
Chapter 30

Logistic Regression Tree

Analysis

Ordinary logistic regression (OLR) models the probability of a binary outcome.
A logistic regression tree (LRT) is a machine learning method that partitions the
data and fits an OLR model in each partition. This chapter motivates LRT by
highlighting the challenges of OLR with respect to model selection, interpreta-
tion, and visualization on a completely observed data set. Being nonparametric,
a LRT model typically has higher prediction accuracy than OLR for large data
sets. Further, by sharing model complexity between the tree structure and the
OLR node models, the latter can be made simple for easier interpretation and
visualization.

OLR is more challenging if there are missing values in the predictor variables,
because imputation must be carried out first. The second part of the chapter
reviews the GUIDE method of constructing LRT models. A strength of GUIDE
is its ability to deal with large numbers of variables and without the need to
impute missing values. This is demonstrated on a vehicle crash test dataset for
which imputation is difficult due to missing values and other problems.

Key words and phrases: classification and regression trees; imputation; logis-
tic regression; machine learning; mising data; visualization

30.1 Introduction

Ordinary logistic regression (OLR) is a technique for modeling the probability
of a binary outcome in terms of one or more predictor variables. Consider,
for example, a data set on tree damage during a severe thunderstorm over
477,000 acres of the Boundary Waters Canoe Area Wilderness in northeastern
Minnesota in July 4, 1999 (R package alr4 [1]). Observations from 3666 trees
were collected, including for each tree, whether it was blown down (Y = 1) or
not (Y = 0), its trunk diameter D in centimeters, its species S, and the local
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intensity L of the storm, as measured by the fraction of damaged trees in its
vicinity.

Let p = P (Y = 1) denote the probability that a tree is blown down. OLR
approximates the logit function logit(p) = log(p/(1 − p)) as a function of the
predictor variables linear in any unknown parameters. A simple linear OLR
model has the form logit(p) = log(p/(1 − p)) = β0 + β1X , where X is the only
predictor variable. Solving for p yields the p-function

p =
exp(β0 + β1X)

1 + exp(β0 + β1X)
=

1

1 + exp(−β0 − β1X)
.

In general, if there are k predictor variables, X1, . . . , Xk, a multiple linear OLR
model has the form logit(p) = β0 +

∑k
j=1 βjXj . The parameters β0, β1, . . . , βk

are typically estimated by maximizing the likelihood function. Let n denote
the sample size and let (xi1, . . . , xik, yi) denote the values of (X1, . . . , Xk, Y ) for
the ith observation (i = 1, . . . , n). Treating each yi as the outcome of an in-
dependent Bernoulli random variable with success probability pi, the likelihood
function is

n
∏

i=1

pyi

i (1− pi)
1−yi =

exp{
∑

i yi(β0 +
∑

j βjxij)}
∏

i{1 + exp(β0 +
∑

j βjxij)}
.

The maximum likelihood estimates are the values of (β0, β1, . . . , βk) that maxi-
mize this function.

30.2 Fitting OLR models

Fitting a simple linear OLR model to the tree damage data using L yields

logit(p) = −1.999 + 4.407L (30.1)

with estimated p-function shown in Fig. 30.1. The equation implies that the
stronger the local storm intensity, the higher the chance that a tree is blown
down. The boxplots in Figure 30.2 show that the distributions of D are skewed.
To reduce the skewness, Cook and Weisberg [2] transformed D to log(D), and
obtained the model

logit(p) = −4.792 + 1.749 log(D) (30.2)

which suggests that larger trees are less likely to survive the thunderstorm than
narrower ones. If both log(D) and L are used, the model becomes

logit(p) = −6.677 + 1.763 log(D) + 4.42L. (30.3)

The relative stability of the coefficients of L and log(D) in equations (30.1)–
(30.3) is due to the weak correlation of 0.168 between the two variables. If the
interaction L log(D) is included, the model changes to

logit(p) = −4.341 + 0.891 log(D)− 1.482L+ 2.235L log(D) (30.4)
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Figure 30.1: Estimated probability of blowdown computed from a simple linear
logistic regression model using L as predictor
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Figure 30.2: Boxplots of trunk diameter D. The dotted line marks the median
value of D.
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Table 30.1: Indicator variable coding for species variable S

Species U1 U2 U3 U4 U5 U6 U7 U8

A (aspen) 0 0 0 0 0 0 0 0
BA (black ash) 1 0 0 0 0 0 0 0
BF (balsam fir) 0 1 0 0 0 0 0 0
BS (black spruce) 0 0 1 0 0 0 0 0
C (cedar) 0 0 0 1 0 0 0 0
JP (jack pine) 0 0 0 0 1 0 0 0
PB (paper birch) 0 0 0 0 0 1 0 0
RM (red maple) 0 0 0 0 0 0 1 0
RP (red pine) 0 0 0 0 0 0 0 1

and the coefficients of log(D) and L are changed more dramatically.
So far, species S has been excluded from the models. As in linear regression,

a categorical variable having m distinct values may be represented by (m − 1)
indicator variables, U1, . . . , Um−1, each taking value 0 or 1. The variables for
species are shown in Table 30.1, which uses the “set-to-zero constraint” that
sets all the indicator variables to 0 for the first species (aspen). A model that
assumes the same slope coefficients for all species but that gives each a different
intercept term is

logit(p) = −5.997 + 1.581 log(D) + 4.629L

− 2.243U1 + 0.0002U2 + 0.167U3 − 2.077U4

+ 1.040U5 − 1.724U6 − 1.796U7 − 0.003U8. (30.5)

How well do models (30.1)–(30.5) fit the data? One popular way to assess fit
is by means of significance tests based on the residual deviance and its degrees
of freedom (df)—see, e.g., [3, p. 96] for the definitions. The residual deviance is
analogous to the residual sum of squares in linear regression. For model (30.5),
the residual deviance is 3259 with 3655 df. We can evaluate the fit of this model
by comparing its residual deviance against that of a larger one, such as the
27-parameter model

logit(p) = β0 + β1 log(D) + β2L+

8
∑

j=1

γjUj

+

8
∑

j=1

β1jUj log(D) +

8
∑

j=1

β2jUjL (30.6)

that allows the coefficients of log(D) and L to vary with species. It has a residual
deviance of 3163 with 3639 df. If model (30.5) fits the data well, the difference
between its residual deviance and that of model (30.6) is approximately dis-
tributed as a chi-squared random variable with df equal to the difference in df
of the two models. The difference in deviance is 3259 − 3163 = 96, which is
improbably large for a chi-squared random variable with 3655− 3639 = 16 df.
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Rejection of model (30.5) does not necessarily imply that model (30.6) is
satisfactory. To find out, it may be compared with a larger one, such as the
28-parameter model

logit(p) = β0 + β1 log(D) + β2L+ β3L log(D) +

8
∑

j=1

γjUj

+

8
∑

j=1

β1jUj log(D) +

8
∑

j=1

β2jUjL (30.7)

that includes an interaction between L and log(D). This has a residual deviance
of 3121 with 3638 df. Therefore model (30.6) is rejected because its residual
deviance differs from that of (30.7) by 42 but their dfs differ only by 1. With
this procedure, each of models (30.1) through (30.6) is rejected when compared
against the next larger model in the sequence.

Another way to select a model employs a function such as AIC, which is
residual deviance plus two times the number of estimated parameters. AIC
tries to balance deviance against model complexity (see, e.g., [4, p. 234]), but
it tends to over-fit the data. That is, AIC often chooses a large model. In this
data set, if we apply AIC to the set of all models up to third-order, it chooses
the largest, namely, the three-factor interaction model

logit(p) = β0 + β1 log(D) + β2L+

8
∑

j=1

γjUj

+ β3L log(D) +

8
∑

j=1

β1jUj log(D)

+

8
∑

j=1

β2jUjL+

8
∑

j=1

δjUjL log(D) (30.8)

which has 36 parameters.
Models (30.7) and (30.8) are hard to graph. Plotting the estimated p-

function as in Fig. 30.1 is impossible if a model has more than one predictor
variable. This problem is exacerbated by the tendency of model complexity
increasing with increase in sample size and number of predictors. Interpreta-
tion of the estimated coefficients is futile then, as they often change from one
model to another, due to multicollinearity among the terms. For example, the
coefficient for L is 4.424, -1.482, and 4.629 in models (30.3), (30.4), and (30.5),
respectively.

To deal with this problem, [2] used a “partial one-dimensional model” (POD)
that employs a linear function of log(D) and L as predictor variable. They found
that if the observations for balsam fir (BF) and black spruce (BS) are excluded,
the model logit(p) = β0 + Z +

∑

j γjUj , with Z = 0.78 log(D) + 4.1L, fits
the remaining data quite well. Now the estimated p-function can be plotted
as shown in Fig. 30.3, but the graph is not as simple to interpret as that in
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Figure 30.3: Estimated probability of blowdown for seven species, excluding
balsam fir (BF) and black spruce (BS), according to model (30.9)

Fig. 30.1 because Z is a linear combination of two variables. To include species
BF and BS, [2] settled on the larger model

logit(p) = β0 + Z +

9
∑

j=1

γjUj + (θ1IBF + θ2IBS) log(D)

+ (φ1IBF + φ2IBS)L (30.9)

which contains separate coefficients (θj , φj) for BF and BS. Here I(·) denotes the
indicator function, i.e., IA = 1 if species is A, and IA = 0 otherwise. The model
cannot be displayed graphically for species BF and BS because it is a function of
three predictor variables.

30.3 Logistic regression trees

A logistic regression tree (LRT) model is a machine learning solution that simul-
taneously retains the graphical advantage of simple models and the prediction
accuracy of more complex ones. It recursively partitions the data set and fits
a simple or multiple linear OLR model in each partition. As a result, the par-
titions can be displayed as a decision tree [5] such as Figure 30.4, which shows
a simple linear LRT model fitted to the tree damage data by the GUIDE algo-
rithm [6, 7]. A terminal node represents a partition and an OLR model with a
single linear predictor is fitted in each one. Beside each intermediate node is a
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Figure 30.4: GUIDE simple linear LRT model for P(blowdown). At each split,
an observation goes to the left branch if and only if the condition is satisfied.
Sample size (in italics), proportion of blowdowns, and name of regressor variable
are printed beneath each terminal node. Green and yellow terminal nodes have
L and D, respectively, as best linear predictor.

condition stating that an observation goes to the left subnode if and only if the
condition is satisfied. Below each terminal node are the sample size (in italics),
the proportion of blown down trees, and the name of the best linear predictor
variable. The split at the root node (labeled “1”) sends observations to node 2
if and only if S is A, BS, JP, or RP. (Node labels employ the convention that a
node with label k has left and right child nodes labeled 2k and 2k + 1, respec-
tively.) Node 5, consisting of the JP and RP species, has the highest proportion
of blown down trees at 0.82. Node 9, which consists of species A and BS trees
with diameters greater than 9.75 cm, has the second highest proportion of 0.67.
Variable L is the best linear predictor in all terminal nodes except nodes 13 and
15, where D is the best linear predictor. The main advantage in using one linear
predictor in each node is that the fitted p-functions can be displayed graphically,
as shown in Figure 30.5. It is not necessary to transform D to log(D) in the
LRT.

The LRT model in Fig. 30.4 may be considered a different kind of POD
model from that proposed in [2]. Whereas the word “partial” in POD refers
to model (30.9) being one dimensional if restricted to certain parts of the data
(species in this example), it refers to partitions of the predictor space in a LRT.
In addition, whereas “one-dimensional” refers to Z being a linear combination
of log(D) and L in (30.9), the OLR predictor in each node of a LRT is trivially
one dimensional because it is an original variable.

GUIDE is a classification and regression tree algorithm with origins in the
FACT [8], SUPPORT [9], QUEST [10], CRUISE [11, 12], and LOTUS [13]
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Figure 30.5: Estimated p-functions in terminal nodes of the tree in Fig. 30.4.

methods; see [14]. All of them split a data set recursively, choosing a single X
variable to split each node. If X is an ordinal variable, the split typically has
the form s = {X ≤ c}, where c is a constant. If X is a categorical variable,
the split has the form s = {X ∈ ω}, where ω is a subset of the values taken by
X . For linear regression trees, algorithms such as AID [15], CART [16] and M5
[17] choose s to minimize the total sum of squared residuals of the regression
models fitted to the two data subsets formed by s. Though seemingly innocuous,
this approach is flawed as it is biased toward choosing X variables that allow
more splits. To see this, suppose that X is an ordinal variable having m distinct
values. Then there are (m−1) ways to split the data along the X axis, with each
split s = {X ≤ c} being such that c is the midpoint between two consecutively
ordered distinct values of X . This creates a selection bias toward X variables
with large values of m. In the current example, variable L has 709 unique values
but D has only 87. Hence L has eight times as many opportunities as D to split
the data. The bias is worse if there are high-level categorical variables, because
a categorical variable having m categorical values permits (2m−1 − 1) splits of
the form s = {X ∈ ω}. For example, variable S permits (29−1− 1) = 255 splits,
which is almost three times as many splits as D allows. The earliest warning on
the potential for the bias to produce misleading conclusions seems to be [18].

GUIDE avoids the bias by using a two-step approach to split selection. First,
it uses significance tests to select the X variable. Then it searches for c or ω
for X . For linear regression trees, this is achieved by fitting a linear model
to the data in the node and using a contingency table chi-squared test of the
association between grouped values of each predictor variable and the signs of
the residuals. If X is ordinal, the groups are intervals between certain order
statistics. If X is categorical, the groups are the categorical levels. Then the
X variable having the smallest chi-squared p-value is selected. Repeating this
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procedure recursively produces a large binary tree that is pruned to minimize a
cross-validation estimate of prediction mean squared error [16].

Let p̂(x) denote the estimated value of p(x) = P (Y = 1 |X = x). The pre-
ceding split variable selection method needs modification for logistic regression,
because the residual y− p̂(x) is positive if y = 1 and negative if y = 0, irrespec-
tive of the value of p̂(x). Consequently, the residual signs provide no information
on the adequacy of p̂(x). A first attempt at a solution was proposed in [19],
where the residuals y − p̂(x) are replaced with “pseudo-residuals” p̄(x) − p̂(x),
with p̄(x) being a weighted average of the y values in a neighborhood of x. Its
weaknesses are sensitivity to choice of weights and neighborhoods, and difficulty
in specifying the neighborhoods if the dimension of the predictor space is large
or if there are missing values. LOTUS uses a trend-adjusted chi-squared test
[20, 21] that effectively replaces p̄(x) with a linear estimate.

For logistic regression, GUIDE uses the average from an ensemble of least-
squares GUIDE regression trees (called a “GUIDE forest”) to form the pseudo-
residuals for variable selection. The main steps are as follows.

1. Fit a least-squares GUIDE forest [22] to the data to obtain a preliminary
estimate p̃(x) of p(x) for each observed x. (Random forest [23] cannot
substitute for GUIDE forest if the data contain missing values.)

2. Beginning with the root node, carry out the following steps on the data
in each node, stopping only if the number of observations is below a pre-
specified threshold or if all the values of the predictor variables or the Y
values are constant.

(a) For each X variable to be used in fitting an OLR model in the node,
temporarily impute its missing values with its node sample mean.

(b) Fit a simple or multiple linear OLR model to the imputed data in the
node. If a simple linear OLR model is desired, fit one to each linear
predictor variable in turn and choose the one with smallest residual
deviance. Let p̂(x) denote the estimated value of p(x) from the fitted
model.

(c) Revert the imputed values in step (2a) to their original missing state.

(d) For each ordinal X variable, let q1 ≤ q2 ≤ q3 denote its sample quar-

tiles at the node and define the categorical variable V =
∑3

j=1 I(X >
qj). If X is a categorical variable, define V = X . Add an extra “miss-
ing” category to V if X has missing values.

(e) Form a contingency table for eachX variable using the signs of p̃(x)−
p̂(x) as rows and the values of V as columns. Find the chi-squared
statistic χ2

ν for the test of independence between rows and columns.

(f) Let Gν(x) denote the distribution function of a chi-squared variable
with ν df and let ǫ = 2 × 10−6. Convert each χ2

ν to its equivalent
one-df χ2

1 value as follows.

i. If ǫ < Gν(χ
2
ν) < 1− ǫ, define χ2

1 = G−1
1 (Gν(χ

2
ν)).
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ii. Otherwise, to avoid dealing with very small or large p-values, use
the following dual application of the Wilson-Hilferty approxima-
tion [24]. Define

W1 =
{

√

2χ2
ν −

√
2ν − 1 + 1

}2

/2

W2 = max



0,

[

7

9
+
√
ν

{

(

χ2
ν

ν

)1/3

− 1 +
2

9ν

}]3


 .

Approximate the one-df chi-squared value with

χ2
1 =







W2 if χ2
ν < ν + 10

√
2ν

(W1 +W2)/2 if χ2
ν ≥ ν + 10

√
2ν and W2 < χ2

ν

W1 otherwise.

An earlier one-step approximation is used in [7]. Tables 30.2 and 30.3
show the contingency tables and corresponding chi-squared statistics
for Species, Intensity and Diameter at the root node of the tree
in Figure 30.4.

(g) Let X∗ be the variable with the largest value of χ2
1 and let NA denote

the missing value code.

i. If X∗ is ordinal, let s be a split of the form {X∗ = NA}, {X∗ ≤
c} ∪ {X∗ = NA}, or {X∗ ≤ c} ∩ {X∗ 6= NA}.

ii. If X∗ is categorical, let s be a split of the form {X∗ ∈ ω}, where
ω is a proper subset of the values (including NA) of X∗.

(h) For each split s, apply steps (2a) and (2b) to the data in the left
and right subnodes induced by s and let dL(s) and dR(s) be their
respective residual deviances.

(i) Select the split s that minimizes dL(s) + dR(s).

3. After splitting stops, prune the tree with the CART cost-complexity method
[16] to obtain a nested sequence of subtrees.

4. Use the CART cross-validationmethod to estimate the prediction deviance
of each subtree.

5. Select the smallest subtree whose estimated prediction deviance is within
a half standard error of the minimum.

Figure 30.6 shows the LOTUS tree for the current data. MOB [25] is an-
other algorithm that can construct a LRT, but for simple linear LRT models,
it requires the linear predictor to be pre-specified and to be the same in all
terminal nodes. Figure 30.7 shows the MOB tree with L as the common linear
predictor. Figure 30.8 compares the values of p̂(x) from a GUIDE forest of 500
trees, model (30.9) and the simple linear GUIDE, LOTUS and MOB LRT mod-
els. Although there are clear differences in the values of p̂(x) between GUIDE,
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Table 30.2: Chi-squared test for Species with Wilson-Hilferty χ2
1 value

A BA BF BS C JP PB RM RP
p̃ > p̂ 413 0 239 673 0 501 0 2 47
p̃ ≤ p̂ 23 75 420 297 355 1 497 121 2

χ2
8 = 2125, χ2

1 = 1942

Table 30.3: Chi-squared tests for Intensity and Diameter with quartile inter-
vals Q1, Q2, Q3, Q4 and Wilson-Hilferty χ2

1 values
Intensity Diameter

Q1 Q2 Q3 Q4 Q1 Q2 Q3 Q4

p̃ > p̂ 327 418 527 603 14 543 637 681
p̃ ≤ p̂ 595 493 390 313 933 424 281 153

χ2
3 = 195, χ2

1 = 171 χ2
3 = 1378, χ2

1 = 1314

LOTUS and MOB, they seem to compare similarly against (30.9) and GUIDE
forest. Figure 30.9 shows the corresponding results where LOTUS fits the mul-
tiple linear LRT model logit(p) = β0 + β1D + β2L, and GUIDE and MOB fit

logit(p) = β0 + β1D + β2L +
∑8

j=1 γjUj in each terminal node. (LOTUS does
not convert categorical variables to indicator variables to serve as regressors.)
The correlations among the p̂(x) values are much higher.

30.4 Missing values and cyclic variables

The U.S. National Highway Traffic Safety Administration has been evaluating
vehicle safety by performing crash tests with dummy occupants since 1972 (ftp:
//www.nhtsa.dot.gov/ges). We use data from 3310 crash tests where the test
dummy is in the driver’s seat to show how GUIDE deals with missing values
and cyclic variables. Each test gives the severity of head injury (HIC) sustained
by the dummy and the values of about 100 variables describing the vehicle, test
environment and the test dummy. The response variable is Y = 1 if HIC >
1000 (threshold for severe head injury), and Y = 0 otherwise. About half of the
predictor variables are ordinal, six are cyclic, and the rest are categorical.

Three features in the data make model building particularly challenging.
The first is missing data. Missing values in categorical variables are not prob-
lematic, as they can be assigned a “missing” category. Missing values in other
variables, however, need to be imputed before application of OLR. This can be
extraordinarily difficult if there are many missing values and the missingness
patterns are complex [22, 26]. All ordinal and cyclic variables here have missing
values. Table 30.4 gives the names and numbers of missing values of some of
them (see [27] for the others). For example, IMPANG, the angle between the
axis of a vehicle and the axis of another vehicle or barrier, is undefined for a
rollover crash test, where there is no barrier and only one vehicle is involved. In
such cases, the value of IMPANG is recorded as missing and imputing it with a
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Figure 30.6: LOTUS simple linear LRT model for P(blowdown). At each split,
an observation goes to the left branch if and only if the condition is satisfied.
Sample size (in italics), proportion of blowdowns, and name of regressor variable
(if any) are printed below nodes. Green and yellow terminal nodes have L and
D, respectively, as best linear predictor.
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Figure 30.7: MOB simple linear LRT model with L pre-specified as the common
linear predictor in all nodes. At each split, an observation goes to the left branch
if and only if the condition is satisfied. Sample sizes (in italics) are printed below
nodes.
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Figure 30.8: Comparison of fitted values p̂ of Cook-Weisberg model (30.9) and
GUIDE forest versus simple linear LRT models
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Figure 30.9: Comparison of fitted values p̂ of Cook-Weisberg model (30.9) and
GUIDE forest versus multiple linear LRT models
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Table 30.4: Definitions and numbers of missing values of some predictor vari-
ables in the crash-test data

Variable Description Missing
BARRIG rigid or deformable barrier 1
BARSHP barrier shape (21 types) 0
BX2 rear surface of vehicle to front of engine 288
BX5 rear surface of vehicle to upper leading edge of left door 288
CARANG angle between surface of rollover test cart and ground 991
COLMEC steering column collapse mechanism (9 types) 248
ENGDSP engine displacement 24
IMPANG angle between axis of vehicle 2 and axis of vehicle 1 or

barrier (0 degrees is perpendicular to barrier)
4

CLSSPD closing speed: relative velocity of approach of two cen-
ters of gravity before contact

2

VEHSPD resultant speed of vehicle before impact 1
VEHTWT vehicle test weight 4
VEHWID vehicle width 90
WHLBAS vehicle or impactor’s wheelbase 30
YEAR vehicle model year 4

number is inappropriate. The situation is worse for variable CARANG, which has
991 missing values. Given that the crash tests are carefully monitored and have
been performed for years, it is unlikely for so many observations to be missing
by chance.

For split selection, GUIDE sends all missing values in the selected ordinal
or cyclic variable either to the left or to the right subnode, depending on which
split gives a smaller sum of residual deviances in the two subnodes. Hence no
imputation is carried out in this step. To fit an OLR model to a node, GUIDE
imputes missing values in the selected predictor variable with its node mean.

A second challenging feature is the presence of cyclic variables that are angles
with periods of 360 degrees. These variables are traditionally transformed to
sines and cosines but splits on one of them at a time are not as meaningful as
splits on the angles themselves. The problem is more difficult if the variable
has missing values. Should we impute the angles and then compute the sines
and cosines of the imputed values or should we impute the sines and cosines
directly? GUIDE avoids imputation entirely by restricting cyclic variables to
split the nodes. If a cyclic variable is selected, the split takes the form of a
sector “X ∈ [θ1, θ2]”, where θ1 and θ2 are angles, and missing values are sent to
the left or right subnode in the same fashion as non-cyclic variables.

The third challenging feature is that, apparently by design, high-speed crash
tests are more often carried out on deformable barriers and low-speed tests more
often on rigid barriers. This is evident from the boxplots of CLSSPD by BARRIG

in Fig. 30.10, where half of the tests with deformable barriers are above closing
speeds of 60 km/h, but less than one quarter of those with rigid barriers are
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Figure 30.10: Boxplots of closing speed by barrier rigidity for the crash-test
data, with box width proportional to square root of sample size

above 60 km/h. Presumably, crashes into rigid barriers are not performed at
high speeds because the outcomes are predictable, but this confounds the effects
of CLSSPD and BARRIG in an OLR model.

We say that X is an “s” variable if it can be used to split the nodes and
an “f” variable if it can be used to fit OLR models in the nodes. To limit
the amount of imputation in this example, we restrict ordinal variables with
more than 20 percent missing values to serve as s variables only. Cyclic and
categorical variables are also restricted to splitting nodes.

Figure 30.11 shows the LRT where a simple linear OLR model is fitted in
each node. The root node is split on COLMEC, which is steering wheel collapse
mechanism. Observations with COLMEC equal to BWU (behind wheel unit), EMB
(embedded ball), EXA (extruded absorber), NON (none), or OTH (other) go to
node 2. Otherwise, if COLMEC is CON (convoluted tube), CYL (cylindrical mesh
tube), NAP (not applicable), UNK (unknown), or missing, observations go to
node 3. At node 2, observations go to node 4 if BX2 ≤ 3496.5 or missing (the
asterisk beside the inequality sign in the figure indicates that missing values
go to the left node). At node 3, observations go to node 6 if BARSHP is LCB

(load cell barrier), POL (pole), US2, or US3 (different barrier types). Node 6 is
split on impact angle IMPANG, where 0 degrees indicates impact is head-on. If an
observation has IMPANG between 284 and 286 degrees inclusive (i.e., driver-side),
it goes to node 12. The two-degree range may seem narrow, but there are 67
observations in the node, suggesting that the tests were by design. Below each
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Figure 30.11: GUIDE piecewise simple linear LRT for crash-test data. At each
split, an observation goes to the left branch if and only if the condition is
satisfied. The symbol ‘≤∗’ stands for ‘≤ or missing’. Set S1 = {BWU, EMB, EXA,
NON, OTH}. Set S2 = {LCB, POL, US2, US3}. Sample size (in italics), proportion
of cases with Y = 1, and sign and name of regressor variable printed below
nodes. Terminal nodes with proportions of Y = 1 above and below value of
0.08 at root node are colored yellow and green, respectively.
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Figure 30.12: Fitted logistic regression curves in terminal nodes of Fig. 30.11;
horizontal dotted lines indicate proportion of severe injury in the node

terminal node are the sample size (in italics), proportion of Y = 1, and the
selected OLR predictor variable, with the sign of its estimated coefficient.

The tree shows that nodes 5, 9, and 34 have the highest proportions of severe
head injury, at 34, 39, and 44 percent, respectively. Vehicles in these nodes have
certain steering wheel collapse mechanisms and they tend to be longer (BX2 >
3496.5 or BX5 > 82.5) or are heavy (VEHTWT > 1368.5) and narrow (VEHWID ≤
1846). Figure 30.12 shows the fitted logistic regression curves in the terminal
nodes. The proportion of tests with severe head injury is indicated by a dotted
line in each plot.

30.5 Conclusion

Logistic regression is a technique for estimating the probability of an event in
terms of the values of one or more predictor variables. If there are missing values
among the predictor variables, they need to be imputed first. Otherwise, the
observations or variables containing the missing values would need to be deleted.
Neither solution is attractive. In practice, finding a logistic regression model
with good prediction accuracy is seldom automatic; it usually requires trial-
and-error selection of variables, choice of transformations, and estimation of the
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accuracy of numerous models. Even when a model with good estimated accuracy
is found, interpretation of the regression coefficients is not straightforward if
there are two or more predictor variables.

A logistic regression tree is a piecewise logistic regression model, with the
pieces obtained by recursively partitioning the space of predictor variables. Con-
sequently, if there is no over-fitting, it may be expected to possess higher predic-
tion accuracy than a one-piece logistic regression model. Recursive partitioning
has two advantages over a search of all partitions: it is computationally efficient
and it allows the partitions to be displayed as a decision tree. At a minimum, a
logistic regression tree can serve as an informal goodness of fit test of whether a
one-piece logistic model is adequate for the whole sample. A non-trivial pruned
tree would indicate that a one-piece logistic model has lower prediction accuracy,
possibly due to unaccounted interactions or nonlinearities among the variables.
Ideally, an effective tree-growing and pruning algorithm would automatically
account for the overlooked effects, making it unnecessary to specify interaction
and higher-order terms. It would also allow the models in the terminal nodes to
be as simple as desired (such as fitting a single linear predictor in each node).

Tree pruning is very important for prediction accuracy. Many methods adopt
the AIC-type approach of selecting the tree that minimizes the sum of the
residual deviance and a multiple, K, of the number of terminal nodes. There
being no value of K that works for all data sets [16], the advantage of this
approach is mainly computational speed. Our experience indicates that it is
inferior to a pruning approach that uses cross-validation to estimate prediction
accuracy.

Despite a binary decision tree being intuitive to interpret, a poor split se-
lection method can yield misleading conclusions. A common cause is selection
bias. The greedy approach used by CART and many other algorithms is known
to prefer variables that permit more splits of the data. Consequently, it is hard
to know if a variable is chosen due to its predictive power or because it has
more ways to partition the data. LOTUS and GUIDE avoid the bias by select-
ing variables with chi-squared tests. At the time of completion of this article,
GUIDE is the only tree algorithm that can deal with cyclic variables and with
two or more missing value codes [22]. The GUIDE software and manual may
be obtained from www.stat.wisc.edu/~loh/guide.html.
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