Variable Selection for Classification and
Regression in Largep, Small n Problems

Wei-Yin Loh

Abstract Classification and regression problems in which the numbpreaictor
variables is larger than the number of observations areasingly common with
rapid technological advances in data collection. Becanssesof these variables
may have little or no influence on the response, methods #meidentify the unim-
portant variables are needed. Two methods that have bepog®d for this purpose
are EARTH and Random forest. This article presents an alteenmethod, derived
from the GUIDE classification and regression tree algorjttirat employs recur-
sive partitioning to determine the degree of importancéefariables. Simulation
experiments show that the new method improves the predieti@uracy of sev-
eral nonparametric regression models more than Randorstfanel EARTH. The
results indicate that it is not essential to correctly idfgrall the important vari-
ables in every situation. Conditions for which this occues@btained for the linear
model. The article concludes with an application of the nesttrad to identification
of rare molecules in a large genomic data set.

1 Introduction

Consider the problem of fitting a nonparametric regressiodehto a response
variabley on p predictor variablesgp = (X1, X, ..., Xp). Let 4 = u(xp) = E(y|Xp)
denote the conditional mean gfgiven xp and let fin(xp) be the value ofu at
Xp estimated from a training sample of size The expected squared error is
E[fn(xp) — u(x’;,)]z, wherexj, is an independent copy of, and the expectation
is over the training sample ang}. In many applications, the mean functipuixp)
may depend on only a small but unknown subset okilvariables. We call the latter
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variables “important” and the others “unimportant.fhifs fixed and the number of
unimportant variables increases, the expected squaredtgpically increases too.
This occurs even for modern nonparametric fitting algorghhat perform variable
selection on their own.

To see this, leh = 100,p > 5, andx be a vector of mutually independent and
uniformly distributed variables on the unit interval. Cates the six models

y = 5[2Sin(1x1 %) + 4(x3 — 1)% + 2x4 + Xs| + £/5 (1)
y = 10 texp(4xy) + 41+ exp—20x+ 10)] 1+ 3+ 2u+xs+e  (2)
Y = X1+ 2Xo+ 3X3+ 4X4 + 5X5+ € 3)
y = 5[2Sin(4mmx1xp) + 4(xg — 1)2 4 2X4 + Xs] + £/5 (4)
y = 10(Xy + X2+ X3+ X4 + X5 — 5/2)?+ £/10 (5)
y = sgr{(2x. — 1)(2xz — 1)](3xg + 4x4 + 5x5) + € (6)

where ¢ is independent standard normal. Models (1) and (2) are us€g8]i
Model (3) is linear and Model (4) is a minor modification of (&ith 4rrin place of
1. Models (5) and (6) have strong interaction effects.

Figure 1 shows estimated values of the expected squares @ff®ARS [5],
GUIDE [6], and Random forest [1] for these six modelsjoE 5, 20, 50, 100, 200,
and 500. Each estimate is based on 600 simulation trialssithelation standard
error bars are too small to be shown in the plots. GUIDE fitsexgwise-linear
regression tree using stepwise regression in each node teth. Random forest is
an average of 500 piecewise-constant regression treednifiaérapid rise in the
expected squared error psncreases is obvious. MARS is best in one model and
worst in three; Random forest is best in two and worst in thaed GUIDE is best
in two and worst in none.

Can the expected squared errors of these regression mdtbedduced by pre-
selecting a subset of the predictor variables? To this esxkral approaches for
assigning “importance scores” to the predictors have begmgsed. Random forest
itself produces importance scores as by-products. Retatlthe algorithm con-
structs an ensemble of piecewise-constant regressionfri@a bootstrap samples
of the training data. The observations not in a bootstrapp$aare called the “oob”
(out of bag) sample. To measure the predictive power of abbek, the expected
squared error of each tree is estimated twice with the oolpkarance with and
once without randomly permuting their values. A small difference between the
two error estimates indicates that the variable has lowigtiged power. The impor-
tance score assigned xpis the average of the differences across the trees in the
ensemble.

A strength of Random forest is its applicability to all dagpés, including data
with missing values. Simulations show, however, that itpamtance scores can be
unreliable because their variances depend on the type dicgtoe variable. Vari-
ables that allow more splits, such as categorical variabithsnany categories, have
scores with larger variances. One proposed solution [0&ces the split selection
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Fig. 1 Simulated values d& (i, — u)? of GUIDE, MARS and Random forest (RF) versus number
of unimportant predictor variables, withstandard normal. Simulation standard errors are about
the size of the plot symbols.
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procedure with permutation tests and changes bootstraplisan sampling with-
out replacement.

Neither Random forest nor this modification [10] gives a shiedd value of the
scores for identifying the important variables. This pesblis solved in [11] by sup-
plementing the training sample with a set of artificially ate variables obtained
by randomly permuting the real predictor variables. A Vialgas declared important
if its importance score is larger than the 75th percentilinefscores of the artificial
variables. The process is repeated several times on tlriedsito select additional
real variables. One disadvantage of adding artificial édewmis that it increases the
computational requirements. A simpler solution [4] addsytindependent and uni-
formly distributed artificial variables to the training dand takes the threshold to
be two times the mean of the importance scores from the @tifiariables. Because
Random forest is biased toward selecting variables thawatiore splits, however,
this approach yields incorrect results if all thevariables are nominal-valued.

EARTH [4] tries a different approach by ranking thevariables according to the
strength of its relationship with thevariable. For eack;, a user-specified number,
m, of points from the training sample are randomly chosen. éttsimarrow tube is
constructed around each chosen point, with axis inhdirection. A polynomial
(usually first order) model is fitted to the data in the tube ted--statistic for test-
ing the null hypothesis th&(y) is constant within the tube is computed. The tube
length is gradually increased to find the largest value oftfstatistics. The impor-
tance scoré(x) for x is the average of the square roots of the maxifatatistics
over them points. To determine a threshold for the scores, the whalegss is
repeated with thg-values randomly permuted to obtain the correspondingescor
I*(xi). Variablex; is declared unimportant if the differenbie) — 1*(x;) is less than
a pre-specified multiple of the standard deviation of thg;). Simulation results
in [4] show that if EARTH is used to select variables beforplagation of GUIDE
or MARS, their expected squared errors can be reduced. EARTB applicable,
however, if eithely or somex; are categorical (i.e., nominal-valued) variables.

Yet another method [3], applicable only to discrete-valgedandomly selects
subsets of the; variables to optimize the total variation of tigezalues within the
partitions defined by the values of the selected variables.method appears to be
practicable only for binary-valuegl variables, and it is not applicable to categorical
y variables. In the next section, we introduce a new variadllecsion method based
on the GUIDE algorithm that does not have such limitations.

2 GUIDE variable selection

A classification or regression tree algorithm typicallytfigoms the data in a node
of a tree with a split of the formx; < ¢” (if x is an ordered variable) ox'e S’
(if x; is a categorical variable). Many algorithms, such as CARTJ@arch for the
bestx; andc or S simultaneously, by optimizing a measure of node impurityhsu
as entropy (for classification) or sum of squared residdalsrégression). Besides
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being computationally expensive, this approach creatéssadward selecting vari-
ables that allow more splits of the data—see [6, 7]. To avoédiias and to reduce
computational cost, GUIDE uses chi-squared tests to chthese variable before
searching focor S,

Consider first the classification problem, wherés a categorical variable. At
each node and for eachx variable, GUIDE computes the significance probability
g(x,t) of the chi-squared contingency table test of independeatwedeny andx,
with the values ofy forming the rows of the table. I is a categorical variable, its
labels form the columns of the table Xifs an ordered variable, its range is split into
K intervals to form the columns. The value kfis determined by the sample size
n(t) int. If n(t) < 40, therK = 3; otherwise&K = 4. The specific steps foravalued
y variable may be briefly stated as follows.

Algorithm 1 Variable and split selection for classification.
1. For each ordered variablg x

a. Group the values of xnto K intervals with approximately equal numbers of
observations in each group.

b. Form a Jx K contingency table, with the values of y as rows and the watsr
of x as columns.

2. For each categorical variable x

a. Let m denote the number of distinct values pirxt.
b. Form a Jx m; contingency table, with the values of y as rows and the cate-
gories of xas columns.

3. Compute the P-valugx,t) of the chi-squared test of independence.

4. Find x?(x;,t), the upper @x;,t)-quantile of the chi-squared distribution with one
degree of freedom.

5. Let ) be the variable with the smallestx,t). If x* is an ordered variable, split
t into two subnodes at the sample median;oflkx’ is categorical, split t with
the procedure detailed in [7].

This algorithm is applied recursively to construct a binage with four levels of
splits. The importance score of variallées

IMP(x) = Z\/n(t)xf(m) (7)

where the sum is over the intermediate nodes of the tree. Masiprocedure is
followed for regression, except that at each nodss, first converted to a binary-
valued categorical variabl@ that takes value 1 if is above its node mean and 0
otherwise.

If x is independent oy, the score IMPX) is a weighted sum of approximately
independent chi-squared random variables, each havindegree of freedom. By
the Satterthwaite [8] method, its distribution can be agpnated by a scaled chi-
squared distribution. We use the upgertth-quantile of the latter distribution as
the threshold for identifying the important variables.



6 W.-Y. Loh

Figures 2—4 compare the probabilities with which variablego, ..., xs are se-
lected by the our GUIDE method, EARTH and Random forest (#s¢ Uising the
thresholding method of [4]) for simulation models (1)—(Be results are based on
600 simulation trials witm = 100 andp = 5, 20, 50, 100, 200, and 500, yielding
standard errors of 0.02 or smaller. Foe= 5, i.e., when there are no unimportant
variables, our method is almost always best, sometimes ty miargins—see Fig-
ure 4. But when there are many unimportant variables, etgenw = 500, Random
forest is best and our method is a distant third.

The large probabilities with which EARTH and Random foredést the impor-
tant variables come at the cost of larger numbers of unirapbsariables being
selected as well, as shown in Figure 5 which plots the averageer versup (on
the logarithmic scale) for each model. The higher falsetpesiates may be seen in
Figure 6 too, which shows the mean number of variables ssldry each method
whenE(y) is constant, independent of all trevariables. In this situation, EARTH
and Random forest have false positive rates of about 10% amdpo 1% for our
method.

To see how the results change if some ofitivariables are correlated, we follow
[4] by generatings = ®(z),i=1,2,...,9, where® is the standard normal distribu-
tion function,(z1,2,...,29) is multivariate normal with zero mean and covariance

matrix
1.0 0.9

1.0 09
1.0 05
1.0 0202
s=1]09 1.0 (8)
0.9 1.0
05 10
0.2 1002
0.2 0210

andx; independentand uniformly distributed on the unitintefgal = 10,11,..., p.
Thusx; andxs are highly correlated, as are andxg; x3 is moderately correlated
with x7, andx4 is moderately correlated witks andxg. Note thatxg, X7, Xg andxg

do not appear explicitly in models (1)—(6). Figures 7-9 stiosvresulting selection
probabilities forp = 10, 20, 50, 100, 200, and 500. The high correlation between
X1 andxs increases their selection probabilities for all three madthin models (1),
(2), (3), and (5) and decreases them in model (4). The oddo&roes model (6),
where the probabilities are increased for Random forestibateased for EARTH
and GUIDE.
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Fig. 2 Variable selection probabilities; independent; simulation SE 0.02
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3 Expected squared error

Because increasing the probability of selecting the ingrtdrvariables inevitably
leads to more unimportant ones being chosen, a better wayntpare the variable
selection methods is in terms of their effect on predictioore Figure 10 shows
the simulated expected squared errors of GUIDE, MARS, andl&a forest with
(solid lines) and without (dashed lines) each of the thrembe selection methods,
for the constant model with mutually independent predigtotables. The training
sample size is 100, test sample size is 1000,mad, 20, 50, 100, 200, 500. Owing
to its lengthy computation time, the results for EARTH wipes 500 are based on
300 simulation trials; the others are based on 600 trialaugition standard errors
are less than 0.015.

The results show that the expected squared error of MARSiscesl substan-
tially by all three variable selection methods, with the G8lselection method giv-
ing the greatest reduction. On the other hand, all threabkriselection methods
increase slightly the expected squared error of Randonstfoaéhough its values
are already low to begin with. The GUIDE selection methochis dnly one that
reduces the expected squared error of the GUIDE fitting ndetboall values of
p—see the middle panel of Figure 10.

Constant model

EARTH variable selection GUIDE variable selection RF variable selection
~ - GUIDE-& MARS -% RF : - GUIDE-& MARS -% RF 2 T-¢ GUIDE-& MARS -% RF

Expected mean squared error
1
!
>
x o >
B °
Expected mean squared error
1
!
>
Expected mean squared error
1
!
>
>
>

T T T T T T T T
0 100 200 300 400 500 0 100 200 300 400 500 0 100 200 300 400 500

Number of variables (p) Number of variables (p) Number of variables (p)

Fig. 10 Expected squared errors for the constant mgeek, with € standard normal and indepen-
dent predictors; simulation SE 0.015. Dashed and solid lines indicate before and afteabtari
selection.

Figures 11 and 12 give the corresponding results for theaqomstant models (1)—
(6). The conclusions are similar: the GUIDE selection mdttemds to reduce the
expected squared error of all three regression methods timanethe EARTH and
Random forest selection methods. Figures 13 and 14 shovesuits when the;
variables have the dependence structure in (8). Again thi&delection method
is more effective than EARTH and Random forest in reduciregetkpected squared
error of all three regression methods. Figure 15 shows thepatation times (in
sec.) required by each method for each model and variousvalip. EARTH is
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by far the most time consuming and GUIDE is the least. Furthercomputation
time of EARTH increases witlp much faster than that of the other two methods.

Expected mean squared error Expected mean squared error

Expected mean squared error

Fig. 11 expected squared errors for models 1-3, wigtandard normal and independent predic-
tors. Dashed and solid lines correspond to before and aftehte selection. Simulation error bars
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Fig. 12 expected squared errors for models 4-6, wigtandard normal and independent predic-
tors. Dashed and solid lines correspond to before and afterhte selection. Simulation error bars
are too small to be shown.

4 Some theory for linear models

It is natural to expect a variable selection procedure toatigthe performance of
a fitting method if there are no unimportant variables in th&adCareful inspec-
tion of Figures 11 and 12 shows, however, that all three kérigelection methods
(GUIDE, EARTH and Random forest) decrease the expecteded@aror of Ran-

dom forest in all six simulation models even fpr= 5, where every variable is
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Fig. 13 expected squared errors for models 1-3, withandard normal and dependent predictors.
Dashed and solid lines correspond to before and after Varsabection. Simulation error bars are
too small to be shown.

important! This rather counter-intuitive behavior can bewn to occur in linear
models too.
Let B; be ap;j-dimensional vector ani; ann x pij-dimensional matrix, foir =
1,2,3, such that
Yy =X1B1+X2Br+X3B3+ €. 9)

Assume throughout that
B3=0 (10)
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Fig. 14 expected squared errors for models 4-6, withandard normal and dependent predictors.
Dashed and solid lines correspond to before and after Varsabection. Simulation error bars are
too small to be shown.

that is, the variables iX 3 are unimportant. The correct model is then

y =X1B1+X2B,+ €. (11)

LetZ, = (X1,X2) andB = (B,, B,)', with least squares estimaie= (2,Z,)1Zby.
Let x; be apj-dimensional vector, for=1,2,3. The mean of at (x},x5)" is u =
X} B1 + X5B, with least-squares estimafgy = (x},x5)B. Fori = 2 and 3, define
Hp = Xp (X X1) X, Li = (X X1) 71X Xi, andM; = (X{(I —H1)X;) L. Then (see,
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Fig. 15 Variable selection computation time per data set plottetbgrscales

e.g., [9, p. 231])

’ -1 ( &X1)71+L2M2L/2 —LoM»
(ZZZZ) - < —MZL/Z M2 .

Let X = (X1,X2,X3). The expected squared error is

E(flo— 1) = E|Var{ (x4, X5)B| X, X1, %2}

o {02522+ (1) }
2
2 s [((XiX2) T+ LaMoL) —LoM2\ (Xa
9 E{(XLXZ) ( _MZLIZ M2 X2
2 o ((XX1) kg 4+ LaMo( '2X1—X2))}
= 0°E< (X7,X
{( L 2)< —Ma(L5X1 —x2)

= GZE{X&(XQX1)71X1 + (L/2X1 - Xz)/M 2(L/2X1 — Xz)}. (12)

Suppose that we mistakenly exclude and includeXs instead. That is, we fit
the incorrect model
y=X1B1+XsB3+ €. (13)
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LetZ3 = (X1,X3). The estimated mean @t, x5, X3)" is fl1 = (X}, x5)(Z5Z3) " 1Z%y
and
fn— p = (X1,%5)(Z5Z3) 'Z5y — x1B1 — X3B>
= (X1,X5)(Z5Z3) Z5(X1B1 + X2Bp+ &) — X181 — X,

X{X1) "t +LgMslj —L3M3) (X}
= oy (L 1 Eats =) (0) oxap xap

— X181 — X3P,

XX 1) IXE + LgMg(LEX!E — X
= (X1,%3) <( 1X1) —M13(L’3§(’1 i(xz) ! 3)> (X1B1+X2B, +€)

—X1B1 —X3B,

= {X(X4X1) X + (K Ls — X3)M3(L5X5 — X5)}(XaB1 + X2By + €)
— X181 — X3P,

= {XjL2 =X+ (XjL3 — x3)M3(L3X] — X3)X2} B,
+{XA(X1X1) X+ (XL — x5)Ma(L3X] — X3) }e

where we use the identity; X} X1 = X3X1. Therefore its expected squared error is

E(fn — 1)? = E[{xqL2 — X5+ (x1L3 — X3)M3(L3X] — X5)X2} B,)*
+0%E [{X4 (X1 X1) X + (X L3 —Xg)M3(L5X) — X3)}
x {X1(X1X1) "X + (X1l 3 — X3)M3(Laxa — X3)}]
= E[{xjL2— Xp+ (X4L.3 — X5)M3(L5X] — X5)X2} B5)*
+ 0%E[X}(X1X1) X1 + (Lsx1 — X3) M3(L5X1 — X3)]

and the increase in expected squared error is

E(ln—p)*—E(fo—p)* =
E[{(L5%1—X2)' + (L5X1 — X3)'M3(L3X] — X5)X2} B,
+ O'ZE[( /3X1—X3)/M3(LéX1 — X3) — (L/2X1—X2)/M2(L/2X1 — Xz)]. (14)

Consider the following three situations:

1. Underfitting. Suppose thaps = 0. ThenX3,L3 andM 3 vanish and
E(f—1)?—E(flo— 1)? = E[(LoX1 — x2)' BoJ* = 0°E[(LX1 —X2) M2(L5X1 — X2)].
ThusE(fi; — 1)? < E(fio — u)? if and only if

E[(L5%1 —X2)'BoJ? < 0PE{(L5X1 —X2) M2 (L5X1 —X2) . (15)

Further,
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E(lu—p)?® _ O x2)'Ba]? — 02E[(Ljx1 — X2) M2(L5X1 — X2)]
E(flo— )2 O2E{X}(X7X1) "tx1 + (LoX1 — X2)'M2(L5X1 — X2)}

B E[(L5X1 —X2)'M2(L5X1 — X2)]
E{x3 (X X1)"Ix1 4 (L5X1 — X2)'M2(L5Xy — X2) }

— 1

asf, — 0.If pp=1, i.e.,, is real-valued, condition (15) reduces to
BFE[(Lox1—X2)?] < 0”E[Ma(LpX1 —X2)?].

Figure 16 shows a graph of the ratio of expected squaredsessoa function of
B2/ 0 for p1 =5,10,30,50,70,90, p, = 1, n = 100, the first predictor variable
being 1 and the other predictors independent and unifornslyilduted on the
unit interval. The ratios are estimated by simulation wig®@ test samples and
1000 simulation trials, yielding simulation standard esriess than 0.01. We see
that the threshold value @/ o for which underfitting is advantageous increases
with pj.

2. Overfitting. Suppose instead thab = 0. Thenf3,, X,,L2, andM, vanish and
the increase in expected squared error is non-negativaibebls is positive
definite andE(ﬁl — [.1)2 — E([Io — IJ)Z = GZE[(L’3X1 — X3)/M 3(LéX1 — Xg)] > 0.

3. Under and overfitting. Suppose thap, = ps and the distribution ofxs,X») is
the same as that §k;, x3). Then the increase in expected squared error is always
positive, because

E(fin— p)*— E(fio— 1)?
= E[{(L5%1—X2)' + (L3X1 — X3) M3(L5X] — X5)X2} B,]%.

5 Application to real data

We now compare the variable selection methods in an apjglic& quantitative
high-throughput screening of the enzyme pyruvate kinake.data, obtained from
the National Chemical Genomics Center (NCGC), consist oAsaements on

p = 5444 chemical properties {ariables) of 46,229 compounds. Each compound
is also measured for its level of inhibitioly yariable) of the biological activity
of pyruvate kinase. A compound is considered to be an indniliity < —5. Fig-

ure 17 shows a histogram of tlyevalues; only one percent of the compounds are
inhibitors. Our goals are: (i) to identify the chemical peofies that are predictive
of an inhibitor and (ii) to use this information to predict &ther a new compound
is an inhibitor. We employ ten-fold cross-validation to queme the methods. That
is, we randomly divide the data set into ten roughly equalsparse each part in
turn as the training set to identify the important variatdas to build a prediction
model, and then use the other nine tenths as a test set t@ dissesccuracy of the
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Fig. 16 Simulated values df (fiy — u)?/E(flo — u)? versusB, /o for p, = 1, ps = 0 and different
values ofpy; simulation standard errors are less than 0.01.
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Fig. 17 Histogram of biological activity levels of 46,229 composné compound is an inhibitor
if its level is below -5.

predictions. Thus the number of compoundsn each training set is approximately
4623, which is less thap.

First, we treat this as a regression problem, i.e., we useéslDE and Ran-
dom forest variable selection methods to identify the intgairvariables and then
apply three different nonparametric regression method$ D& piecewise-linear
regression tree, MARS, and Random forest) to the selectgables to predict the
test-sampley values. Figure 18 shows boxplots of the ten cross-validati@an
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Fig. 18 Boxplots of cross-validation expected squared errors. ®EJGMARS, and GRF refer
to GUIDE variable selection followed by GUIDE piecewisedar, MARS, and Random forest
model fitting. Similarly, RFGUIDE, RFMARS, and RFRF referRandom forest variable selec-
tion followed by GUIDE piecewise-linear, MARS, and Randamnefst model fitting.

Table 1 Average cross-validation results for NCGC data; small&resgare better

Variable Number dMean squared prediction error
selection variablg§UIDE Random
method selectgd tree MARS  forest
GUIDE 331 0.412 0.414 0.403
Random forest 225 0.423 0.426  0.403

Mean rank of inhibitor
GUIDE Stepwise Random
forest logistic  forest
GUIDE 34 9181 9874 10102
Random forest 47010374 10699 12015

squared prediction errors of the six methods. The top halfadifie 1 gives their
average as well as the average number of variables ideragi@dportant. GUIDE
chooses about 50% more variables than Random forest (32R%%. For variable
selection, GUIDE is as good or better than Random forestthaulatter is best for
model fitting. The differences are, however, less than 5grdrc
High accuracy in predictingdoes not imply high accuracy in predicting whether

a compound is an inhibitor. Since the latter is a classificafiroblem, consider a
binary response variable that takes valuey4f —5 and 0 otherwise. The problem
is then the estimation of the probabiliBty < —5), that a compound is an inhibitor,
for which stepwise logistic regression offers a ready sofutSome sort of variable
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Fig. 19 Boxplots of cross-validation mean rank of inhibitors. G&t,0G, and GRF refer to

GUIDE variable selection followed by GUIDE forest, stepavlegistic, and Random forest model
fitting. Similarly, RFGF, RFLOG, and RFRF refer to Randomefirvariable selection followed
by GUIDE forest, stepwise logistic, and Random forest mditkzhg. Methods with small mean

ranks are better.

selection is needed, however, becanse p. Since the Random forest and GUIDE
variable selection methods are applicable to classifingitioblems, we use them to
do this. After the variables are selected, we fit a stepwigssiic regression model
to the training sample and use it to estimate the probalufign inhibitor for each
compound in the test sample. We also employ prediction nsoctahstructed by
Random forest and GUIDE forest. The latter is an ensemblbadetimilar to Ran-
dom forest except that the GUIDE classification tree albariis used to split the
nodes of the trees. This yields a total of six combinationhoés—two variable se-
lection methods crossed with three model fitting methodgeGa compound in the
test sample, each combination method yields an estimatdzhpility that it is an
inhibitor. We rank the test compounds in decreasing ordérexfe probabilities and
take the average of the ranks of the true inhibitors among tAdus small values
of the average ranks are indicative of high prediction aacyr

Figure 19 shows boxplots of the ten cross-validation meaksdor the six
combination methods. GUIDE variable selection is consibtebetter than Ran-
dom forest in improving the prediction of all three fitting theds. Among fitting
methods, GUIDE forest is better than stepwise logisticesgion, which in turn is
better than Random forest. The bottom half of Table 1 givesatterage of the ten
cross-validation mean ranks as well as the mean number @iles selected for
each method. Random forest selects on average fourteendismaany variables as
GUIDE (470 vs. 34).
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Table 2 Average computation time (min.) for one cross-validatiterdation on a 2.66 Ghz Intel
Core 2 Quad Extreme processor with 8 GB memory

Selection SelectiqGUIDE Random
method tim¢ tree MARS forest
Regression ~ GUIDE 0.34 8.20 0.48 5.87
Random forest 32.18 1.38 0.17 1.14
Selection Selectiq@UIDE Stepwise Random
method time forest logistic forest
Classification GUIDE 1.18 7.01 0.87 0.17
Random forest ~ 48.48 53.87 185.37 3.31

Table 2 shows the average computation time for each varigddkction and
model fitting method for both the regression and classificatiroblems. GUIDE
variable selection is 40—60 times faster than Random feeg&ble selection: 0.54
vs. 32.18 min. for regression and 1.13 vs. 48.48 min. forstfi@ation. For regres-
sion model fitting, MARS is much faster than both Random foeesl GUIDE
piecewise-linear tree. For classification, Random forefstest. Stepwise logistic
regression is faster than GUIDE forest when there are feiavims (0.87 min. when
GUIDE is the selection method) but its speed rapidly de@gasen the number of
variables is large (185.37 min. when Random forest is thecteh).

6 Conclusion

We introduced a variable selection method for use prior iegtion of any clas-
sification and regression fitting algorithm. Because thehogttis a by-product of
the GUIDE algorithm, it is applicable to all kinds of data¢linding categorical and
non-categorical response and predictor variables as sdhe with missing values.
We compared the method with EARTH and Random forest in teifntisedr prob-
abilities of selecting the important variables in simuthtegression models. The
results show that the new method is as good as or better tleaottler two when
there are few unimportant variables. When there are numsaraimportant vari-
ables, the probability that the new method selects the itapbwariables is much
lower than that of EARTH and Random forest. The higher deteatates of the
latter two methods are, however, accompanied by correspolydigher false pos-
itive detection rates. For example, if the true regressiodehis a constant, EARTH
and Random forest have false positive rates of about teepecompared to about
one percent for the new method.

High false positive rates can adversely affect the preaticticcuracy of the fit-
ted models. We demonstrated this by coupling each of the tregable selection
methods with each of three regression fitting methods: MARS)dom forest and
GUIDE piecewise-linear tree. Our simulation results shioat tvhile all three fitting
methods generally benefit from prior variable selectior, ibw selection method
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tends to offer the greatest benefit. Further, the new metquaines much less com-
putation time than EARTH and Random forest.

One explanation for the greater effectiveness of the nevhoakin reducing the
prediction error of fitting algorithms may be its lower falsesitive detection rate.
We support this conjecture by showing that in the case ofealimodel with some
variables having weak effects and no unimportant varialalesinder-fitted model
can possess lower expected squared error than a fully fitted o

We also compared the new method with Random forest on a réalséawith
so many predictor variables that variable selection is @sgary step before model
fitting. We analyzed the data twice, first as a regressionlpnoland then as a clas-
sification problem. In the case of regression, the new methotbre effective than
Random forest selection in reducing the mean squared picdierror of MARS
and GUIDE piecewise-linear regression tree models, bsiiéss effective when ap-
plied to the Random forest model. On the other hand, the nelwadeonsistently
beats Random forest selection across all three fitting ndstfar the classification
problem. In terms of computation time, the new method alsuisstantially faster
than Random forest.
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