Classification Trees with Unbiased Multiway Splits

Author(s): Hyunjoong Kim and Wei-Yin Loh

Source: Journal of the American Statistical Association, Vol. 96, No. 454 (Jun., 2001), pp. 589-
604

Published by: American Statistical Association

Stable URL: http://www.jstor.org/stable/2670299

Accessed: 27/06/2009 11:21

Y our use of the JSTOR archive indicates your acceptance of JISTOR's Terms and Conditions of Use, available at
http://www.jstor.org/page/info/about/policies/terms.jsp. JSTOR's Terms and Conditions of Use provides, in part, that unless
you have obtained prior permission, you may not download an entire issue of ajourna or multiple copies of articles, and you
may use content in the JSTOR archive only for your personal, non-commercial use.

Please contact the publisher regarding any further use of thiswork. Publisher contact information may be obtained at
http://www.jstor.org/acti on/showPublisher?publisherCode=astata.

Each copy of any part of a JSTOR transmission must contain the same copyright notice that appears on the screen or printed
page of such transmission.

JSTOR is anot-for-profit organization founded in 1995 to build trusted digital archives for scholarship. We work with the
scholarly community to preserve their work and the materials they rely upon, and to build a common research platform that
promotes the discovery and use of these resources. For more information about JSTOR, please contact support@jstor.org.

American Satistical Association is collaborating with JSTOR to digitize, preserve and extend access to Journal
of the American Statistical Association.

http://www.jstor.org


http://www.jstor.org/stable/2670299?origin=JSTOR-pdf
http://www.jstor.org/page/info/about/policies/terms.jsp
http://www.jstor.org/action/showPublisher?publisherCode=astata

Classification Trees With Unbiased

Hyunjoong Kim and Wei-Yin LoH

Multiway Splits

Two univariate split methods and one linear combination split method are proposed for the construction of classification trees with
multiway splits. Examples are given where the trees are more compact and hence easier to interpret than binary trees. A major strength
of the univariate split methods is that they have negligible bias in variable selection, both when the variables differ in the number of
splits they offer and when they differ in the number of missing values. This is an advantage because inferences from the tree structures
can be adversely affected by selection bias. The new methods are shown to be highly competitive in terms of computational speed and

classification accuracy of future observations.

KEY WORDS: Decision tree; Linear discriminant analysis; Missing value; Selection bias.

1. INTRODUCTION

Classification tree algorithms may be divided into two
groups—those that yield binary trees and those that yield
trees with nonbinary (also called multiway) splits. CART
(Breiman, Friedman, Olshen, and- Stone 1984) and QUEST
(Loh and Shih 1997) are members of the first group. Members
of the second group include FACT (Loh and Vanichsetakul
1988), C4.5 (Quinlan 1993), CHAID (Kass 1980), and FIRM
(Hawkins 1997). FACT yields one node per class at each split.
C4.5 yields a binary split if the selected variable is numerical,
if it is categorical, the node is split into C subnodes, where
C is the number of categorical values. (We use the adjective
numerical for a variable that takes values on the real line
and categorical for one that takes unordered values.) CHAID
is similar to C4.5, but employs an additional step to merge
some nodes. (This is called value grouping by some authors;
see, e.g., Fayyad 1991 for other grouping methods.) FIRM
extends the CHAID concept to numerical variables by initially
dividing the range of each variable into 10 intervals.

There is little discussion in the literature on the merits of
binary versus multiway splits. On one hand, a tree with mul-
tiway splits always can be redrawn as a binary tree. Thus
there may seem to be no advantage in multiway splits. To
see that this conclusion is not necessarily true, consider a
dataset from Rouncefield (1995) that contains information on
six 1990 demographic variables for 97 countries. Table 1 lists
the variables and their definitions. The class variable takes
six values: (i) Eastern Europe (EE), (ii) South America and
Mexico (SAM), (iii) Western Europe, North America, Japan,
Australia, and New Zealand (WAJA), (iv) Middle East
(MEast), (v) Asia, and (vi) Africa.

Figure 1 shows a tree that predicts class from the six
demographic variables in Table 1. It is obtained by the
CRUISE algorithm, which is described later. The root node
is split on birth into four subnodes. Two subnodes are ter-
minal and two are split on gnp. We see that Eastern Euro-
pean (EE) and industrialized countries (WAJA) have low birth
rates and African countries have high birth rates. Further,

Hyunjoong Kim is Assistant Professor, Department of Mathematical
Sciences, Worcester Polytechnic Institute, Worcester, MA 01609-2280
(E-mail: hkim@wpi.edu). Wei-Yin Loh is Professor, Department of Statis-
tics, University of Wisconsin, Madison, WI 53706-1685 (E-mail: loh@
stat.wisc.edu). This work was partially supported by U.S. Army Research
Office grants DAAH04-94-G-0042 and DAAG55-98-1-0333. The authors are
grateful to two reviewers for their constructive and encouraging comments.

WAJA countries have higher gnp values than EE countries.
An equivalent binary tree representation is given in Figure 2.
Owing to its greater depth, more conditions must be consid-
ered in tracing a path from the root node to the lowest terminal
node. Thus more effort may be needed to fully understand a
binary tree than one with multiway splits. (For some ideas on
simplifying a tree to enhance its interpretability, see Utgoff,
Berkman, and Clouse 1997 and Zhang 1998.)

There are other advantages of multiway splits that are often
overlooked. They can be seen by examining the binary CART
tree in Figure 3. The figure actually shows two trees—the 0-SE
tree, which is the full tree, and the 1-SE tree, which is the sub-
tree with black terminal nodes. Breiman et al. (1984) defined
the O-SE tree as the tree with the smallest cross-validation
(CV) estimate of error and the 1-SE tree as the smallest sub-
tree with CV estimate of error within 1 standard error of the
minimum. The trees demonstrate two common features when
there are many classes. First, the predictions for some classes
(namely, Africa, Asia, and SAM) are spread over two or more
terminal nodes. This is harder to interpret than if each class
is assigned to as few terminal nodes as possible. Second, the
1-SE tree does not predict the SAM class. Therefore, if we
want every class to be predicted, we have to settle for the
more complicated 0-SE tree.

These difficulties may be traced to the interaction between
binary splits, pruning, and J, the number of classes. The larger
the value of J, the more terminal nodes are required to ensure
that there is at least one for every class. However, because
each split produces only two nodes, this requires more splits,
which increases the chance that some class predictions are

Table 1. Variables for Demographic Data

Variable Definition

birth Live birth rate per 1,000 of population

death Death rate per 1,000 of population

infant Infant deaths per 1,000 of population under 1 year old
male Life expectancy at birth for males

female Life expectancy at birth for females

gnp Gross national product per capita in U.S. dollars
class Country group
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Figure 1. CRUISE 2D Tree for Demographic Data. The cross-
validation estimate of the misclassification error is .31. The 0-SE and
1-SE trees are the same.

spread over several terminal nodes. Pruning can alleviate this,
but as the 1-SE tree in Figure 3 shows, it can remove so many
branches that some classes are not predicted.

All existing algorithms for multiway splits are inadequate
in some ways. CHAID is inapplicable to numerical variables.
FACT and FIRM do not prune. C4.5 produces multiway splits
only for categorical variables and without value grouping.
More importantly, all the algorithms have selection bias: if
the predictor variables are independent of the class variable,
they do not have the same chance to be selected for splitting.
FACT, for example, is biased toward categorical variables and
FIRM is biased toward numerical variables. Therefore, when
a variable appears in a split, it is hard to know if the variable
is indeed the most important or if the selection is due to bias.
This undermines the inferential ability of the tree.

Doyle (1973), ‘White and Liu (1994), and Loh and
Shih (1997) warned about selection bias in greedy search
algorithms when variables differ greatly in their numbers of
splits. There is, however, another source of bias when variables
differ in their proportions of missing values. To illustrate, con-
sider the dataset in Lock (1993) on 93 new cars for the 1993
model year. Table 2 lists the variables: 19 are numerical, 3
are categorical, and 2 are binary. The class variable is type of
car: small (sml), sporty (spt), compact (cmp), midsize (mid),
large (Irg), and van. Figure 4 shows the CART 0-SE and 1-SE
trees. The dominance of luggage in the splits is striking, espe-
cially because many of the other variables are expected to
have similar discriminatory power. It turns out that luggage
has the most number of missing values by far. We show in
Section 5 that CART is biased toward selecting variables with

birth < 17.8

SAM MEast

Figure 2. Tree From Figure 1 Reformatted With Binary Splits.
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birth < 17.7

SAM  Asia

Figure 3. CART 0-SE Tree for Demographic Data. The CV estimate
of error is .30. At each split, a case goes down the left branch if the
condition is satisfied. Terminal nodes of the 1-SE tree are marked by
black circles; it does not predict SAM.

more missing values. This problem is not unique to CART. In
the design of an algorithm, care must be taken to consider the
effect of missing values on selection bias as well.

Motivated by the foregoing examples, we propose here a
new algorithm called CRUISE (for classification rule with
unbiased interaction selection and estimation) that splits each
node into as many as J subnodes. It borrows and improves
upon ideas from many sources, but especially from FACT,
QUEST, and GUIDE (Loh 2001) for split selection and CART
for pruning. CRUISE has the following desirable properties.

Table 2. Variables for Car Data

Variable Definition

manuf Manufacturer (31 categories)
minprice Minimum price in $1,000s
midprice Midrange price in $1,000s
maxprice Maximum price in $1,000s
citympg City miles per gallon

hwympg Highway miles per gallon
airbag Air bags standard (3 categories)
drtrain Drive train type (3 categories)
cylin Number of cylinders

enginsz Engine size in liters

hp Horsepower

Tpm Revolutions per minute

rev Engine revolutions per mile
manual Manual transmission (yes, no)
fuel Fuel tank capacity in gallons
passngr Passenger capacity

length Length in inches

wheelbase Wheelbase length in inches
width Width in inches

uturn U-turn space in feet

rearseat Rear seat room in inches
luggage Luggage capacity in cubic feet
weight Weight in pounds

domestic U.S. or non-U.S. manufacturer
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luggage <
luggage

luggage < 19
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van mid
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Figure 4. CART 0-SE Tree for Car Data. The CV estimate of error is .45. S contains the manufacturers Chrysler, Eagle, Ford, Geo,
Lincoln, Mazda, Mitsubishi, Plymouth, Pontiac, Saturn, Subaru, Suzuki, and Volkswagen. Terminal nodes of the 1-SE tree are marked by black

circles; the 1-SE tree does not predict the van class.

1. Its trees often have prediction accuracy at least as high
as those of CART and QUEST, two highly accurate algo-
rithms according to a recent study (Lim, Loh, and Shih
2000).

2. It has fast computation speed. Because it employs
multiway splits, this precludes the use of greedy search
methods.

3. It is practically free of selection bias. QUEST has little
bias when the learning sample is complete, but it pro-
duces binary splits.

4. It is sensitive to local interactions between variables.
This produces more intelligent splits and shorter trees.
No previous algorithm is designed to detect local inter-
actions.

5. It has all the preceding properties with or without
missing values in the learning sample.

The rest of this article is organized as follows. Section 2
discusses univariate splits, where each split involves only one
variable. Two variable selection methods designed to mini-
mize selection bias are presented and simulation results on
their effectiveness are reported. Section 3 extends the approach
to linear combination splits, which have greater flexibility
and prediction accuracy. Section 4 compares the prediction
accuracy and computational speed of CRUISE against more
than 30 methods on 32 datasets without missing values. The
results show that CRUISE has excellent speed and that differ-
ences in mean misclassification rates between it and the best
method are not statistically significant. Section 5 considers the
problems created by missing values. We explain why they
cause a bias in CART and how CRUISE deals with them.
The algorithms are compared on 13 more datasets that con-
tain missing values. Section 6 concludes the article with some
summary remarks. A few algorithmic details are given in the
Appendix.

2. UNIVARIATE SPLITS

Loh and Shih (1997) showed that the key to avoiding
selection bias is separation of variable selection from split

point selection. That is, to find a binary split of the form X € S,
first choose X and then search for the set S. This differs from
the greedy search approach of simultaneously finding X and S
to minimize some node impurity criterion. The latter results in
selection bias when some X variables permit few splits, while
others allow many. We, therefore, first deal with the problem
of how to select X in an unbiased manner.

2.1 Selection of Split Variable

We propose two methods of variable selection. The first
method (called 1D) is borrowed from QUEST. The idea is
to compute p values from analysis of variance (ANOVA) F
tests for numerical variables and contingency table x? tests
for categorical variables, and to select the variable with the
smallest p value. In the event that none of the tests is signif-
icant, a Bonferroni-corrected Levene (1960) test for unequal
variance among the numerical variables is carried out. The
procedure is approximately unbiased in the sense that if the
predictor variables and the class variable are mutually inde-
pendent, each variable has approximately the same probability
of being selected. Algorithm 1 in the Appendix describes the
method in detail.

A weakness of this method is that it is designed to detect
unequal class means and variances in the numerical variables.
If the class distributions differ in other respects, it can be inef-
fective. Two examples are given in Figure 5. The left panel
shows the distributions of two classes along one predictor
variable. One distribution is normal and the other is exponen-
tial, but their means and variances are the same. The ANOVA
and Levene tests will not find this variable significant. The
right panel shows another two-class problem where there is a
checkerboard pattern in the space of two variables. One class
is uniformly distributed on the white and the other on the gray
squares. The ideal solution is to split on one variable followed
by splits on the other. Unfortunately, because the ANOVA and
Levene tests do not look ahead, they most likely would select
a third variable for splitting.

Loh (2001) suggests a way to detect pairwise interactions
among the variables in regression trees. We extend it to the
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Figure 5. Two Examples Where the ANOVA and Levene Tests Fail. The left panel shows two univariate class densities with the same means and
variances. The right panel shows a bivariate domain where one class is uniformly distributed over the white and the other over the gray squares.

classification problem here. The idea is to divide the space
spanned by a pair of variables into regions and cross-tabulate
the data using the regions as columns and the class labels
as rows. In the right panel of Figure 5, for example, we can
divide the (X,, X,) space into four regions at the sample medi-
ans and form a 2 x 4 contingency table for the data. The
Pearson x? test of independence will be highly significant.
If both X, and X, are categorical variables, their category
value pairs may be used to form the columns. If one variable
is numerical and the other is categorical, the former can be
converted into a two-category variable by grouping its values
according to whether they are larger or smaller than their sam-
ple median. To detect marginal effects such as that in the left
panel of Figure 5, we apply the same idea to each variable
singly. If the variable is categorical, its categories form the
columns of the table. If the variable is numerical, the columns
are formed by dividing the values at the sample quartiles.
Thus a set of marginal tables and a set of pairwise tables
are obtained. The table with the most significant p value is
selected. If it is a marginal table, the associated variable is
selected to split the node. Otherwise, if it is a pairwise table,
we can choose the variable in the pair that has the smaller
marginal p value.

Loh (2001) showed that for regression trees, this approach
is slightly biased toward categorical variables, especially if
some take many values. He used a bootstrap method to correct
the selection bias. To avoid overcorrecting the bias when it is
small, he increased the bias before correction by selecting the
categorical variable if the most significant p value was due to a
pairwise table that involved one numerical and one categorical
variable. We follow a similar approach here and call it the 2D
variable selection method. A full description of the procedure
is given in Algorithms 2 and 3 in the Appendix.

2.2 Selection of Split Points

Once X is selected, we need to find the sets of X values that
define the split. If X is a numerical variable, FACT applies
linear discriminant analysis (LDA) to the X values to find
the split points. Because LDA is most effective when the
data are normally distributed with the same covariance matrix,
CRUISE performs a Box—Cox transformation on the X values
before application of LDA. (See Qu and Loh 1992 for some

theoretical support for Box—Cox transformations in classifica-
tion problems.) If X is a categorical variable, it is first con-
verted to a 0—1 vector. That is, if X takes values in the set
{¢), ¢y, ..., ¢y}, we define a vector D = (D,,D,,...,D,)
such that D, =1 if X =¢; and D, =0 if X # ¢;. The D vec-
tors are then projected onto the largest discriminant coordinate
(crimcoord). Finally, the Box—Cox transformation is applied
to the crimcoord values. Because the Box—Cox transformation
requires the data to be positive valued, we add 2x,) — x(; to
the X values if x;) <0. Here x(;) denotes the ith order statis-
tic of the X or crimcoord values. The details are given in
Algorithm 4 in the Appendix. After the split points are com-
puted, they are back-transformed to the original scale.

The preceding description is for the 2D method. Selection
of split points in the 1D method is the same, except that
the Box—Cox transformation is not carried out if the vari-
able is selected by Levene’s test. Instead, the FACT method is
used, that is, the partitions are found by applying LDA to the
absolute deviations about the sample grand mean at the node.

Owing to its parametric nature, LDA sometimes can yield
one or more intervals that contain no data points. When this
occurs, we divide each empty interval into two halves and
combine each half with its neighbor. A rarer situation occurs
when large differences among the class priors cause LDA to
predict the same class in all the intervals. In this event, the
LDA partitions are ignored and the split points are simply
taken to be the midpoints between successive class means.

2.3 Comparison of Selection Bias

A simulation experiment was carried out to compare the
selection bias of the 1D and 2D methods with that of CART.
The experiment is restricted to the two-class problem to avoid
the long computation times of greedy search when there are
more than two classes and some categorical variables take
many values. Tables 3 and 4 define the simulation models.
The learning sample size is 1,000 and class priors are equal.

First we consider selection bias at the root node in the null
case with three numerical and two categorical variables, each
being independent of the class variable. Table 5 shows the
results when the predictor variables are mutually independent.
The CART selection probability for the categorical variable X
grows steadily as k, its number of categories, increases. When
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Table 3. Distributions Used in Simulation Study of Selection Bias

Variable Definition

Zz Standard normal variable

E Exponential variable with unit mean

B Beta variable with density proportional to x*(1 —x)2, 0 < x <1

C, Categorical-valued variable uniformly distributed on the integers 1,2,...,k
D, Numerical variable uniformly distributed on the integers 1,2,. ..,k

U Uniform variable on the unit interval

R Independent copy of U

k =5, the probability is about .1, half the unbiased value of .2.
When k = 10, the probability is close to .5 and when k = 20,
it is .9. On the other hand, the probabilities for the 1D and 2D
methods all lie within two simulation standard errors of .2.

To examine the effect of dependence among the variables,
another experiment was conducted with correlated variables.
The precise form of dependence is given in the first column
of Table 6. Variables X, and X, are correlated, with their cor-
relation controlled by a parameter 6 such that corr(X,, X,) =
0/+/1+62%. As 6 varies from 0 to 10, the correlation increases
from 0 to .995. The joint distribution of X, and X is given
in Table 7. The results in Table 6 show that CART is still
heavily biased toward X5. The 1D and 2D methods are again
relatively unbiased, although only 2D has all its probabilities
within 2 standard errors of .2.

Selection bias in the null case is harmless if pruning or a
direct stopping rule yields a trivial tree. A trivial tree is worth-
less, however, in nonnull situations. To observe how often
this occurs when the 1-SE tree is used, a third simulation
experiment was carried out with mutually independent vari-
ables. Misclassification rates are estimated with independent
test samples. For the shift and asymmetric models defined
in Table 4, the selection probability for X; should be high,
because it is the only variable associated with the class vari-
able. For the interaction model, either X; or X, should be
selected with high probability. Tables 8, 9, and 10 give the
results as k, the number of categories in X, increases. They
show that the following statements hold:

1. The selection bias of CART does not disappear with
pruning even in the null case. Table 8 shows that about
40% of the CART trees have at least one split.

2. For CART, the probability of a nontrivial tree decreases
slowly as k increases, but the conditional probability that
the noise variable Xs is selected increases quickly with

Table 4. Models for Simulation Experiment on the Effect of Pruning

Model Class Distributions of X,
Null 1 z
2 Zz
Shift 1 Z+.2
2 Zz
Asymmetric 1 (Z-1I(U > .5)+(1.5Z+1)I(U < .5)
2 1.5Z
Interaction 1 ZI(X, > .B5)+(Z + .5)I(X, < .5)
2 ZI(X, < .B)+(Z +.5)I(X, > .5)

NOTE: Variables are mutually independent with Xo ~ R, X3 ~ E, X4 ~ B, and X5 ~ Cy, as
defined in Table 3.

k. This holds for the null and nonnull models. Hence,
large values of k tend to produce no splits, but when a
split does occur, it is likely to be on the wrong variable.
3. There is no evidence of selection bias in the 1D and
2D methods for the null model, either unconditionally or
conditionally on the event of a nontrivial tree.
Table 9 shows that the 1D method has more power than
the 2D method in selecting X, in the shift model, but
1D is worse than 2D in the asymmetric model and, as
expected, in the interaction model (Table 10).
Only the 2D method selects the right variables with high
probability in the interaction model. The other methods
could not detect the interaction between X; and X,.
The average sizes of the nontrivial trees are fairly similar
among the methods.
The misclassification rates are also fairly similar, except
at the interaction model where the 2D method is slightly
more accurate.

3. LINEAR COMBINATION SPLITS

Trees with linear combination splits usually have better
prediction accuracy because of their greater generality. They
also tend to have fewer terminal nodes, although this does
not translate to improved interpretation, because linear com-
bination splits are much harder to comprehend. To extend the
CRUISE approach to linear combination splits, we follow the
FACT method, but add several enhancements. First, each cat-
egorical variable is transformed to a dummy vector and then
projected onto the largest discriminant coordinate. This maps
each categorical variable into a numerical one. After all cate-
gorical variables are transformed, a principal component anal-
ysis of the correlation matrix of the variables is carried out.
Principal components with small eigenvalues are dropped to
reduce the influence of noise variables. Finally, LDA is applied
to the remaining principal components to find the split. Unlike
the linear combination split methods of CART and QUEST,
which divide the space in each node with a hyperplane, this
method divides it into polygons, with each polygon being a
node associated with a linear discriminant function. As in the
case of univariate splits, the class assigned to a terminal node
is the one that minimizes the misclassification cost, estimated
from the learning sample. Whereas FACT breaks ties ran-
domly, we choose among the tied classes those that have not
been assigned to any sibling nodes.

Another departure from the FACT algorithm occurs when
a split assigns the same class to all its nodes. Suppose, for
example, that there are J classes, labeled 1,2,...,J. Let
d,,d,,...,d; be the J linear discriminant functions induced
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Table 5. Estimated Probabilities of Variable Selection for the Two-Class Null Case Where the
Variables Are Mutually Independent

CART 1D 2D

k 5 10 15 20 5 10 15 20 5 10 15 20

Xy~2 A1 .25 A2 .05 .20 .20 .22 .20 .20 19 .21 .20
X, ~E 42 .26 a2 .05 .23 .20 .21 .21 .21 .20 .20 19
Xs~D, .04 .02 .01 .00 21 .21 .20 .20 .20 .20 .19 .20
X, ~C, .02 .01 .01 .00 19 19 18 .21 a7 .21 .19 .21
X5 ~ Cy A1 46 74 .90 .18 .20 .20 19 .21 .21 .21 .20

NOTE: X4, X2, and X3 are numerical, and X4 and X5 are categorical variables. Estimates are based on 1,000 Monte Carlo iterations
and 1,000 samples in each iteration. Simulation standard errors are about .015. A method is unbiased if it selects each variable with
probability .2.

Table 6. Estimated Probabilities of Variable Selection for the Two-Class Null Case With Varying
Degrees of Dependence Between X, and X,

CART 1D 2D
B 0 1 10 0 1 10 0 1 10
X, ~Z 27 25 24 19 18 14 20 21 20
X, ~E+8Z 29 25 20 21 19 12 20 20 21
Xy~D, .02 .03 04 25 19 26 22 20 20
X, ~ [UCyp/5) +1 .01 01 01 18 23 25 18 18 19
X5~ Cyo A1 46 52 17 21 23 19 21 21

NOTE: The joint distribution of X4 and X5 is given in Table 7. Estimates are based on 1,000 Monte Carlo iterations and 1,000 samples
in each iteration. A method is unbiased if it selects each variable with probability .2. Simulation standard errors are about .015. Only
the 2D method has all its entries within two simulation standard errors of .2.

Table 7. Joint Distribution of Categorical Variables X, and X, in Tables 6 and 13

Xs
X, 1 2 3 4 5 6 7 8 9 10
1 1/10 1/10 1/10 1/10 1/10 5/60 5/70 5/80 5/90 1/20
2 0 0 0 0 0 1/60 2/70 3/80 4/90 1/20

Table 8. Probabilities of Variable Selection at the Root Node for the Null Model
Before and After Pruning

Conditional on A= {|T| > 1}

Misclass. Time

Method k P(X,) P(A) P(X,) P(X5) E|T| rate (s.)
CART 10 A7 44 .16 .34 4.3 .49 6392
15 .09 42 .09 .62 3.8 .49 5457

20 .04 .39 .03 .89 3.1 .49 5028

1D 10 .18 .38 19 .20 4.0 .49 327
15 .20 .37 18 .20 3.9 .49 419

20 .19 .37 .21 .20 4.0 .49 532

2D 10 .18 .34 19 18 4.0 .49 1378
15 22 .35 22 A7 4.2 .49 1839

20 .18 .37 .20 .18 4.4 .49 2301

NOTE: k denotes the number of categories in X5. P(X;) is the probability that X; is selected to split the node. |'7| is the number of
terminal nodes and E|:f| is its expected value. P(A) is the probability that |?| > 1. Results are based on 1,000 Monte Carlo iterations
with 1,000 learning samples in each iteration. Misclassification rates are estimated from independent test samples of size 500. Times
are measured on a DEC Alpha Model 500a UNIX workstation.
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Table 9. Probabilities of Variable Selection at the Root Node for the Shift and Asymmetric Models
Before and After Pruning

Conditional on A= {|T| > 1}

Misclass. Time
Method k P(X;) P(A) P(X;) P(X;) E|T| rate (s.)
Shift model

CART 10 .82 .54 .88 .05 2.9 48 5433
15 .68 49 .76 18 3.0 .48 4881

20 .52 46 .59 .40 3.1 .48 4512

1D 10 .93 .58 .95 .01 2.6 47 293
15 .91 58 .96 .01 27 47 350

20 .93 .61 .96 .02 2.7 47 414

2D 10 .81 52 .90 .01 2.7 .48 1361
15 .79 52 .89 .02 2.7 .48 1788

20 .81 54 .90 .02 2.8 .48 2219

Asymmetric model

CART 10 71 .66 74 13 3.8 .48 5828
15 .58 .61 .62 .30 3.8 .48 5185

20 .37 57 .38 .58 3.7 49 4832

1D 10 .35 .50 44 13 3.8 .49 316
15 .36 .50 .46 A7 4.1 .48 404

20 .34 .49 41 15 3.7 .49 496

2D 10 .65 .53 .71 .06 4.4 .48 1375
15 .64 .53 74 .07 4.5 .48 1807

20 .65 .53 .73 .05 4.3 .48 2243

NOTE: Simulation standard errors are about .03. Misclassification rates are estimated from independent test samples of size 500.

Times are measured on a DEC Alpha Model 500a UNIX workstation.

by a split. Denote their values taken at the ith case by
d, (i), dy(i), .. .,d,;(i). Suppose that there is a class j’ such
that d; (i) > d;(i) for all i and j. Then all the nodes are
assigned to class j'. This event can occur if class priors or mis-
classification costs are sufficiently unbalanced. Because such
a split is not useful, we force a split between class ;' and
the class with the next largest average discriminant score. Let
d_j be the average value of d;(i) in the node. Then d vz d ;
for all j. Let j” be the class with the second largest value of
d; and define ¢ = d;, —d;,. Now split the node with the dis-
criminant functions d,, d,, . .., d, except that d v is replaced
with d;, — c. This usually will produce two nodes that contain
most of the observations, one for class j* and one for class
j”. The nodes for the other classes will contain few observa-
tions. Whereas this procedure is likely to be unnecessary in
nodes far down the tree (because they may be pruned later), it

is carried out only if the number of cases in the node exceeds
10% of the total sample size.

4. PREDICTION ACCURACY AND TRAINING TIME

Lim et al. (2000) compared a large number of algorithms
on 32 datasets in terms of misclassification error and training
time. They found that POLYCLASS (Kooperberg, Bose, and
Stone 1997), a spline-based logistic regression algorithm, has
the lowest average error rate, although it is not statistically sig-
nificant from that of many other methods. On the other hand,
there are great differences in the training times, which range
from seconds to days. That study includes two implementa-
tions of the CART univariate split algorithm—IND (Buntine
1992) and Splus (Clark and Pregibon 1993). In this section,
we add CRUISE and Salford Systems’ CART (Steinberg and

Table 10. Probabilities of Variable Selection at the Root Node for the Interaction Model
for Nontrivial Pruned Trees

Conditional on A= {|T| > 1}

Misclass. Time

Method k P(A) P(X;) P(X,) P(X5) E|T| rate (s.)
CART 10 .59 .21 .20 .28 5.0 .48 5989
15 .50 A1 .09 .64 4.2 .49 5407

20 .45 .04 .04 .80 3.8 .49 5010

1D 10 .61 27 .27 13 4.6 47 303
15 .61 27 .24 15 4.7 47 376

20 .60 27 .24 13 4.8 47 456

2D 10 .90 .48 52 .00 5.3 44 1288
15 .89 .49 51 .00 5.3 44 1672

20 91 .51 .49 .00 53 44 2051

NOTE: Simulation standard errors are about .03. Misclassification rates are estimated from independent test samples of size 500.

Times are measured on a DEC Alpha Model 500a UNIX workstation.
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Table 11. Classification Algorithms in Comparative Study; 0-SE Tree Used Where Applicable

Name Description

CR1 CRUISE 1D

CR2 CRUISE 2D

CRL CRUISE linear combination splits

CTU Salford Systems CART univariate splits (Steinberg and Colla 1992)
CTL Salford Systems CART linear combination splits

SPT Splus-tree univariate splits (Clark and Pregibon 1993)

QTU QUEST univariate splits (Loh and Shih 1997)

QIL QUEST linear combination splits

FTU FACT univariate splits (Loh and Vanichsetakul 1988)

FTL FACT linear combination splits

IC IND CART univariate splits (Buntine 1992)

1B IND Bayes

IBO IND Bayes with opt style

M IND Bayes with mml style

IMO IND Bayes with opt and mml styles

C4T C4.5 decision tree (Quinlan 1993)

C4R C4.5 decision rules

0Cu OCH tree, univariate splits (Murthy, Kasif, and Salzberg 1994)
0CL OC1 with linear combination splits

0CM OC1 with univariate and linear combination splits

LMT LMDT linear combination split tree (Brodley and Utgoff 1995)
CAL CALS5 decision tree (Muller and Wysotzki 1994)

T1 One-split tree (Holte 1993)

LDA Linear discriminant analysis

QDA Quadratic discriminant analysis

NN Nearest neighbor

LOG Polytomous logistic regression

M1 FDA-MARS, additive model (Hastie, Tibshirani, and Buja 1994)
M2 FDA-MARS, interaction model

PDA Penalized discriminant analysis (Hastie, Buja, and Tibshirani 1995)
MDA Mixture discriminant analysis (Hastie and Tibshirani 1996)

POL POLYCLASS (Kooperberg et al. 1997)

LVQ Learning vector quantization neural network (Kohonen 1995)

RBF Radial basis function neural network (Sarle 1994)

Colla 1992), which allows linear combination splits, to the
comparison. The list of algorithms and their acronyms are
given in Table 11. The reader is referred to Lim et al. (2000)
for details on the other algorithms and the datasets.

A plot of median training time versus mean error rate
for each algorithm is given in the upper half of Figure 6.
The training times are measured on a DEC 3000 Alpha
model 300 workstation running the UNIX operating system.
POLYCLASS (abbreviated as POL in the plot) still has the
lowest mean error rate. As in Lim et al. (2000), we fit a mixed
effects model with interactions to determine if the differences
in mean error rates are statistically significant. The algorithms

are treated as fixed effects and the datasets as random effects.
This yields a p value less than .001 for a test of the hypothe-
sis of equal algorithm effects. Using 90% Tukey simultaneous
confidence intervals (Hochberg and Tamhane 1987, p. 81), we
find that a difference in mean error rates less than .056 is not
statistically significant from zero. This is indicated in the plot
by a solid vertical line, which separates the algorithms into
two groups: those that have mean error rates that do not dif-
fer statistically significantly from that of POL and those that
do. All except seven algorithms fall on the left of the line.
The dotted horizontal lines divide the algorithms into four
groups according to median training time: less than 1 min,

Table 12. Probabilities of Variable Selection Where the Class Variable Is Independent
of Five Mutually Independent Variables

CART
Percent missing X,

Percent missing X,

1D 2D
Percent missing X,

Distribution 20 40 60 80 20

40 60 80 20 40 60 80

X, ~Z 42 55 67 78 22
X, ~E 2 12 11 07 2
X ~ D, 03 01 .01 .01 .19
X,~C, 01 .00 .01 .00 .20
X ~ Cyo 3 31 20 14 .18

NOTE: Notations are defined in Table 3. Only X1 has missing values. Estimates are based on 1,000 Monte Carlo iterations and 1,000
samples in each iteration. A method is unbiased if it selects each variable with probability .2. Simulation standard errors are about .015.
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Figure 6. Median Training Time Versus Mean Error Rate. The vertical axis is in log scale. Algorithms to the left of the solid vertical line in plot
(a) have mean error rates that are not statistically significant at the 10% simultaneous level from POL. The subset of these algorithms that have

median training time less than 10 min is shown in plot (b).

1-10 min, 10 min to 1 h, and more than 1 h. POL has the third
highest median training time. The CRUISE linear combina-
tion split algorithm (CRL) has the second lowest mean error
rate, but takes substantially less time. The mean error rates of
the 1D and 2D algorithms (CR1 and CR2) and Salford Systems
CART (CTU and CTL) are also not statistically significant from
POL. A magnified plot of the algorithms that are not statisti-
cally significant from POL and that require less than 10 min of
median training time is shown in the lower half of Figure 6.
The best algorithm in this group is CRL, followed closely by
logistic regression.

5. MISSING VALUES

The discussion so far has assumed that there are no missing
values in the data. We now extend the CRUISE method to
allow missing values in the learning sample as well as in
future cases to be classified. One popular solution for univari-
ate split selection uses only the cases that are nonmissing in
the variable under consideration. We call this the “available

case” strategy. It is used in CART and QUEST. Another solu-
tion, used by FACT and QUEST, imputes missing values in
the learning sample at each node and then treats all the data
as complete.

After a split is selected, there is the problem of how to
send a case with missing values through it. CART uses a
system of “surrogate splits,” which are splits on alternate vari-
ables. Others use imputation or send the case through every
branch of the split. Quinlan (1989) compared these and other
techniques on a nonpruning version of the C4.5 algorithm.

In this section, we show that missing values can contribute
two additional sources of bias to the CART algorithm: in the
selection of the main split and in the selection of the sur-
rogates. We also consider some new unbiased missing value
strategies and compare them with CART, QUEST, and C4.5
on some real datasets.

5.1 Bias of CART Split Selection

When CART evaluates a split of the form X € S, it first
restricts the learning sample to the set A of cases that are non-
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Table 13. Probabilities of Variable Selection Where the Class Variable Is
Independent of Five Dependent Variables

CART 1D 2D
Percent missing X, 20 40 60 80 20 40 60 80 20 40 60 80
X, ~ Z, 40 51 65 .79 24 24 24 25 22 22 23 .22
X, ~2, A2 11 .06 04 .16 A3 .14 15 18 .18 .19 .20
Xy ~ E+10Z, A1 09 09 04 13 14 15 A4 19 19 20 .20
X,~|UCyx/5)+1 01 01 00 .00 .23 23 25 .23 19 .19 .18 .18
X5~ Cqq 36 .28 20 .43 24 27 23 22 22 23 .20 .21

NOTE: Zy and Z, are independent standard normals. The correlation between X, and X3 is .995. The joint distribution of X4 and X5
is given in Table 7. Only Xy has missing values. A method is unbiased if it selects each variable with probability .2. Estimates are

based on 1,000 Monte Carlo iterations and 1,000 samples in each iteration. Simulation standard errors are about .015.

missing in X. Then, using a node impurity measure that is a
function of the class proportions in A, it searches over all sets
S to minimize the total impurity in the nodes. One problem
with basing the impurity measure on proportions instead
of sample sizes is that this creates a selection bias toward
variables that possess larger numbers of missing values.

As an extreme example, consider a two-class problem
where there is an X variable that is missing in all but two
cases, so that A has only two members. Suppose that the cases
take distinct values of X and they belong to different classes.
Then any split on X that separates these two cases into differ-
ent nodes will yield zero total impurity in the nodes. Since this
is the smallest possible impurity, the split is selected unless
there are ties.

To appreciate the extent of the selection bias in less extreme
situations, we report the results of a simulation experiment
with two classes and five variables that are independent of
the class. The class variable has a Bernoulli distribution with
probability of success .5. X, has randomly missing values;
the other variables are complete. The relative frequency with
which each variable is selected is recorded. If a method is
unbiased, the probabilities should be .2. Two scenarios are
considered, with one having mutually independent variables
and another having dependent ones. The results are given in
Tables 12 and 13, respectively. The dependence structure in
Table 13 is the same as that in Table 6. Clearly, the selection
bias of CART toward X, grows with the proportion of missing
values.

Example 1. We saw in the car example in Figure 4 that
the luggage variable is repeatedly selected to split the nodes.
It turns out that luggage has the most missing values—11 out
of 93. Only two other variables have missing values, namely,
cylin and rearseat, with one and two missing, respectively.
In view of the preceding results, it is likely that the selection
of luggage is partly due to the bias of CART toward variables
with more missing values. This conjecture is supported by
one additional fact: all the vans in the dataset are missing
the luggage variable, probably because the variable is not
applicable to vans because they do not have trunks. To send
the vans through the root node, the CART algorithm uses a
surrogate split on wheelbase. However, because vans have
similarly large wheelbase values, all of them are sent to the
right node. This increases the proportion of missing values for
luggage in the right node (from 11:93 to 11:57) and hence

its chance of selection there too. It is interesting to note that
CRUISE selects wheelbase to split the root node.

Example 2. Another example of the effect of missing

‘values on selection bias is provided by the hepatitis dataset

from the University of California, Irvine (UCI), Repository of
Machine Learning Databases (Merz and Murphy 1996). There
are 19 measurements on 155 cases of hepatitis, of which 32
cases are deaths. Six variables take more than two values on
a numerical scale; the rest are binary. The variables and their
number of missing values are given in Table 14. Protime has
the highest percentage (43%) of missing values.

The small proportion of deaths makes it hard to beat the
naive classifier that classifies every case as “live” (see, e.g.,
Diaconis and Efron 1983 and Cestnik, Konenenko, and Bratko
1987). In fact, the 1-SE trees from the CART, QUEST, and
CRUISE 1D methods are trivial with no splits. To make the
problem more interesting, we employ a 2:1 cost ratio, mak-
ing the cost of misclassifying a “die” patient as “live” twice
that of the reverse. [C4.5 does not allow unequal misclassi-

Table 14. Variables and Their Number of Missing
Values in Hepatitis Data

Number
Name Type missing
Person variables
Age Numerical 0
Sex Binary 0
Medical test variables
Bilirubin Numerical 6
Alk phosphate Numerical 29
Sgot Numerical 4
Albumin Numerical 16
Protime Numerical 67
Symptom variables
Histology Binary 0
Steroid Binary 1
Antivirals Binary 0
Fatigue Binary 1
Malaise Binary 1
Anorexia Binary 1
Big liver Binary 10
Firm liver Binary 11
Spleen palpable Binary 5
Spiders Binary 5
Ascites Binary 5
Varices Binary 5
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Figure 7. CART, QUEST, and CRUISE 1D and 2D 0-SE Trees for Hepatitis Data Based on 2:1 Misclassification Costs. Tenfold CV estimates of
misclassification costs are .30, .30, .30, and .29, respectively. Terminal nodes of 1-SE trees are marked in black.

fication costs. CRUISE employs unequal costs in split point
selection via LDA (see, e.g., Seber 1984, p. 285) and dur-
ing cost-complexity pruning (Breiman et al. 1984).] Figure 7
shows the results. CART splits first on Protime. QUEST and
CRUISE do not split on Protime at all. Instead they split first
on Albumin. Figure 8 shows how the data are partitioned by
the CART and CRUISE-1D 1-SE trees. Although the parti-
tions appear to do a reasonable job of separating the classes,
they can be misleading because cases with missing values are
invisible. For example, only about half of the observations
appear in the CART plot.
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Because Protime has so many missing values, it is
impossible to determine how much of its prominence in the
CART tree is due to its predictive ability. On the other hand,
the methods appear to be equally good in classifying future
observations—10-fold cross-validation estimates of misclassi-
fication costs for the CART, QUEST, and CRUISE 1D and 2D
methods are .30, .30, .30, and .29, respectively.

Breiman et al. (1984) gave a formula that ranks the over-
all “importance” of the variables based on the surrogate
splits. According to their formula, the top three predictors are
Protime, Bilirubin, and Albumin, in that order. We will see
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Figure 8. Partitions of the Hepatitis Data Produced by the 1-SE Trees From the CART and CRUISE 1D Methods. Circles and crosses denote
the “live” and “die” cases, respectively. The different numbers of points in the plots are due to unequal numbers of missing values in Protime

and Albumin.
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in the next section that the ranking may be unreliable, because
the surrogate splits have their own selection bias.

5.2 Bias of CART Surrogate Split Selection

The CART surrogate split technique is very intuitive. If a
split s requires a value that is missing from an observation,
it uses a split s’ on another variable to usher it through. The
surrogate split s” is found by searching over all splits to find
the one that best predicts s, in terms of the number of cases
nonmissing in the variables required in s and s (Breiman
et al., 1984, pp. 140-141). This creates another kind of selec-
tion bias. Suppose s and s" are based on variables X and X',
respectively. Let #’ be the number of cases with nonmissing
values in both X and X’ that are sent to the same subnodes by
s and s'. If X’ has many missing values, n’ will be small, and,
therefore, the desirability of s’ as a surrogate for s will be low.
As a result, variables with many missing values are penalized.
Although it makes sense to exact some penalty on a vari-
able for missing observations (CRUISE does this through the
degrees of freedom in p-value calculations), the CART method
overdoes it—all other things being equal, the more missing
values a variable has, the lower its probability of selection as
a surrogate variable.

To demonstrate this, we simulate data with variables
Xy, X,,...,Xs and a Bernoulli class variable ¥ with .5 suc-
cess probability. Variable X, has a standard normal distribution
if Y is 0 and a normal distribution with mean .3 and variance 1
if Y is 1. The other X variables are mutually independent stan-
dard normal and are independent of X, and Y. Only X, has
missing values, which are randomly assigned according to a
fixed percentage. We find the best split on X,, and then observe
how often surrogate splits on X, X,,..., X5 are selected.
Table 15 gives the results for sample size 200 (the CRUISE
method uses an “alternate variable” strategy described in the
next section). The proportions are based on 1,000 Monte Carlo
iterations. The selection bias of CART begins to show when
X, has 2% missing values. With 25% missing values, X, has
almost no chance of being selected in a surrogate split.

Selection bias in surrogate splits is not a serious problem by
itself. As long as the predictive accuracy of the tree is unaf-
fected, the bias probably can be ignored. In the case of CART,
however, the surrogate splits are used to rank the importance
of the variables. This makes the ranking biased too.

Journal of the American Statistical Association, June 2001

5.3 CRUISE Missing Value Methods

We evaluated many different methods of handling missing
values. Owing to space limitations, only the best are reported
here.

5.3.1 Univariate Splits. If there are values missing in the
learning sample, we use the “available case” solution, where
each variable is evaluated using only the cases nonmissing in
that variable at the node. The procedure for the 1D and 2D
methods is as follows:

1. For method 1D, compute the p value of each X in
Algorithm 1 from the nonmissing cases in X.

2. For method 2D, compute the p value of each pair of
variables in Algorithm 2 from the nonmissing cases in
the pair.

3. If X* is the selected split variable, use the cases with
nonmissing X* values to find the split points.

4. If X* is a numerical variable, use the node sample class
mean to impute missing values in X*. Otherwise, if X*
is categorical, use the class mode.

5. Pass the imputed sample through the split.

6. Delete the imputed values and restore their missing
status.

To process a future case for which the selected variable is
missing at a node ¢, we split on an alternate variable. The idea
is similar in concept to the CART surrogate splits, but it is
faster and appears to be unbiased. Let X be the most signifi-
cant variable according to the variable selection algorithm and
let s be the associated split. Let X’ and s’ be the second most
significant variable and associated split.

1. If X’ is nonmissing in the case, use s’ to predict its class.
Then impute the missing X value with the learning sam-
ple mean (if X is numerical) or mode (if X is categor-
ical) of the nonmissing X values for the predicted class
in t.

2. If X’ is missing in the case, impute the missing X value
with the grand mean or mode in #, ignoring the class.

After the case is sent to a subnode, its imputed value is
deleted. We call this the alternate variable strategy. The sim-
ulation results on the right side of Table 15 show that this
method has negligible bias.

Table 15. Estimated Probabilities of Surrogate-Alternate Variable Selection for the Null Case Where
the Variables X,,X,,...,Xs Are Independent of the Main Split Variable X,.

CART CRUISE
Percent missing X, Percent missing X;
Variable 1 2 3 4 25 1 2 3 4 25
X, .18 12 .09 .05 .00 19 .20 .18 .20 .18
X, .25 .25 .26 .24 .30 .18 .22 18 19 19
X3 .21 .23 .26 .27 .25 .22 19 .20 .21 19
X4 .20 .23 .20 .23 .23 .22 19 .22 .22 .21
Xs A7 A7 19 .21 .22 .20 .20 22 .18 .23

NOTE: The variable X1 has missing values, but others do not. Estimates are based on 1,000 Monte Carlo iterations and 200 samples
in each iteration. Simulation standard errors are about .015. A method is unbiased if it selects each variable with probability .2.
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Table 16. Datasets With Missing Values

Variables
Code  Description Source N J #num #cat  my m,
bio Biomedical data ucCl 209 2 5 0 7 1.4
bnd Cylinder bands UucCl 540 2 19 18 49 5.0
car 1993 cars Lock (1993) 93 6 19 5 12 0.6
CTX Credit approval ucCl 690 2 6 9 5 0.6
dem Demography Rouncefield (1995) 97 6 6 0 6 1.0
ech Echo cardiogram UcCl 132 2 13 0 8 2.2
f'sh Fish catch UcCl 159 7 6 1 55 7.9
hco Horse colic ucCl 366 3 9 17 98  20.3
hea Heart disease UucCl 303 2 5 8 2 0.2
hep Hepatitis ucCl 155 2 6 13 11 5.7
hin Head injury Hawkins (1997) 1000 3 0 6 41 9.8
imp Auto imports UcCl 205 6 13 9 4 1.0
usn College data StatLib 1302 3 26 1 88 20.2

NOTE: The column labeled mq gives the percent of cases with one or more missing values, the column labeled m, gives the percent

of missing values in the dataset.

5.3.2 Linear Combination Splits. It is often unwise to
restrict the search for splits to the cases with nonmissing val-
ues in a linear combination split. In our experience, the best
solution is imputation of missing values with the node mean
or mode. This is the same strategy used in FACT and QUEST.
The specific steps during tree construction are as follows:

1. Impute each missing value with the node class mean
(numerical variable) or mode (categorical variable).

2. Split the node with the imputed sample.

3. Delete the imputed values and restore their missing
status.

This procedure is inapplicable for directing a future case
that contains missing values through the split because its class
is unknown. Instead, we use a univariate split as an alternative
to the selected linear combination split. Let X and s be the
selected variable and split obtained with the 1D method at a
node ¢.

1. If X is nonmissing in the case, use s to predict its class.
Then impute all the missing values in the case with the
means and modes of the numerical and categorical vari-
ables, respectively, for the predicted class.

2. If X is missing in the case, impute all missing values
with the grand means or modes in ¢, ignoring the class.

After the case is sent to a subnode, its imputed values are
deleted and their missing status is restored.

5.4 Comparison of Methods on
Real Data With Missing Values

Thirteen real datasets are used to compare the missing value
methods. They are listed in Table 16 with brief descriptions.
Many are from UCI. Two (car and dem) were discussed in the
Introduction. The hin data are from Hawkins (1997) and the
usn data are from StatLib (http://lib.stat.cmu.edu). The
percentage of cases with one or more missing values in the
datasets, range from 2 to 98. (Note: Unit misclassification
costs are employed in all except the hep dataset, where 2:1
costs are used. As mentioned earlier, C4.5 does not allow
unequal costs. For the hep data, we calculate the misclassifi-
cation cost of C4.5 by multiplying the misclassification errors
with the appropriate costs.)

Tenfold cross-validation is used to estimate the misclassifi-
cation costs. That is, each dataset is randomly divided into 10
roughly equal-sized subsets. One subset is held out and a clas-
sification tree is constructed from the other nine subsets. The
holdout set is then applied to the tree to estimate its misclas-
sification cost. This procedure is repeated 10 times by using
a different holdout set each time. The average of the 10 cost
estimates is reported in Table 17. The last two columns of the
table give the estimated misclassification cost and the num-
ber of terminal nodes for each method, averaged across the
datasets. (Note: The CART program failed on the imp dataset
when the arcing option was selected. The average misclassi-
fication cost for this method is therefore based on the other
12 datasets.)

The following conclusions are apparent from the results:

1. The univariate split methods have nearly the same
average misclassification costs.

2. The misclassification costs of the CRUISE linear
combination split method are on average about 12%
lower than the univariate split methods. Surprisingly, the
CART linear method has higher average misclassifica-
tion cost than the univariate methods. This is opposite to
the results for nonmissing data observed in Section 4.

3. CART trees tend to have fewer terminal nodes than
CRUISE, with QUEST in between. C4.5 trees have, on
average, twice as many terminal nodes as CART. This
is consistent with the results of Lim et al. (2000), who
studied datasets without missing values.

4. Except for CART, trees with linear combination splits
tend to have substantially fewer terminal nodes than
their univariate counterparts. The CART trees with lin-
ear combination splits are, on average, about the same
size as its univariate trees.

5. The last line of Table 17 gives the results for CART
univariate splits with the arcing option. Instead of one
tree, an ensemble of 50 trees is constructed from ran-
dom perturbations of the learning sample. It has been
observed elsewhere in the literature (Breiman 1998)
that arcing tends to decrease the average misclassifica-
tion cost of CART univariate trees. The method does



602 Journal of the American Statistical Association, June 2001
Table 17. Tenfold Cross-Validation Estimates of Misclassification Costs ( |f| denotes number of terminal nodes)
Datasets Mean
Method bio bnd car crx dem ech fsh hco hea hep hin imp usn Cost |7~'|
Univariate splits
1D 15 27 .20 14 .33 .34 A7 .33 22 .30 .28 19 .29 .25 16.6
2D 16 .28 .27 15 .31 .27 16 .37 .23 .29 .30 22 .30 .25 16.7
QUEST 13 .25 .16 15 .35 .31 a7 34 .26 .30 .27 .29 .30 .25 14.4
CART 16 22 .45 15 .30 .36 .20 29 22 .30 .31 .20 .28 .26 12.0
C4.5 14 .33 .24 15 .29 37 .21 .30 .28 .31 .29 .20 .29 .26 25.6
Linear combination splits
CRUISE A1 .20 .31 14 .31 24 .01 .30 16 22 .27 .29 .33 22 5.6
QUEST .09 21 4 15 .38 .26 .05 .30 16 22 .26 .37 .31 24 6.1
CART 14 .23 .25 16 .33 .38 A7 32 .26 .38 .31 27 .32 .27 11.6
Univariate splits with arcing
CART 14 .20 .28 15 .32 .37 16 .29 .21 .26 .30 — .30 .24 NA

not appear to be more accurate than the QUEST and
CRUISE linear combination split methods here.

Table 18 reports the training time (summed over the 10
cross-validation trials) for each method. Despite the great
variability of times between methods and datasets, some pat-
terns can be discerned:

1. Consistent with the results for nonmissing data in

Section 4, C4.5 is the fastest.

The CRUISE 2D method is often the slowest.

The speed of the CRUISE 1D method is comparable to

that of CART and QUEST.

Among linear combination split methods, CART is

fastest on six datasets and slowest on four datasets. The

CRUISE linear combination split method is fastest on

seven datasets and never the slowest.

. The CART arcing option is slower than all the linear
combination split methods on eight datasets. It is slower
than the CRUISE linear method on all but one dataset.

6. CONCLUDING REMARKS

There are two non-mutually-exclusive reasons for using a
classification tree. One is to infer qualitative information about

2.

the learning sample from the splits and another is to classify
future observations. The former is unique to tree methods and
is what makes them so appealing. On the other hand, owing
to dependencies among variables, there is typically more than
one correct way to describe a dataset with a tree structure.
Thus it is advantageous to compare trees generated by differ-
ent algorithms.

To provide useful information, the tree structure must be
easy to understand and there must not be biases in the selec-
tion of the splits. CRUISE uses two techniques to improve
the interpretability of its trees. First, it splits each node into
multiple subnodes, with one for each class. This reduces tree
depth. Second, it selects variables based on one-factor and
two-factor effects. Therefore, where other methods would fail,
CRUISE can immediately identify a variable with a significant
two-factor interaction even when it does not have a significant
one-factor effect.

More important than tree depth is absence of selection bias,
because the latter can undermine our confidence in the inter-
pretation of a tree. We saw that some algorithms can be
severely biased if variables have unequal numbers of splits
or possess different proportions of missing values. CRUISE
solves this problem with a two-step approach. First, it uses the

Table 18. Training Times (in seconds) on a DEC 3000 Alpha 300 Workstation

Method bio bnd car crx dem ech fsh hco hea hep hin imp usn Median
Univariate splits
1D 11 2711 16 61 11 11 11 208 33 16 143 44 220 33
2D 16 20399 385 682 16 22 44 2458 143 88 330 737 2596 330
QUEST 9 1254 55 101 16 10 27 220 33 18 269 53 357 53
CART 30 176 58 63 33 28 38 95 44 48 70 58 149 58
C4.5 2 49 27 5 16 2 27 33 3 2 33 4 44 16
Linear combination splits
CRUISE 11 6638 33 253 5 11 5 245 66 27 225 71 533 66
QUEST 13 3877 55 219 16 13 27 335 59 28 610 74 720 59
CART 36 194 65 122 36 32 45 96 59 50 71 80 202 65
Univariate splits with arcing
CART 75 1508 134 307 73 79 41 457 140 124 369 164 630 140
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p values from significance tests to select variables. This avoids
the bias of the greedy search approach caused by variables
with unequal numbers of splits. It also automatically accounts
for unequal numbers of missing values through the degrees
of freedom. Then CRUISE uses a bootstrap bias correction to
further reduce the bias due to differences between numerical
and categorical variables. The bootstrap correction is critical
because the amount of bias is dependent on many aspects of
the data, such as sample size, number and type of variables,
missing value pattern, and configuration of the data points.

With regard to classification of future observations, there
exist many tree and nontree methods with excellent computa-
tional speed and classification accuracy. Our results show that
CRUISE is among the best.

The CRUISE computer program may be obtained
from http://www.wpi.edu/ hkim/cruise/ or http://www.
stat.wisc.edu/ 1loh/cruise.html.

APPENDIX: ALGORITHMIC DETAILS

Algorithm 1 (1D)

Let o be a selected significance level (default is .05). Suppose
Xisoons XK1 are numerical and XK1+1, ..., Xy are categorical vari-
ables.

1. Carry out an ANOVA analysis on each numerical
variable and compute its p value. Suppose X, has the smallest
p value @&,.

2. For each categorical variable, form a contingency table with
the categorical values as rows and class values as columns, and
find its x? p value. Let the smallest p value be &, and let the
associated variable be X .

3. Define : R R

o ki, a; < a@,,
ky, &, > @,.

4. If min(&,, &,) < /K (first Bonferroni correction), choose X,/
as the split variable.

5. Otherwise, find the p value for Levene’s F' test on absolute
deviations about the class mean for each numerical variable.
Suppose X,» has smallest p value &.

(a) If @ < a/(K+K,), choose X,» (second Bonferroni correc-
tion).
(b) Otherwise, choose X,.

Algorithm 2 (2D)

Suppose Xj, ..., Xy, are numerical and Xy, ,y, ..., Xy are cat-
egorical variables. Let J, be the number of classes represented at
node ¢.

1. Marginal test for each numerical variable X:

(a) Divide the data into four groups at the sample quartiles
of X.

(b) Construct a J, x 4 contingency table with classes as rows
and groups as columns.

(c) Compute the Pearson x? statistic with v = 3(J, — 1)
degrees of freedom.

(d) Convert x? to an approximate standard normal value with
the Peizer—Pratt transformation

o | VOV =13V = Dlog[( =D/ + W,
VX

where W =y —v+1.

(A1)
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Let z, denote the largest among the K, z values.
2. Marginal test for each categorical variable X: Let C denote the
number of categories of X.

(a) Construct a J, x C contingency table with classes as rows
and the C categories as columns.

(b) Compute the Pearson x? statistic with (J, — 1)
(C —1) degrees of freedom.

(c) Use the Peizer—Pratt transformation (A.1) to convert it to
a z value.

Let z. denote the largest among the (K — K ) z values.
3. Interaction test for each pair of numerical variables (X, X;/):

(a) Divide the (X, X,/) space into four quadrants at the sam-
ple medians.

(b) Construct a J, x 4 contingency table with classes as rows
and the quadrants as columns.

(c) Compute the Pearson x? statistic with 3(J, — 1) degrees of
freedom.

(d) Use the Peizer—Pratt transformation (A.1) to convert it to
a z value.

Let z,, denote the largest among the K, (K, —1)/2 z values.

4. Interaction test for each pair of categorical variables: Use pairs
of categorical values to form the groups in the table. If the pair
of variables takes C; and C, categorical values, a J, x C,C,
table is obtained. Let z,, denote the largest among the (K —
K\)(K — K, —1)/2 z values.

5. Interaction tests for pairs (X, X,/), where X, is numerical and
X is categorical: If X, takes C values, obtain a J, x 2C table.
Let z,,. denote the largest among the K, (K —K) z values.

Let f* be the bootstrap value from Algorithm 3 and define z* =
Max{f*2,» Zes f* Zuns Zeer Znc}-

1. If f*z, = z*, select the numerical variable with the largest z.

2. If z. = z*, select a categorical variable with the largest z.

3. If f*z,, =z*, select the numerical variable in the pair with the
larger z.

4. If z,. = 7%, select the categorical variable in the pair with the
larger z.

5. If z,. =z*, select the categorical variable in the interacting pair.

Algorithm 3 (Bootstrap Bias Correction)

1. Create a bootstrap learning sample by copying the values of the
variables and bootstrapping the Y column so that the response
variable is independent of the predictors.

2. Apply Steps 1-5 in Algorithm 2 to the bootstrap sample to get
five sets of z values.

3. Given f > 1, select a numerical variable if f max{z,,z,,} >
max{z., ., Z,.}- Otherwise, select a categorical variable.

4. Repeat Steps 1-3 many times with several values of f. Let
7(f) be the proportion of times that a numerical variable is
selected.

5. Linearly interpolate if necessary to find f* such that 7 (f*)
equals the proportion of numerical variables in the data.

Algorithm 4 (Box-Cox Transformation)

Suppose X is the selected variable. If X is categorical, its values
are first transformed to crimcoord values.

1. Let x(; denote the ith order statistic. Define 6 = 0 if x(;, > 0
and 6 = 2x(;) — x5, otherwise.
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2. Given A, define

P [CEDER S
B log(x—6),

if A0,
if A =0.

3. Let A be the minimizer of
2
>y [xj(.,.)‘) —)Ej(.)‘)] exp { —2n“)\[2210ng,] },
Joi Joi

where x; is the ith value of X in class j and i;-)‘)
class mean of their transformed values.

4. Transform each x value to x™,

is the sample

[Received September 1999. Revised July 2000.]
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