972 and 2004 (http://www-nrd.nhtsa.dot.gov). The response vari-
able is the square root of the head injury criterion (hic) measured on a crash
dummy. Values of

√
hic range from 0 to 100, with 30 being the approxi-

mate level beyond which a person is expected to suffer severe head injury.
Twenty-five predictor variables, defined in Table 3, provide information on
the vehicles, dummies, and crash tests. Angular variables are measured clock-
wise, with −90, 0, and 90 degrees corresponding to the driver’s left, front, and
right sides, respectively. About one-quarter of the vehicle models are tested
more than once, with the most often tested being the 1982 Chevy Citation,
which was tested fifteen times.

Our goal is to identify the vehicle models for which the hic values are
unusually high, after allowing for the effects of the predictor variables. Since
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Fig. 7. Shaded contour plots of fitted functions and data points for the piecewise
best two-variable linear model on the right side of Figure 5
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Fig. 8. Muscle versus SIR1 by Site and by the nodes of the tree in Figure 5(a)
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Table 3. Variables for NHTSA data

Name Description Name Description

hic Head injury criterion make Car manufacturer (62 values)
year Car model year mkmodel Car model (464 values)
body Car body type (18 values) transm Transmission type (7 values)
engine Engine type (15 values) engdsp Engine displacement (liters)
vehtwt Vehicle total weight (kg) colmec Collapse mechanism (11 values)
vehwid Vehicle width (mm) modind Car modification indicator (5 values)
vehspd Vehicle speed (km/h) crbang Crabbed angle (degrees)
tksurf Track surface (5 values) pdof Principal direction of force (degrees)
tkcond Track condition (6 values) impang Impact angle (degrees)
occtyp Occupant type (10 values) dumsiz Dummy size (6 values)
seposn Seat position (5 values) barrig Barrier rigidity (rigid/deformable)
barshp Barrier shape (14 values) belts Seat belt type (none/2pt/3pt)
airbag Airbag present (yes/no) knee Knee restraint present (yes/no)

almost all the tests involve two or more crash dummies, we will give two sepa-
rate analyses, one for the driver and another for the front passenger dummies.
After removing tests with incomplete values, we obtain 1,633 and 1,468 com-
plete tests for driver and front passenger, respectively. The tests for driver
dummies involve 1,136 different vehicle models. Figure 9 shows a histogram
of the

√
hic values for the driver data (the histogram for front passenger is

similar). There are twenty-two vehicle models with
√
hic values greater than

50. They are listed in Table 4, arranged by model year, with the total number
of times tested and (within parentheses) the

√
hic values that exceed 50. For

example, the 2000 Nissan Maxima was tested eight times, of which five gave√
hic values greater than 50.

To identify the outliers after removing the effects of the predictor variables,
we need to regress the response values on the predictors. The regression model
must be sufficiently flexible to accommodate the large number and mix of
predictor variables and to allow for nonlinearity and interactions among them.
It must also be suitable for graphical display, as the outliers will be visually
identified. These requirements are well-satisfied by a piecewise simple linear
GUIDE model, which is shown in Figure 10. The tree has three leaf nodes,
partitioning the data according to vehspd. Beneath each leaf node is printed
the sample mean response for the node and the selected signed linear predictor.
We see that model year is the most important linear predictor in two of the
three leaf nodes, and impang in the third. In the latter (Node 4), injury tends
to be more severe if the impact occurs on the driver side (impang = −90).
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Fig. 9. Histogram of
√
hic for driver dummy data. Shaded areas correspond to√

hic > 30.

Table 4. Vehicles with
√
hic (in parentheses) greater than 50 registered on driver

dummies. The column labeled # gives the total number of each model tested. For
example, four out of eight 2000 Nissan Maxima’s tested had

√
hic > 50.

# Model # Model

1 1979 Dodge Colt (96) 2 1983 Renault Fuego (57)
12 1979 Honda Civic (53) 1 1984 Ford Tempo (54)
1 1979 Mazda B2000 Pickup (55) 1 1988 Chevy Sportvan (61)
1 1979 Peugeot 504 (68) 1 1990 Ford Clubwagon MPV (51)
2 1979 Volkswagen Rabbit (62) 4 1995 Honda Accord (94)
3 1980 Chevy Citation (65) 5 2000 Nissan Altima (100)
1 1980 Honda Civic (52) 8 2000 Nissan Maxima (69, 72, 100, 100, 100)
1 1980 Honda Prelude (55) 4 2000 Saab 38235 (72)
2 1981 Mazda GLC (51) 4 2000 Subaru Legacy (100, 100)
2 1982 Chrysler Lebaron (51) 11 2001 Saturn L200 (68, 87, 100)
2 1982 Renault Fuego (61) 9 2002 Ford Explorer (100)
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vehspd
≤ 63.95

vehspd
≤ 48.85

4

21.01
–impang

5

26.84
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8.61
–year

Fig. 10. Piecewise-simple linear GUIDE model for driver data. At each intermediate
node, a case goes to the left child node if and only if the condition is satisfied. Beneath
each leaf node are the sample mean of

√
hic and the selected signed linear predictor.
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Fig. 11. Data and fitted regression functions in the leaf nodes of the tree model in Figure 10, using different symbols for barrig (top)
and airbag (bottom) values
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A very interesting feature of the tree is that the sample mean response is
lowest in Node 3, which has the highest values of vehspd (> 63.95). At first
glance, this does not make sense because injury severity should be positively
correlated with vehicle speed. It turns out that the design of the experiment
causes some variables to be confounded. This is obvious from the upper row
of plots in Figure 11, which show the data and regression lines in the three
leaf nodes of the tree, using different symbols to indicate whether a vehicle
is crashed into a rigid or a deformable barrier. We see that the proportion of
tests involving deformable barriers is much greater at high speeds (Node 3)
than at low speeds. This would explain the lower injury values among the
high-speed tests.

Another variable confounded with vehspd is airbag. This can be seen
in the second row of plots in the same Figure, where different symbols are
used to indicate whether a vehicle is equipped with an airbag or not. We see
that almost all vehicles manufactured from 1990 onwards have airbags and
that their presence is associated with lower hic values. Since there is a fair
number of such vehicles in Node 3, this could also account for the low sample
mean response.

Finally, a third confounding variable is evident in Figure 12, which shows
barplots of the proportions of barrier shape type (barshp) within each leaf
node of the tree. Node 3, whose bars are colored green, stands out in that
barrier shapes EOB, GRL, IAT, MBR, and SGN practically never appear in
the other two nodes. For some reason, the testers seem to prefer these barrier
shapes for high speed crashes. Thus barrier shape is yet another possible
explanation for the low mean response value in the node.

Despite these difficulties, it is clear from the plots that three vehicle models
stand out as outliers: 1995 Honda Accord, 2000 Nissan Altima, and 2000
Subaru Legacy. All are foreign imports. The 2000 Subaru Legacy appears as
an outlier in two separate tests, one at moderate speed and one at high speed.

Figure 13 shows the corresponding tree model for the front passenger data.
Now airbag and barrier rigidity appear as split variables after the top-level
split on vehspd. The plots of the data in the leaf nodes are presented in
Figure 14. Everything seems to make sense: injury is less severe when a vehicle
is equipped with airbags and when it is crashed into a deformable barrier, and
also if impact occurs on the driver side (Node 6). It is interesting to note that
in Node 5, where vehspd ≤ 48.25 and the vehicles are equipped with airbags,
rigid barriers are used for the higher speeds and deformable barriers for the
lower speeds. This may exaggerate the effect of vehspd in this node. The
outliers for these data turn out to be all domestic models: 1978 Chevy Blazer,
1982 Chevy Citation, 1994 Ford Ram 150, 1998 Ford Contour, and 1999 Dodge
Intrepid.

The good news from both analyses is that no obvious outliers are found
among vehicles newer than the 2000 model year.
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Fig. 12. Proportions of different barrier shapes within the three leaf nodes of the
tree model in Figure 10. The lengths of the bars sum to one for each color.
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Fig. 13. Piecewise-simple linear GUIDE model for front passenger data. At each
intermediate node, a case goes to the left child node if and only if the condition
is satisfied. Beneath each leaf node are the sample mean of

√
hic and the selected

signed linear predictor.
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Fig. 14. Data and fitted regression functions in the leaf nodes of the tree model in
Figure 13, with different symbols for barrig type

6 Car insurance rates—Poisson regression

The data are from Statlib. A subset of it is given in Andrews and Herzberg
[2, pp. 415–421]. The original data consist of information on more than two
million third-party automobile insurance policies in Sweden for the 1977 year.
For each policy was recorded the annual mileage, bonus class (on a seven-point
scale), geographical zone (seven categories), and make of car (nine categories).
Annual mileage is discretized into five categories — (1) less than 10,000 km/yr,
(2) 10,000–15,000 km/yr, (3) 15,000–20,000 km/yr, (4) 20,000–25,000 km/yr,
and (5) more than 25,000 km/yr, see [9]. These four explanatory variables
yield a 5× 7× 7× 9 table with 2205 possible cells. For each cell, the following
quantities were obtained:

1. total insured time in years,
2. total number of claims,
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3. total monetary value of the claims.

Twenty-three cells are empty.
We will model claim rate here. According to [2, p. 414], a Swedish Analysis

of Risk group decided that a multiplicative model (i.e., an additive Poisson
loglinear model) for claim rate is fairly good, and that any better model is too
complicated to administer. To challenge this conclusion, we will use GUIDE
to fit a piecewise-additive Poisson loglinear model for number of claims, using
the log of number of claims as offset variable. Bonus class and mileage class
are treated as continuous, and zone and make as categorical variables.

bonus
≤ 2

mileage
= 1

4

0.091

5

0.107

bonus
≤ 6

6

0.060

7

0.036

Fig. 15. GUIDE multiple linear Poisson regression tree for car insurance data. At
each intermediate node, a case goes to the left child node if and only if the condition
is satisfied. The number in italics beneath each leaf node is the sample claim rate.

Figure 15 shows the GUIDE tree, which has four leaf nodes and an es-
timated prediction deviance (based on ten-fold cross-validation) about 25%
lower than that of a single additive loglinear model. From the sample average
claim rates printed beneath the leaf nodes, we see that bonus classes 1 and 2
tend to yield rates two to three times as large as the other bonus classes.

The estimated regression coefficients in the leaf nodes are given in Table 5,
where the coefficients of the dummy variables corresponding to the first levels
of each categorical variable are set to zero. As may be expected, mileage has a
positive slope coefficient in all three nodes where it is not constant. The slope
for bonus is, however, negative wherever it is not constant. Thus the higher
the bonus class, the lower the claim rate tends to be.

For make, the coefficient for level 4 has a larger negative value than the
coefficients for the other make levels, uniformly across all the nodes. Hence this
level of make is likely to reduce claim rate the most. In contrast, the coefficient
for level 5 of make is positive in all nodes and is larger than the coefficients
for all other levels in three nodes—it is second largest in the remaining node.
This level of make is thus most likely to increase claim rate. The situation is
quite similar for zone: since all its coefficients are negative except for level 1,
which is set to zero, that level is most likely to increase claim rate, across all
four nodes. The zone level most likely to decrease claim rate is 7, which has
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Table 5. Regression estimates for GUIDE model, using set-to-zero constraints for
the first levels of make and zone

Node 4 Node 5 Node 6 Node 7

Constant -0.8367 -1.0639 -2.3268 -3.3725
mileage aliased 0.0427 0.1425 0.1439
bonus -0.5202 -0.4500 -0.0992 aliased
make=2 -0.1705 -0.0356 0.0756 0.1375
make=3 -0.2845 -0.2763 -0.2038 -0.2247
make=4 -1.0964 -0.7591 -0.6555 -0.4595
make=5 0.0892 0.1685 0.1468 0.1308
make=6 -0.5971 -0.5437 -0.3274 -0.2563
make=7 -0.3330 -0.2900 -0.0405 0.0214
make=8 -0.0806 -0.0848 0.0233 -0.0584
make=9 -0.4247 -0.2097 -0.0592 0.0039
zone=2 -0.3306 -0.2735 -0.2525 -0.1837
zone=3 -0.5220 -0.3905 -0.4046 -0.3303
zone=4 -0.8298 -0.5692 -0.5986 -0.5120
zone=5 -0.4683 -0.3927 -0.3533 -0.2384
zone=6 -0.7414 -0.5437 -0.5830 -0.4273
zone=7 -0.8114 -0.8538 -0.7760 -0.6379

the largest negative coefficient in three of the nodes, and the second largest
negative coefficient in the fourth node. Figure 16 presents the results more
vividly by showing barplots of the coefficients for make and zone by node.
The relative sizes of the coefficients are fairly consistent between nodes.

Because rate of change of log claim rate with respect to bonus and mileage
class depends on the levels of make and zone, the best way to visualize the
effects is to draw a contour plot of the fitted model for each combination of
make and zone. This is done in Figure 17 for four level combinations, those
corresponding to the best and worst levels of make and zone. We see that
claim rate is highest when mileage class is 5, bonus class is 1, make is 5, and
zone is 1. The lowest claim rates occur for make level 4 and zone level 7, more
or less independent of mileage and bonus class.

7 Conclusion

We have given four examples to illustrate the uses of GUIDE for building
visualizable regression models. We contend that a model is best understood
if it can be visualized. But in order to make effective use of current visual-
ization techniques, namely scatter and contour plots, we will often need to
fit models to partitions of a dataset. Otherwise, we simply cannot display a
model involving more than two predictor variables in a single 2D graph. The
data partitions, of course, should be chosen to build as parsimonious a model
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Fig. 17. Estimated claim rates for selected values of make and zone

as possible. The GUIDE algorithm does this by finding partitions that break
up curvature and interaction effects. As a result, it avoids splitting a partition
on a predictor variable whose effect is already linear. Model parsimony as a
whole is ensured by pruning, which prevents the number of partitions from
being unnecessarily large.

After pruning is finished, we can be quite confident that most of the im-
portant effects of the predictor variables are confined within the one or two
selected linear predictors. Thus it is safe to plot the data and fitted function in
each partition and to draw conclusions from them. As our examples showed,
such plots usually can tell us much more about the data than a collection of
regression coefficients. An obvious advantage of 2D plots is that they require
no special training for interpretation. In particular, the goodness of fit of the
model in each partition can be simply judged by eye instead of through a
numerical quantity such as AIC.

The GUIDE computer program is available for Linux, Macintosh, and
Windows computers from www.stat.wisc.edu/%7Eloh/.
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