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Abstract Classification and regression problems in which the number of predictor
variables is larger than the number of observations are increasingly common with
rapid technological advances in data collection. Because some of these variables
may have little or no influence on the response, methods that can identify the unim-
portant variables are needed. Two methods that have been proposed for this purpose
are EARTH and Random forest. This article presents an alternative method, derived
from the GUIDE classification and regression tree algorithm, that employs recur-
sive partitioning to determine the degree of importance of the variables. Simulation
experiments show that the new method improves the prediction accuracy of sev-
eral nonparametric regression models more than Random forest and EARTH. The
results indicate that it is not essential to correctly identify all the important vari-
ables in every situation. Conditions for which this occurs are obtained for the linear
model. The article concludes with an application of the new method to identification
of rare molecules in a large genomic data set.

1 Introduction

Consider the problem of fitting a nonparametric regression model to a response
variabley on p predictor variables,xp = (x1,x2, . . . ,xp). Let µ = µ(xp) = E(y|xp)
denote the conditional mean ofy given xp and let µ̂n(xp) be the value ofµ at
xp estimated from a training sample of sizen. The expected squared error is
E[µ̂n(x∗p)− µ(x∗p)]

2, wherex∗p is an independent copy ofxp and the expectation
is over the training sample andx∗p. In many applications, the mean functionµ(xp)
may depend on only a small but unknown subset of thexi variables. We call the latter
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variables “important” and the others “unimportant.” Ifn is fixed and the number of
unimportant variables increases, the expected squared error typically increases too.
This occurs even for modern nonparametric fitting algorithms that perform variable
selection on their own.

To see this, letn = 100,p≥ 5, andxp be a vector of mutually independent and
uniformly distributed variables on the unit interval. Consider the six models

y = 5[2sin(πx1x2)+4(x3−1)2+2x4+x5]+ ε/5 (1)

y = 10−1exp(4x1)+4[1+exp(−20x2+10)]−1+3x3+2x4+x5+ ε (2)

y = x1 +2x2+3x3+4x4+5x5+ ε (3)

y = 5[2sin(4πx1x2)+4(x3−1)2+2x4+x5]+ ε/5 (4)

y = 10(x1 +x2+x3+x4 +x5−5/2)2+ ε/10 (5)

y = sgn[(2x1−1)(2x2−1)](3x3+4x4+5x5)+ ε (6)

where ε is independent standard normal. Models (1) and (2) are used in [5].
Model (3) is linear and Model (4) is a minor modification of (1)with 4π in place of
π . Models (5) and (6) have strong interaction effects.

Figure 1 shows estimated values of the expected squared errors of MARS [5],
GUIDE [6], and Random forest [1] for these six models forp = 5, 20, 50, 100, 200,
and 500. Each estimate is based on 600 simulation trials; thesimulation standard
error bars are too small to be shown in the plots. GUIDE fits a piecewise-linear
regression tree using stepwise regression in each node of the tree. Random forest is
an average of 500 piecewise-constant regression trees. Theinitial rapid rise in the
expected squared error asp increases is obvious. MARS is best in one model and
worst in three; Random forest is best in two and worst in three; and GUIDE is best
in two and worst in none.

Can the expected squared errors of these regression methodsbe reduced by pre-
selecting a subset of the predictor variables? To this end, several approaches for
assigning “importance scores” to the predictors have been proposed. Random forest
itself produces importance scores as by-products. Recall that the algorithm con-
structs an ensemble of piecewise-constant regression trees from bootstrap samples
of the training data. The observations not in a bootstrap sample are called the “oob”
(out of bag) sample. To measure the predictive power of a variablexi , the expected
squared error of each tree is estimated twice with the oob sample, once with and
once without randomly permuting theirxi values. A small difference between the
two error estimates indicates that the variable has low predictive power. The impor-
tance score assigned toxi is the average of the differences across the trees in the
ensemble.

A strength of Random forest is its applicability to all data types, including data
with missing values. Simulations show, however, that its importance scores can be
unreliable because their variances depend on the type of predictor variable. Vari-
ables that allow more splits, such as categorical variableswith many categories, have
scores with larger variances. One proposed solution [10] replaces the split selection
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Fig. 1 Simulated values ofE(µ̂n−µ)2 of GUIDE, MARS and Random forest (RF) versus number
of unimportant predictor variables, withε standard normal. Simulation standard errors are about
the size of the plot symbols.
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procedure with permutation tests and changes bootstrap sampling to sampling with-
out replacement.

Neither Random forest nor this modification [10] gives a threshold value of the
scores for identifying the important variables. This problem is solved in [11] by sup-
plementing the training sample with a set of artificially created variables obtained
by randomly permuting the real predictor variables. A variable is declared important
if its importance score is larger than the 75th percentile ofthe scores of the artificial
variables. The process is repeated several times on the residuals to select additional
real variables. One disadvantage of adding artificial variables is that it increases the
computational requirements. A simpler solution [4] adds thirty independent and uni-
formly distributed artificial variables to the training data and takes the threshold to
be two times the mean of the importance scores from the artificial variables. Because
Random forest is biased toward selecting variables that allow more splits, however,
this approach yields incorrect results if all thexi variables are nominal-valued.

EARTH [4] tries a different approach by ranking thexi variables according to the
strength of its relationship with they variable. For eachxi , a user-specified number,
m, of points from the training sample are randomly chosen. A short, narrow tube is
constructed around each chosen point, with axis in thexi direction. A polynomial
(usually first order) model is fitted to the data in the tube andtheF-statistic for test-
ing the null hypothesis thatE(y) is constant within the tube is computed. The tube
length is gradually increased to find the largest value of theF-statistics. The impor-
tance scorel(xi) for xi is the average of the square roots of the maximalF-statistics
over them points. To determine a threshold for the scores, the whole process is
repeated with they-values randomly permuted to obtain the corresponding scores
l∗(xi). Variablexi is declared unimportant if the differencel(xi)− l∗(xi) is less than
a pre-specified multiple of the standard deviation of thel∗(xi). Simulation results
in [4] show that if EARTH is used to select variables before application of GUIDE
or MARS, their expected squared errors can be reduced. EARTHis not applicable,
however, if eithery or somexi are categorical (i.e., nominal-valued) variables.

Yet another method [3], applicable only to discrete-valuedxi , randomly selects
subsets of thexi variables to optimize the total variation of they values within the
partitions defined by the values of the selected variables. The method appears to be
practicable only for binary-valuedxi variables, and it is not applicable to categorical
y variables. In the next section, we introduce a new variable selection method based
on the GUIDE algorithm that does not have such limitations.

2 GUIDE variable selection

A classification or regression tree algorithm typically partitions the data in a node
of a tree with a split of the form “xi ≤ c” (if xi is an ordered variable) or “xi ∈ S”
(if xi is a categorical variable). Many algorithms, such as CART [2], search for the
bestxi andc or S simultaneously, by optimizing a measure of node impurity such
as entropy (for classification) or sum of squared residuals (for regression). Besides
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being computationally expensive, this approach creates a bias toward selecting vari-
ables that allow more splits of the data—see [6, 7]. To avoid the bias and to reduce
computational cost, GUIDE uses chi-squared tests to choosethexi variable before
searching forc or S.

Consider first the classification problem, wherey is a categorical variable. At
each nodet and for eachx variable, GUIDE computes the significance probability
q(x, t) of the chi-squared contingency table test of independence betweeny andx,
with the values ofy forming the rows of the table. Ifx is a categorical variable, its
labels form the columns of the table. Ifx is an ordered variable, its range is split into
K intervals to form the columns. The value ofK is determined by the sample size
n(t) in t. If n(t) < 40, thenK = 3; otherwiseK = 4. The specific steps for aJ-valued
y variable may be briefly stated as follows.

Algorithm 1 Variable and split selection for classification.

1. For each ordered variable xi :

a. Group the values of xi into K intervals with approximately equal numbers of
observations in each group.

b. Form a J×K contingency table, with the values of y as rows and the intervals
of xi as columns.

2. For each categorical variable xi :

a. Let mi denote the number of distinct values of xi in t.
b. Form a J×mi contingency table, with the values of y as rows and the cate-

gories of xi as columns.

3. Compute the P-value q(xi , t) of the chi-squared test of independence.
4. Findχ2

1(xi , t), the upper q(xi ,t)-quantile of the chi-squared distribution with one
degree of freedom.

5. Let x∗i be the variable with the smallest q(xi ,t). If x∗i is an ordered variable, split
t into two subnodes at the sample median of x∗

i . If x∗i is categorical, split t with
the procedure detailed in [7].

This algorithm is applied recursively to construct a binarytree with four levels of
splits. The importance score of variablex is

IMP(x) = ∑
t

√

n(t)χ2
1(x,t) (7)

where the sum is over the intermediate nodes of the tree. A similar procedure is
followed for regression, except that at each node,y is first converted to a binary-
valued categorical variabley′ that takes value 1 ify is above its node mean and 0
otherwise.

If x is independent ofy, the score IMP(x) is a weighted sum of approximately
independent chi-squared random variables, each having onedegree of freedom. By
the Satterthwaite [8] method, its distribution can be approximated by a scaled chi-
squared distribution. We use the upperp−1th-quantile of the latter distribution as
the threshold for identifying the important variables.
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Figures 2–4 compare the probabilities with which variablesx1,x2, . . . ,x5 are se-
lected by the our GUIDE method, EARTH and Random forest (the last using the
thresholding method of [4]) for simulation models (1)–(6).The results are based on
600 simulation trials withn = 100 andp = 5, 20, 50, 100, 200, and 500, yielding
standard errors of 0.02 or smaller. Forp = 5, i.e., when there are no unimportant
variables, our method is almost always best, sometimes by wide margins—see Fig-
ure 4. But when there are many unimportant variables, e.g., whenp = 500, Random
forest is best and our method is a distant third.

The large probabilities with which EARTH and Random forest select the impor-
tant variables come at the cost of larger numbers of unimportant variables being
selected as well, as shown in Figure 5 which plots the averagenumber versusp (on
the logarithmic scale) for each model. The higher false positive rates may be seen in
Figure 6 too, which shows the mean number of variables selected by each method
whenE(y) is constant, independent of all thex variables. In this situation, EARTH
and Random forest have false positive rates of about 10% compared to 1% for our
method.

To see how the results change if some of thex variables are correlated, we follow
[4] by generatingxi = Φ(zi), i = 1,2, . . . ,9, whereΦ is the standard normal distribu-
tion function,(z1,z2, . . . ,z9) is multivariate normal with zero mean and covariance
matrix

Σ =
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(8)

andxi independent and uniformly distributed on the unit intervalfor i = 10,11, . . . , p.
Thusx1 andx5 are highly correlated, as arex2 andx6; x3 is moderately correlated
with x7, andx4 is moderately correlated withx8 andx9. Note thatx6, x7, x8 andx9

do not appear explicitly in models (1)–(6). Figures 7–9 showthe resulting selection
probabilities forp = 10, 20, 50, 100, 200, and 500. The high correlation between
x1 andx5 increases their selection probabilities for all three methods in models (1),
(2), (3), and (5) and decreases them in model (4). The odd exception is model (6),
where the probabilities are increased for Random forest butdecreased for EARTH
and GUIDE.
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Fig. 2 Variable selection probabilities;xi independent; simulation SE< 0.02
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Fig. 3 Variable selection probabilities;xi independent; simulation SE< 0.02 (cont’d.)
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Fig. 4 Variable selection probabilities;xi independent; simulation SE< 0.02 (cont’d.)
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Fig. 7 Variable selection probabilities;xi dependent; simulation SE< 0.02
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Fig. 8 Variable selection probabilities;xi dependent; simulation SE< 0.02 (cont’d.)
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Fig. 9 Variable selection probabilities;xi dependent; simulation SE< 0.02 (cont’d.)
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3 Expected squared error

Because increasing the probability of selecting the important variables inevitably
leads to more unimportant ones being chosen, a better way to compare the variable
selection methods is in terms of their effect on prediction error. Figure 10 shows
the simulated expected squared errors of GUIDE, MARS, and Random forest with
(solid lines) and without (dashed lines) each of the three variable selection methods,
for the constant model with mutually independent predictorvariables. The training
sample size is 100, test sample size is 1000, andp= 5, 20, 50, 100, 200, 500. Owing
to its lengthy computation time, the results for EARTH whenp = 500 are based on
300 simulation trials; the others are based on 600 trials. Simulation standard errors
are less than 0.015.

The results show that the expected squared error of MARS is reduced substan-
tially by all three variable selection methods, with the GUIDE selection method giv-
ing the greatest reduction. On the other hand, all three variable selection methods
increase slightly the expected squared error of Random forest, although its values
are already low to begin with. The GUIDE selection method is the only one that
reduces the expected squared error of the GUIDE fitting method for all values of
p—see the middle panel of Figure 10.
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Fig. 10 Expected squared errors for the constant modely= ε , with ε standard normal and indepen-
dent predictors; simulation SE< 0.015. Dashed and solid lines indicate before and after variable
selection.

Figures 11 and 12 give the corresponding results for the non-constant models (1)–
(6). The conclusions are similar: the GUIDE selection method tends to reduce the
expected squared error of all three regression methods morethan the EARTH and
Random forest selection methods. Figures 13 and 14 show the results when thexi

variables have the dependence structure in (8). Again the GUIDE selection method
is more effective than EARTH and Random forest in reducing the expected squared
error of all three regression methods. Figure 15 shows the computation times (in
sec.) required by each method for each model and various values of p. EARTH is



Variable Selection in Largep, Smalln Problems 15

by far the most time consuming and GUIDE is the least. Further, the computation
time of EARTH increases withp much faster than that of the other two methods.
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Fig. 11 expected squared errors for models 1–3, withε standard normal and independent predic-
tors. Dashed and solid lines correspond to before and after variable selection. Simulation error bars
are too small to be shown.
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Fig. 12 expected squared errors for models 4–6, withε standard normal and independent predic-
tors. Dashed and solid lines correspond to before and after variable selection. Simulation error bars
are too small to be shown.

4 Some theory for linear models

It is natural to expect a variable selection procedure to degrade the performance of
a fitting method if there are no unimportant variables in the data. Careful inspec-
tion of Figures 11 and 12 shows, however, that all three variable selection methods
(GUIDE, EARTH and Random forest) decrease the expected squared error of Ran-
dom forest in all six simulation models even forp = 5, where every variable is
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Fig. 13 expected squared errors for models 1–3, withε standard normal and dependent predictors.
Dashed and solid lines correspond to before and after variable selection. Simulation error bars are
too small to be shown.

important! This rather counter-intuitive behavior can be shown to occur in linear
models too.

Let β i be api-dimensional vector andX i ann× pi-dimensional matrix, fori =
1,2,3, such that

y = X1β 1 +X2β2 +X3β3 + ε. (9)

Assume throughout that
β 3 = 0 (10)
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Fig. 14 expected squared errors for models 4–6, withε standard normal and dependent predictors.
Dashed and solid lines correspond to before and after variable selection. Simulation error bars are
too small to be shown.

that is, the variables inX3 are unimportant. The correct model is then

y = X1β 1 +X2β 2 + ε. (11)

Let Z2 = (X1,X2) andβ = (β 1,β 2)
′, with least squares estimateβ̂ = (Z′

2Z2)
−1Z′

2y.
Let xi be api-dimensional vector, fori = 1,2,3. The mean ofy at (x′1,x

′
2)

′ is µ =

x′1β 1 + x′2β 2 with least-squares estimatêµ0 = (x′1,x
′
2)β̂ . For i = 2 and 3, define

H1 = X1(X′
1X1)

−1X′
1, L i =(X′

1X1)
−1X′

1X i , andM i = (X′
i(I−H1)X i)

−1. Then (see,
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e.g., [9, p. 231])
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2 M2

)

.

Let X = (X1,X2,X3). The expected squared error is

E(µ̂0− µ)2 = E[Var{(x′1,x
′
2)β̂ |X,x1,x2}]

= σ2E

{

(x′1,x
′
2)(Z

′
2Z2)

−1
(

x1

x2

)}

= σ2E
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)}
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{
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(
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−M2(L ′
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)}

= σ2E{x′1(X
′
1X1)

−1x1 +(L ′
2x1−x2)

′M2(L
′
2x1−x2)}. (12)

Suppose that we mistakenly excludeX2 and includeX3 instead. That is, we fit
the incorrect model

y = X1β 1 +X3β 3 + ε. (13)
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Let Z3 = (X1,X3). The estimated mean at(x′1,x
′
2,x

′
3)
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where we use the identityL ′
3X′

1X1 = X′
3X1. Therefore its expected squared error is

E(µ̂1− µ)2 = E[{x′1L2−x′2+(x′1L3−x′3)M3(L ′
3X′

1−X′
3)X2}β2]

2

+ σ2E
[
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′
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−1X′
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′
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]

= E[{x′1L2−x′2+(x′1L3−x′3)M3(L ′
3X′
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2

+ σ2E[x′1(X
′
1X1)

−1x1 +(L ′
3x1−x3)

′M3(L
′
3x1−x3)]

and the increase in expected squared error is

E(µ̂1− µ)2−E(µ̂0− µ)2 =

E[{(L ′
2x1−x2)

′ +(L ′
3x1−x3)

′M3(L
′
3X′

1−X′
3)X2}β2]

2

+ σ2E[(L ′
3x1−x3)

′M3(L ′
3x1−x3)− (L ′

2x1−x2)
′M2(L ′

2x1−x2)]. (14)

Consider the following three situations:

1. Underfitting. Suppose thatp3 = 0. ThenX3,L3 andM3 vanish and

E(µ̂1−µ)2−E(µ̂0−µ)2 = E[(L ′
2x1−x2)

′β 2]
2−σ2E[(L ′

2x1−x2)
′M2(L ′

2x1−x2)].

ThusE(µ̂1− µ)2 < E(µ̂0− µ)2 if and only if

E[(L ′
2x1−x2)

′β 2]
2 < σ2E{(L ′

2x1−x2)
′M2(L ′

2x1−x2)}. (15)

Further,
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E(µ̂1− µ)2

E(µ̂0− µ)2 = 1+
E[(L ′

2x1−x2)
′β2]

2−σ2E[(L ′
2x1−x2)

′M2(L ′
2x1−x2)]

σ2E{x′1(X
′
1X1)−1x1 +(L ′
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→ 1−
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E{x′1(X
′
1X1)−1x1 +(L ′
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asβ2 → 0. If p2 = 1, i.e.,β 2 is real-valued, condition (15) reduces to

β 2
2 E[(L ′

2x1−x2)
2] < σ2E[M2(L ′

2x1−x2)
2].

Figure 16 shows a graph of the ratio of expected squared errors as a function of
β2/σ for p1 = 5,10,30,50,70,90, p2 = 1, n = 100, the first predictor variable
being 1 and the other predictors independent and uniformly distributed on the
unit interval. The ratios are estimated by simulation with 1000 test samples and
1000 simulation trials, yielding simulation standard errors less than 0.01. We see
that the threshold value ofβ2/σ for which underfitting is advantageous increases
with p1.

2. Overfitting. Suppose instead thatp2 = 0. Thenβ 2, X2,L2, andM2 vanish and
the increase in expected squared error is non-negative becauseM3 is positive
definite andE(µ̂1− µ)2−E(µ̂0− µ)2 = σ2E[(L ′

3x1−x3)
′M3(L ′

3x1−x3)] ≥ 0.
3. Under and overfitting. Suppose thatp2 = p3 and the distribution of(x1,x2) is

the same as that of(x1,x3). Then the increase in expected squared error is always
positive, because

E(µ̂1− µ)2−E(µ̂0− µ)2

= E[{(L ′
2x1−x2)

′ +(L ′
3x1−x3)

′M3(L ′
3X′

1−X′
3)X2}β2]

2.

5 Application to real data

We now compare the variable selection methods in an application to quantitative
high-throughput screening of the enzyme pyruvate kinase. The data, obtained from
the National Chemical Genomics Center (NCGC), consist of measurements on
p = 5444 chemical properties (x variables) of 46,229 compounds. Each compound
is also measured for its level of inhibition (y variable) of the biological activity
of pyruvate kinase. A compound is considered to be an inhibitor if y < −5. Fig-
ure 17 shows a histogram of they values; only one percent of the compounds are
inhibitors. Our goals are: (i) to identify the chemical properties that are predictive
of an inhibitor and (ii) to use this information to predict whether a new compound
is an inhibitor. We employ ten-fold cross-validation to compare the methods. That
is, we randomly divide the data set into ten roughly equal parts, use each part in
turn as the training set to identify the important variablesand to build a prediction
model, and then use the other nine tenths as a test set to assess the accuracy of the
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Fig. 17 Histogram of biological activity levels of 46,229 compounds. A compound is an inhibitor
if its level is below -5.

predictions. Thus the number of compounds,n, in each training set is approximately
4623, which is less thanp.

First, we treat this as a regression problem, i.e., we use ourGUIDE and Ran-
dom forest variable selection methods to identify the important variables and then
apply three different nonparametric regression methods (GUIDE piecewise-linear
regression tree, MARS, and Random forest) to the selected variables to predict the
test-sampley values. Figure 18 shows boxplots of the ten cross-validation mean
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Fig. 18 Boxplots of cross-validation expected squared errors. GGUIDE, GMARS, and GRF refer
to GUIDE variable selection followed by GUIDE piecewise-linear, MARS, and Random forest
model fitting. Similarly, RFGUIDE, RFMARS, and RFRF refer toRandom forest variable selec-
tion followed by GUIDE piecewise-linear, MARS, and Random forest model fitting.

Table 1 Average cross-validation results for NCGC data; smaller values are better

Variable Number ofMean squared prediction error
selection variablesGUIDE Random
method selected tree MARS forest
GUIDE 331 0.412 0.414 0.403
Random forest 225 0.423 0.426 0.403

Mean rank of inhibitor
GUIDE Stepwise Random

forest logistic forest
GUIDE 34 9181 9874 10102
Random forest 470 10374 10699 12015

squared prediction errors of the six methods. The top half ofTable 1 gives their
average as well as the average number of variables identifiedas important. GUIDE
chooses about 50% more variables than Random forest (331 vs.225). For variable
selection, GUIDE is as good or better than Random forest, butthe latter is best for
model fitting. The differences are, however, less than 5 percent.

High accuracy in predictingy does not imply high accuracy in predicting whether
a compound is an inhibitor. Since the latter is a classification problem, consider a
binary response variable that takes value 1 ify < −5 and 0 otherwise. The problem
is then the estimation of the probability,P(y<−5), that a compound is an inhibitor,
for which stepwise logistic regression offers a ready solution. Some sort of variable
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Fig. 19 Boxplots of cross-validation mean rank of inhibitors. GGF,GLOG, and GRF refer to
GUIDE variable selection followed by GUIDE forest, stepwise logistic, and Random forest model
fitting. Similarly, RFGF, RFLOG, and RFRF refer to Random forest variable selection followed
by GUIDE forest, stepwise logistic, and Random forest modelfitting. Methods with small mean
ranks are better.

selection is needed, however, becausen < p. Since the Random forest and GUIDE
variable selection methods are applicable to classification problems, we use them to
do this. After the variables are selected, we fit a stepwise logistic regression model
to the training sample and use it to estimate the probabilityof an inhibitor for each
compound in the test sample. We also employ prediction models constructed by
Random forest and GUIDE forest. The latter is an ensemble method similar to Ran-
dom forest except that the GUIDE classification tree algorithm is used to split the
nodes of the trees. This yields a total of six combination methods—two variable se-
lection methods crossed with three model fitting methods. Given a compound in the
test sample, each combination method yields an estimated probability that it is an
inhibitor. We rank the test compounds in decreasing order ofthese probabilities and
take the average of the ranks of the true inhibitors among them. Thus small values
of the average ranks are indicative of high prediction accuracy.

Figure 19 shows boxplots of the ten cross-validation mean ranks for the six
combination methods. GUIDE variable selection is consistently better than Ran-
dom forest in improving the prediction of all three fitting methods. Among fitting
methods, GUIDE forest is better than stepwise logistic regression, which in turn is
better than Random forest. The bottom half of Table 1 gives the average of the ten
cross-validation mean ranks as well as the mean number of variables selected for
each method. Random forest selects on average fourteen times as many variables as
GUIDE (470 vs. 34).
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Table 2 Average computation time (min.) for one cross-validation iteration on a 2.66 Ghz Intel
Core 2 Quad Extreme processor with 8 GB memory

Selection SelectionGUIDE Random
method time tree MARS forest

Regression GUIDE 0.54 8.20 0.48 5.87
Random forest 32.18 1.38 0.17 1.14
Selection SelectionGUIDE Stepwise Random
method time forest logistic forest

Classification GUIDE 1.13 7.01 0.87 0.17
Random forest 48.48 53.87 185.37 3.31

Table 2 shows the average computation time for each variableselection and
model fitting method for both the regression and classification problems. GUIDE
variable selection is 40–60 times faster than Random forestvariable selection: 0.54
vs. 32.18 min. for regression and 1.13 vs. 48.48 min. for classification. For regres-
sion model fitting, MARS is much faster than both Random forest and GUIDE
piecewise-linear tree. For classification, Random forest is fastest. Stepwise logistic
regression is faster than GUIDE forest when there are few variables (0.87 min. when
GUIDE is the selection method) but its speed rapidly decreases when the number of
variables is large (185.37 min. when Random forest is the selection).

6 Conclusion

We introduced a variable selection method for use prior to application of any clas-
sification and regression fitting algorithm. Because the method is a by-product of
the GUIDE algorithm, it is applicable to all kinds of data, including categorical and
non-categorical response and predictor variables as well as data with missing values.
We compared the method with EARTH and Random forest in terms of their prob-
abilities of selecting the important variables in simulated regression models. The
results show that the new method is as good as or better than the other two when
there are few unimportant variables. When there are numerous unimportant vari-
ables, the probability that the new method selects the important variables is much
lower than that of EARTH and Random forest. The higher detection rates of the
latter two methods are, however, accompanied by correspondingly higher false pos-
itive detection rates. For example, if the true regression model is a constant, EARTH
and Random forest have false positive rates of about ten percent compared to about
one percent for the new method.

High false positive rates can adversely affect the prediction accuracy of the fit-
ted models. We demonstrated this by coupling each of the three variable selection
methods with each of three regression fitting methods: MARS,Random forest and
GUIDE piecewise-linear tree. Our simulation results show that while all three fitting
methods generally benefit from prior variable selection, the new selection method
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tends to offer the greatest benefit. Further, the new method requires much less com-
putation time than EARTH and Random forest.

One explanation for the greater effectiveness of the new method in reducing the
prediction error of fitting algorithms may be its lower falsepositive detection rate.
We support this conjecture by showing that in the case of a linear model with some
variables having weak effects and no unimportant variables, an under-fitted model
can possess lower expected squared error than a fully fitted one.

We also compared the new method with Random forest on a real data set with
so many predictor variables that variable selection is a necessary step before model
fitting. We analyzed the data twice, first as a regression problem and then as a clas-
sification problem. In the case of regression, the new methodis more effective than
Random forest selection in reducing the mean squared prediction error of MARS
and GUIDE piecewise-linear regression tree models, but it is less effective when ap-
plied to the Random forest model. On the other hand, the new method consistently
beats Random forest selection across all three fitting methods for the classification
problem. In terms of computation time, the new method also issubstantially faster
than Random forest.
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