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SUMMARY

A nonparametric regression method that blends key features of
piecewise polynomial quantile regression and tree-structured regres-
sion based on adaptive recursive partitioning of the covariate space is
investigated. Unlike least squares regression trees, which concentrate
on modeling the relationship between the response and the covariates
at the center of the response distribution, our quantile regression trees
can provide insight into the nature of that relationship at the center
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as well as the tails of the response distribution. Our nonparametric re-
gression quantiles have piecewise polynomial forms, where each piece
is obtained by fitting a polynomial quantile regression model to the
data in a terminal node of a binary decision tree. The decision tree
is constructed by recursively partitioning the data based on repeated
analyses of the residuals obtained after model fitting with quantile re-
gression. One advantage of the tree structure is that it provides a
simple summary of the interactions among the covariates. The asymp-
totic behavior of piecewise polynomial quantile regression estimates
and the associated derivative estimates are studied under appropriate
regularity conditions. The methodology is illustrated with an example
on the incidence rates of mumps in the United States.

Keywords: Derivative estimate; GUIDE algorithm; piecewise polyno-
mial estimates; recursive partitioning; tree structured regression; uni-
form asymptotic consistency; Vapnik-Cervonenkis class.

1 Introduction: Motivation for quantile regression

trees

For 0 < α < 1, quantile regression analysis focuses on the conditional α-th
quantile of the response Y given the covariate vector X = (X1,X2, . . . ,Xk).
Unlike usual regression analysis, which focuses only on the conditional mean
(i.e., the “center” of the conditional distribution) of Y given X, quantile re-
gression is capable of providing insight into the center as well as the lower
and upper tails of the conditional distribution of the response with vary-
ing choices of α. As a result, quantile regression is quite effective as a tool
for exploring and modeling the nature of dependence of a response on the
covariates when the covariates have different effects on different parts of
the conditional distribution of the response. Such situations occur in many
econometric problems. For example, a covariate may have very different
types of effect on high, low and middle income groups. This is why quantile
regression has become a popular methodology for the analysis of income data
[see, e.g., Hogg (1975) and Chaudhuri et al. (1997)]. Buchinsky (1994) used
quantile regression to carry out an extensive analysis of changes in the U.S.
wage structure during 1963–87. In marketing studies, where covariates may
have different effects on high, medium and low consumption groups, quan-
tile regression can be useful in understanding the nature of the dependence
between the response and the covariates. Hendricks and Koenker (1992)
used quantile regression to study variations in electricity consumption over
time.
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Let gα(x) denote the conditional α-th quantile of Y given X = x. Many
authors have considered various nonparametric methods for estimating a
smooth quantile function from the data (Y1,X1), (Y2,X2), . . . , (Yn,Xn) [see,
e.g., Cheng (1983, 1984), Janssen and Veraverbeke (1987), Lejeune and
Sarda (1988), Truong (1989), Dabrowska (1992), Fan et al. (1994), Koenker
et al. (1994), Welsh (1996)]. Chaudhuri (1991a, 1991b) studied in detail lo-
cal polynomial estimates of a smooth conditional quantile function and dis-
cussed their asymptotic properties. Such estimates have been subsequently
used by Chaudhuri et al. (1997) in average derivative quantile regression,
which is a useful methodology for nonparametric and semi-parametric mod-
eling. They have demonstrated how local polynomial estimates of a smooth
regression quantile function can be used as an effective device for estimating
the parametric components in semi-parametric models such as monotone
transformation models, projection pursuit models and monotone single in-
dex models that are quite popular in the econometric literature [see, e.g.,
Han (1987), Hardle and Stoker (1989), Newey and Stoker (1993), Powell et
al. (1989), Samarov (1993), and Sherman (1993)].

Tree-structured methods and recursive partitioning algorithms for con-
structing piecewise polynomial estimates using local least squares and lo-
cal maximum likelihood techniques have been studied by Chaudhuri et al.
(1994) and Chaudhuri et al. (1995), who give some arguments in favor of
the methodology [see also Breiman et al. (1984), who consider piecewise con-
stant estimates of regression functions]. Firstly, the decision tree produced
by the data can describe the overall model complexity such as interactions
among the covariates. This allows the polynomial model in each terminal
partition to be kept simple for easy interpretation and analytic study. Sec-
ondly, the adaptive nature of the recursive partitioning algorithm allows for
variation in the degree of smoothing across the covariate space so that the
terminal partitions may have different sizes and contain different numbers
of data points. This helps to cope with heteroscedasticity in the data and
with the variable smoothness of the function being estimated in different
regions of the covariate space.

Piecewise constant median regression trees constructed using least abso-
lute deviations have been considered by Breiman et al. (1984) as a robust
alternative to least squares regression trees. Our goal in this paper is to
combine some fundamental ideas in piecewise polynomial quantile regres-
sion with recursive partitioning and tree structured methods for constructing
nonparametric estimates of conditional quantile functions and their deriva-
tives. We also study the statistical performance of such estimates. Our
quantile regression tree can be an effective exploratory data analytic tool for

3



empirical model building as well as for model checking and diagnostics.
Piecewise polynomial regression tree models have two advantages over

piecewise constant regression tree models. First, the latter trees tend to be
very large and hence hard to interpret. The size of a piecewise polynomial
regression tree, on the other hand, can be altered by changing the form
of the polynomials fitted at the nodes. Second, the greater flexibility of
polynomials over constants often translates to higher estimation accuracy of
the piecewise polynomial tree models.

Another desirable feature of a piecewise polynomial estimate of an un-
known function is that the coefficients of the locally fitted polynomials pro-
vide estimates of the derivatives of that function. This is useful for getting
insight into the shape and the geometry of the unknown function as well as
for statistical estimation of parametric components in semi-parametric mod-
els, where those parametric components arise as some form of average mul-
tidimensional slope (gradient vector) or average Hessian matrix associated
with the unknown function [see, e.g., Hardle and Stoker (1989), Samarov
(1993), and Chaudhuri et al. (1997)].

The rest of the paper is organized as follows. Section 2 describes the
piecewise polynomial estimate of a conditional quantile function and result-
ing derivative estimates. We establish uniform consistency of these estimates
under appropriate regularity conditions. In the case of piecewise constant
estimate of a conditional median function (constructed using least abso-
lute deviations regression tree), asymptotic consistency was conjectured by
Breiman et al. (1984, Sec. 8.11). Our result thus proves and generalizes
their conjecture. Section 3 illustrates the ideas on a data set on mumps.
Appendix A contains the proof of our theorem and Appendix B gives a brief
discussion of the computational algorithm.

2 Description and large-sample performance of quan-

tile regression and derivative estimates

We begin by introducing some notations. We assume that (Y1,X1), (Y2,X2), . . .
, (Yn,Xn) are independent data points, where the response Y is real val-
ued and the regressor X is d-dimensional. Let the conditional α-th quantile
function of Y given X = x be gα(x), which is to be estimated on a subset
C of the d-dimensional Euclidean space based on the data. We denote by
Tn a random partition of C (i.e., C = ∪t∈Tnt) generated by some adap-
tive recursive partitioning algorithm applied to the data. Tn is assumed to
consist of only polyhedrons having at most M faces, where M is a fixed
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positive integer. We also assume that the diameter δ(t) of the set t (i.e.,
δ(t) = sup{|x − z| : x, z ∈ t}) is positive for each t ∈ Tn. Let Xt denote
the average of the Xi’s that belong to t. The conditional quantile function
gα(x) is assumed to be m-th order differentiable (m ≥ 0), and we write its
Taylor expansion around Xt as

gα(x) =
∑

u∈U

(u!)−1{Dugα(Xt)}(x − Xt)
u + rt(x,Xt).

Here U is the collection of all d-tuples of nonnegative integers of the form
u = (u1, u2, . . . , ud) such that [u] ≤ m where we define [u] = u1+u2+. . .+ud.
For u ∈ U , let Du denote the mixed partial differential operator with index
u and define u! =

∏d
i=1 ui!. For x = (x1, x2, . . . , xd), define xu =

∏d
i=1 xui

i

with the convention that 0! = 00 = 1. Let s(U) denote the cardinality of
the set U . For Xi ∈ t, let Γi be the s(U)-dimensional column vector with
components of the form (u!)−1{δ(t)}−[u](Xi − Xt)

u, where u ∈ U . The
s(U) × s(U) matrix

∑
Xi∈t ΓiΓ

T
i will be denoted by Dt. From now on all

vectors in this paper will be column vectors unless otherwise specified, and
the superscript T denotes the transpose of a vector or matrix.

For an s(U)-dimensional vector Θ = (θu)u∈U , define the polynomial
P (x,Θ,Xt) in x as

P (x,Θ,Xt) =
∑

u∈U

θu(u!)−1{δ(t)}−[u](x − Xt)
u.

Let Θ̂
(α)
t be the vector of coefficients of the polynomial fitted to the data

points (Yi,Xi)’s for which Xi ∈ t. That is,

Θ̂
(α)
t = arg min

Θ

∑

Xi∈t

{
|Yi − P (Xi,Θ,Xt)| + (2α − 1)[Yi − P (Xi,Θ,Xt)]

}
.

(1)
For x ∈ t ∈ Tn, our piecewise polynomial estimate of the conditional α-th

quantile function gα(x) is P (x, Θ̂
(α)
t ,Xt).

In a different context, asymptotic properties of kernel weighted local
polynomial regression estimates are discussed in Wand and Jones (1995) and
Fan and Gijbels (1996). Chaudhuri (1991a, 1991b) studied the asymptotics
of local polynomial quantile regression estimates. A major technical barrier
in studying the asymptotic properties of our piecewise polynomial quantile
regression estimates is the complexity caused by the random nature of the
partitions produced by the adaptive and recursive algorithm. In the proofs
given in Appendix A, we use a well-known combinatorial result of Vapnik
and Chervonenkis (1971) to cope with this problem.
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The algorithm we use to analyze data in practice—see Appendix B and
Loh (2002)—yields piecewise polynomial estimates that closely resemble
rectangular kernel weighted local polynomial estimates. The support sets of
these rectangular kernels are generated by our partitioning algorithm. The
rectangular nature of the partition sets is a consequence of the splitting pro-
cedure used at each stage of our algorithm, which is based on a single “best”
variable. This makes the resulting tree and the partition sets easier to in-
terpret and comprehend. Further, the rectangular partition sets facilitate
numerical computation as well as asymptotic analysis. The derivation of
the large sample properties of our piecewise polynomial estimates requires
that our partition sets be polyhedrons with a bounded number of faces, and
clearly rectangles in a d-dimensional space satisfy this requirement.

We now state a few conditions that are required to guarantee consis-
tency of the piecewise polynomial estimates of gα(x) and its derivatives as
the sample size increases. These conditions are related to the asymptotic
behavior of the partition Tn and regressors Xi’s, and they are similar to
some of the conditions assumed in Chaudhuri et al. (1994) and Chaudhuri
et al. (1995).

Condition 1 maxt∈Tn supx∈t{δ(t)}
−m|rt(x,Xt)| → 0 in probability as n →

∞.

Condition 2 Let Nt be the number of Xi’s that lie in t and Nn = min{{δ(t)}2mNt :
t ∈ Tn}. Then log n/Nn → 0 in probability as n → ∞.

Condition 3 Let λt be the smallest eigenvalue of N−1
t Dt and λn = min{λt :

t ∈ Tn}. Then λn remains bounded away from zero in probability as n → ∞.

Condition 1 ensures the asymptotic validity of the polynomial approxi-
mation of the conditional α-th quantile function in each set of the partition
Tn. When max{δ(t) : t ∈ Tn} → 0 in probability as n → ∞ (i.e., when
the sets in the partition Tn shrink with increasing sample size), this con-
dition is automatically satisfied if gα(x) is continuously differentiable in C
up to order m. Condition 2 guarantees that asymptotically there will be
sufficiently many data points in each t ∈ Tn, while Condition 3 ensures that
asymptotically the covariates Xi’s are properly distributed in each t ∈ Tn so
that the optimization problem that arises in piecewise polynomial quantile
regression is sufficiently regular and does not suffer from singularities in the
covariate distributions.

The next condition is about the conditional distribution of the response
Y given the regressor X.
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Condition 4 The conditional distribution of Y given X = x has a density

f(y|x) which remains uniformly bounded and bounded away from zero as x

varies in the set C and y varies in the interval (gα(x) − ǫ, gα(x) + ǫ) for

some fixed ǫ > 0. In other words,

0 < inf
x∈C

inf{f(y|x) : |y − gα(x)| < ǫ}

≤ sup
x∈C

sup{f(y|x) : |y − gα(x)| < ǫ}

< ∞.

With these conditions in hand, we can now state the main result on the
uniform consistency of our piecewise polynomial estimate of the conditional
quantile function and its derivatives on the set C. The proof is given in
Appendix A.

Theorem 1 The minimization problem defining Θ̂
(α)
t has a solution for

each t ∈ Tn. Further, under Conditions 1–4, there exist solutions Θ̂
(α)
t

for all t ∈ Tn such that

max
t∈Tn

sup
x∈t

|DuP (x, Θ̂
(α)
t ,Xt) − Dugα(x)| → 0

in probability for any u ∈ U as n → ∞.

In the special case of piecewise constant median regression trees, asymp-
totic consistency of the estimate of the conditional median function is es-
tablished in Chaudhuri (2000) under appropriate regularity conditions. The
piecewise polynomial estimates of gα(x) and its derivatives may not be con-
tinuous at the boundaries of the sets in the partition. Although we have
not implemented it here, smooth and asymptotically consistent estimates
can be constructed by gluing the polynomial pieces with smooth weighted
averaging as in Chaudhuri et al. (1994, Sec. 3).

It should be noted that the asymptotic result in the Theorem is very
general in nature and is not specific to a particular recursive partitioning
algorithm. Each algorithm will have its own features with respect to splitting
rule, pruning method, cross-validation strategy, etc. Nevertheless, as long
as Conditions 1–3 are satisfied for the partitions generated by the algorithm,
we will have asymptotic convergence of the piecewise polynomial quantile
regression estimates provided that Condition 4 holds for the conditional
distribution of the response given the covariates.
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3 Example: Incidence rates of mumps

We illustrate our method with some data on the incidence of mumps in the 48
contiguous states of the United States (excluding the District of Columbia)
from 1953 to 1989. The data were the focus of a special poster session
sponsored by the Statistical Graphics Section of the American Statistical
Association at its 1991 annual meeting. There are 1523 observations and 3
predictor variables (some states did not report data for some years). The
dependent variable (y) is the natural logarithm of the number of mumps
cases reported per million population in each state (the population figures
are based on the 1970 census). The predictor variables are the year (t, coded
as actual year minus 1900) and the longitude (x) and the latitude (z) of
each state’s center. Longitudes are measured in negative degrees west of the
International Date Line. These data were important to public health officials
in 1991 because there were large outbreaks of the disease between 1986 and
1989, especially in those states that did not require mumps vaccination.
Chaudhuri et al. (1994) applied a least-squares regression tree algorithm
to a subset of the data, fitting the observations in each node with a linear
function in t, x, and z. Their tree was very large with 19 terminal nodes,
indicating the presence of complex spatio-temporal interactions.

To demonstrate the advantages of quantile regression, we will fit 0.1, 0.5,
and 0.9-quantile regression trees to the whole data set. The type of polyno-
mial to be fitted in the nodes is determined by two factors: the complexity
of the tree structure and its mean quantile prediction error as given in equa-
tion (1). Because a highly complex tree is difficult to interpret, simpler
trees are usually preferred. Tree complexity, however, can often be reduced
by increasing the degree of the piecewise polynomials. We will use cross-
validation to estimate the prediction error of a tree model. As in Breiman et
al. (1984), our algorithm first grows an overly large tree and then employs
cross-validation to prune it to the smallest possible size (in terms of number
of terminal nodes) such that its cross-validation error estimate is within one
estimated standard deviation of the minimum.

Using five-fold cross-validation, we found that the estimated error rates
are all very similar for a wide variety of piecewise polynomial tree models.
The tree sizes are, however, very large for polynomials that are piecewise
linear in x, z, and t (the 0.1, 0.5, and 0.9-quantile trees have 15, 39, and
14 terminal nodes). After some experimentation, we found that reasonably
simple tree structures are given by the polynomial

β0 + β1t + β2t
2 + β3t

3 + β4x+ β5x
2 + β6z + β7z

2 + β8tx+ β9tz + β10xz. (2)
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It is second order in x, z, and t and has a cubic term in t. The cubic term is
needed to capture the quick rise and fall in incidence rates in the late 1980s.
(We did not fit a full third-degree polynomial in x, z, and t as this would
require too many parameters to be estimated at each node.)

Figure 1 shows the three trees. The 0.1 and 0.5-quantile trees first split
the U.S. into two geographical regions according to longitude: a western
region consisting of states from Minnesota westward (longitude ≤ −94.6)
and an eastern region for states to its east. The 0.9-quantile tree splits first
on year: if the year is greater than 1981, the branch has only one node,
suggesting that the polynomial model (2) is sufficient for the entire country
during 1982–1989. On the other hand, for years from 1953–1981, the 0.9-
quantile tree splits the country longitudinally in the middle at North Dakota.
The numbers beneath the terminal nodes of the trees give the respective
sample quantiles of log-rates. They show clearly that the incidence of the
disease decreased substantially during the whole time period.

A display of the spatial distribution of the incidence rates as the years
increase is given in Figure 2, which shows bubble plots of the fitted median
incidence rates for four equally-spaced years (states without bubbles did
not report for that year). The rates held constant at least until 1966 but
were significantly reduced by 1977. The state of Wisconsin was among the
hardest hit up through 1977.

The tree diagrams and the bubble plots do not reveal the sharp rise and
fall in incidence rates in the late 1980s. To see this, we plot the data and
fitted quantile values as functions of year for nine representative states in
Figure 3. The rise and fall in rates is now evident, especially for the fitted
0.9-quantile curves. Further, the shapes of the fitted 0.1 and 0.9-quantile
curves indicate that there is a fairly substantial degree of heterogeneity in
the data (the incidence rates are plotted on a log scale), both between states
and over time.

4 Appendix A: Proof of Theorem 1

Before we present the proof of Theorem 1, we state and prove a few pre-
liminary results and introduce some notation. Recall that s(A) denotes the
number of elements of a finite set A. For any subset H of the set of indices
{1, 2, . . . , n} such that s(H) = s(U) ≤ n, we write YH to denote the s(U)-
dimensional vector (Yi)i∈H and ΛH to denote the s(U) × s(U) matrix with
rows ΓT

i , i ∈ H, where the Γi’s are defined in the beginning of Section 2.
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Figure 1: Quantile regression trees for the mumps data using 0.1 (top), 0.5
(bottom left), and 0.9 (bottom right) quantiles. Each node is fitted with
the polynomial (2). The number beneath each terminal node is the sample
Y -quantile.
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1955 1966

1977 1988

Figure 2: Bubble plots of mumps incidence rates for four equally spaced
years. The area of a bubble is proportional to the fitted incidence rate for
that state and year. States that did not report mumps incidence have no
bubbles.
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Figure 3: Observed and fitted values from the 0.1 (dashed), 0.5 (solid), and
0.9 (dash-dot) quantile regression tree models for nine states. The incidence
rate axis is on a log scale.
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Proposition 1 For any fixed 0 < α < 1, the minimization problem

min
Θ

∑

Xi∈t

{
|Yi − P (Xi,Θ,Xt)| + (2α − 1)[Yi − P (Xi,Θ,Xt)]

}

always has a solution. If the matrix Dt =
∑

Xi∈t ΓiΓ
T
i is nonsingular, there

exists at least one set H of s(U) indices such that Xi ∈ t for all i ∈ H, and

Θ̂H = Λ−1
H YH is a solution to this minimization problem. Further, for any

such solution, the s(U)-dimensional vector

ΦH,t = (1/2)
∑

Xi∈t, i6∈H

{
1 − sgn[Yi − P (Xi, Θ̂H ,Xt)] − 2α

}
Γi

lies in the s(U)-dimensional hyper-rectangle [α − 1, α]s(U). In other words,

each real valued coordinate of ΦH,t will be bounded above by α and bounded

below by α − 1.

Proof: First observe that P (Xi,Θ,Xt) = ΓT
i Θ. Therefore we can rewrite

the minimization problem as

min
Θ

∑

Xi∈t

{
|Yi − ΓT

i Θ| + (2α − 1)(Yi − ΓT
i Θ)

}
.

Clearly, any solution for this minimization problem will correspond to an
element in the column space of the matrix whose rows are ΓT

i with Xi ∈ t.
Next notice that for any fixed 0 < α < 1, the function |x| + (2α − 1)x is a
continuous function in x, and it tends to ∞ as |x| → ∞. This implies that
the minimization problem has a solution which corresponds to a point in a
compact subset of the linear space spanned by the columns of that matrix
with rows ΓT

i . The remaining part of the proof now follows in a straight
forward way from Theorems 3.1 and 3.3 of Koenker and Bassett (1978).
Q.E.D.

We note that if Condition 3 is satisfied, the assumption in the Propo-
sition that Dt is nonsingular holds with large probability for each t ∈ Tn

asymptotically.

Proposition 2 Let | . | denote the usual Euclidean norm of vectors and ma-

trices and let F (y|x) be the conditional distribution of Y given X = x. Given

any t ∈ Tn and s(U)-dimensional vector ∆, define the s(U)-dimensional vec-

tor

Ψt(∆) = N−1
t {δ(t)}−m

∑

Xi∈t

[
F

{
ΓT

i ∆ + rt(Xi,Xt) + gα(Xi)
∣∣∣Xi

}
− α

]
Γi.
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Then under Conditions 1–4, mint∈Tn inf{|Ψt(∆)| : |∆| > ξ{δ(t)}m} is bounded

away from zero in probability as n → ∞ for any ξ > 0.

Proof: Let c1 > 0 be a constant depending on s(U) such that |Γi| ≤ c1 for
all 1 ≤ i ≤ n. Then, for any nonzero ∆ and any t ∈ Tn, we have

λn ≤ N−1
t |∆|−2∆TDt∆

= |∆|−2N−1
t

∑

Xi∈t

∆T ΓiΓ
T
i ∆

≤ (λn/2)N−1
t

[
s

{
i : Xi ∈ t, |∆|−1|ΓT

i ∆| ≤ (λn/2)1/2
}]

+ c2
1N

−1
t

[
s

{
i : Xi ∈ t, |∆|−1|ΓT

i ∆| > (λn/2)1/2
}]

≤ (λn/2) + c2
1pn,t,

where pn,t = N−1
t

[
s

{
i : Xi ∈ t, |∆|−1|ΓT

i ∆| > (λn/2)1/2
}]

. This implies

that mint∈Tn pn,t ≥ λn/(2c2
1).

By Condition 4, we can choose a constant c2 > 0 such that c2 ≤ f(y|x)
for all x ∈ C and all y ∈ (gα(x) − ǫ, gα(x) + ǫ). Let

ηn = c2(λn/2)1/2 min
t∈Tn

min
(
ǫ/2, [ξ{δ(t)}m](λn/2)1/2

)

G(t,Xi,∆) =
[
F

{
ΓT

i ∆ + rt(Xi, X̄t) + gα(Xi)
∣∣∣Xi

}

−F
{
rt(Xi,Xt) + gα(Xi)

∣∣∣Xi

}]
|∆|−1(ΓT

i ∆).

Then Conditions 1 and 3 imply that the event

min
t∈Tn

min
Xi∈t

inf{G(t,Xi,∆)/{δ(t)}m : |∆| > ξ{δ(t)}m, |∆|−1|ΓT
i ∆| > (λn/2)1/2} ≥ ηn

occurs with probability tending to one as n → ∞. Also, it is obvious that
G(t,Xi,∆) ≥ 0 for all s(U)-dimensional vectors ∆, t ∈ Tn and Xi ∈ t.

Let us now use Condition 4 again to choose a constant c3 > 0 such that
f(y|x) ≤ c3 for all x ∈ C and all y ∈ (gα(x) − ǫ, gα(x) + ǫ). Then by
Condition 1, the event

max
t∈Tn

max
Xi∈t

sup
|∆|

∣∣F
{
rt(Xi, X̄t) + gα(Xi)

∣∣ Xi

}
− α

∣∣ |∆|−1|ΓT
i ∆| ≤ max

t∈Tn

max
Xi∈t

c1c3rt(Xi,Xt)

occurs with probability tending to one as n → ∞.
Observe that

|Ψt(∆)| ≥ {∆T Ψt(∆)}|∆|−1

= N−1
t {δ(t)}−m {S1(t,∆) + S2(t,∆) + S3(t,∆)} ,
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where

S1(t,∆) =
∑

Xi∈t, |∆|−1|ΓT
i ∆|>(λn/2)1/2

G(t,Xi,∆),

S2(t,∆) =
∑

Xi∈t, |∆|−1|ΓT
i ∆|≤(λn/2)1/2

G(t,Xi,∆),

S3(t,∆) =
∑

Xi∈t

[
F

{
rt(Xi, X̄t) + gα(Xi)

∣∣Xi
}
− α

]
|∆|−1(ΓT

i ∆).

Our previous analysis implies that

max
t∈Tn

sup
∆

N−1
t {δ(t)}−mS3(t,∆) → 0

in probability as n → ∞. Also, S2(t,∆) is non-negative for any t ∈ Tn and
any ∆, and the probability of the event

min
t∈Tn

inf
|∆|>ξ{δ(t)}m

N−1
t {δ(t)}−mS1(t,∆) ≥ ηnλn/(2c2

1)

tends to one as n → ∞. Combining these results, we conclude that the
event

min
t∈Tn

inf{|Ψt(∆)| : |∆| > ξ{δ(t)}m} ≥ ηnλn/(4c2
1)

occurs with probability tending to one as n → ∞. Since ηn and λn are pos-
itive and bounded away from zero in probability as n → ∞, this completes
the proof. Q.E.D.

For any t ∈ Tn, let S(t) denote the collection of sets H such that
H ⊆ {i : Xi ∈ t} and s(H) = s(U). Note that by Condition 2, S(t) is
a non-empty collection for each t ∈ Tn with probability tending to one
as n → ∞. Also, for any such H, let Θ̂H and ΦH,t be as defined in

Proposition 1. Define Θ
(α)
t to be the s(U)-dimensional vector with typical

component {δ(t)}[u](u!)−1Dugα(Xt) for u ∈ U . In other words, gα(Xi) =

ΓT
i Θ

(α)
t + rt(Xi,Xt). Also, for H ∈ S(t), define

ΩH,t(∆) =
∑

Xi∈t, i6∈H

[
F

{
ΓT

i ∆ + rt(Xi,Xt) + gα(Xi)
∣∣∣Xi

}
− α

]
Γi.

Proposition 3 As n → ∞,

max
t∈Tn

max
H∈S(t)

{Nt − s(U)}−1{δ(t)}−m
∣∣∣ΦH,t − ΩH,t(Θ

(α)
t − Θ̂H)

∣∣∣ P
→ 0.
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Proof: Recall that each set in Tn is a polyhedron in d-dimensional Eu-
clidean space having at most M faces. A combinatorial result of Vapnik
and Chervonenkis (1971) [see, e.g., Dudley (1978, Sec. 7)] implies that
there exists a collection V of subsets of the set {X1,X2, . . . ,Xn} such that
s(V) ≤ (2n)M(d+2), and for any polyhedron t with at most M faces, there
is a set t∗ ∈ V with the property that Xi ∈ t if and only if Xi ∈ t∗. For
any ω > 0, let p(ω,X1,X2, . . . ,Xn) denote the conditional probability of
the event

max
t∈Tn

max
H∈S(t)

{Nt − s(U)}−1{δ(t)}−m
∣∣∣ΦH,t − ΩH,t(Θ

(α)
t − Θ̂H)

∣∣∣ > ω

given X1,X2, . . . ,Xn. Observe that for any t∗ ∈ V and H ∈ S(t∗), the

difference ΦH,t∗ − ΩH,t∗(Θ
(α)
t − Θ̂H) is a sum of s(U)-dimensional random

vectors that are conditionally independently distributed and each of them
has conditional mean zero given the Xi’s in t∗ and the Yi’s for which i ∈ H.
It follows from Bernstein’s inequality [see, e.g., Shorack and Wellner (1986)]
that there exist constants c4 > 0 and c5 > 0 such that by Condition 2, the
event

p(ω,X1,X2, . . . ,Xn) ≤ c4(2n)M(d+2)ns(U) exp
(
−c5Nnω2

)

occurs with probability tending to one as n tends to ∞. Since Nn/ log n →
∞ in probability as n → ∞, this completes the proof. Q.E.D.

Proof of Theorem 1: The first assertion made in the statement of the
Theorem follows immediately from Proposition 1. The second assertion will

follow if we can show that maxt∈Tn{δ(t)}
−m|Θ̂

(α)
t − Θ

(α)
t | tends to zero in

probability as n → ∞. Now Proposition 1 implies that for any ξ > 0, the
event

max
t∈Tn

{δ(t)}−m
∣∣∣Θ̂(α)

t − Θ
(α)
t

∣∣∣ > ξ

is contained in the event
⋃

t∈Tn

⋃

H∈S(t)

{ ∣∣∣Θ̂H − Θ
(α)
t

∣∣∣ > ξ{δ(t)}m and ΦH,t ∈ [α − 1, α]s(U)
}

.

The proof now follows from Propositions 2 and 3. Q.E.D.

5 Appendix B: Algorithmic and computational de-

tails

The method used in Section 3 to obtain the quantile regression trees is
an extension of the GUIDE algorithm for piecewise linear least squares re-
gression trees described in Loh (2002). GUIDE differs from regression tree
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algorithms such as CART (Breiman et al., 1984) in many significant ways.
The most important difference is that GUIDE does not use greedy search
to split each node. Greedy search has two undesirable features. First, it
is computationally intensive—for each candidate split of a node into two
subnodes, a quantile regression model is fitted to the data in each subnode.
Since the number of candidate splits increases with the sample size and with
the number of predictor variables, this procedure can be time-consuming to
carry out. The second disadvantage of greedy search is that it is biased
toward selecting variables that have more candidate splits. This problem
was recognized long ago for classification trees (Doyle, 1973; Loh and Shih,
1997) and was confirmed for regression trees in Loh (2002) in simulation
experiments.

To avoid the computational cost and selection bias of greedy search,
GUIDE breaks the split selection procedure into two steps—first it chooses
the variable to split the node and then it chooses the split point (if the
variable takes ordered values) or split set (if the variable takes categorical,
i.e., unordered, values). The entire algorithm is described in detail for least
squares regression in Loh (2002). We briefly summarize the steps in the
context of quantile regression here:

1. fit a quantile regression model to the data in the node using the algo-
rithm in Koenker and D’Orey (1987) and compute the residuals;

2. for each predictor variable, cross-tabulate the signs of the residuals
(positive versus non-positive) against the grouped values of the vari-
able and compute a chi-square p-value;

3. if there are categorical predictor variables, adjust the chi-square p-
values with a bootstrap bias correction;

4. select the variable with the smallest adjusted p-value to split the node;

5. if the selected variable takes ordered values, search for the best split
point for the variable over a grid of 100 empirical q-quantiles with
q = i/101, i = 1, . . . , 100;

6. if the selected variable is categorical, search for the subset of categorical
values that best separates the two groups of signed residuals in terms
of binomial variance.

The bootstrap adjustment is needed to overcome the tendency for the re-
gressor variables (which are used for split selection as well as for fitting the
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quantile regression model in the node) to have larger p-values than the cat-
egorical variables (which are used for split selection only). These steps are
performed recursively to produce an overly large tree, which is pruned to a
smaller size using the cost-complexity pruning algorithm of Breiman et al.
(1984) with five-fold cross-validation.

Much of the computational savings is due to fitting only one quantile
regression model at each node. Further, the use of residuals permits all
kinds of quantile regression models to be fitted. Thus we can fit piecewise-
constant (as in CART), piecewise-linear, or piecewise-polynomial (as in the
mumps example) models.
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Series A 46: 287–302.

Dabrowska, D. (1992). Nonparametric quantile regression with censored
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