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Identification of subgroups with differential treatment effects in randomized tri-
als is attracting much attention. Many methods use regression tree algorithms.
This article addresses 2 important questions arising from the subgroups: how
to ensure that treatment effects in subgroups are not confounded with effects
of prognostic variables and how to determine the statistical significance of
treatment effects in the subgroups. We address the first question by selectively
including linear prognostic effects in the subgroups in a regression tree model.
The second question is more difficult because it falls within the subject of post-
selection inference. We use a bootstrap technique to calibrate normal-theory t
intervals so that their expected coverage probability, averaged over all the sub-
groups in a fitted model, approximates the desired confidence level. It can also
provide simultaneous confidence intervals for all subgroups. The first solution
is implemented in the GUIDE algorithm and is applicable to data with miss-
ing covariate values, 2 or more treatment arms, and outcomes subject to right
censoring. Bootstrap calibration is applicable to any subgroup identification
method; it is not restricted to regression tree models. Two real examples are used
for illustration: a diabetes trial where the outcomes are completely observed but
some covariate values are missing and a breast cancer trial where the outcome
is right censored.
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1 INTRODUCTION

Heterogeneity in patient populations often requires different therapies to be prescribed to different individuals. Precision
medicine seeks to identify patient subgroups, defined by patient characteristics, that exhibit differential treatment effects.
Regression tree methods can find subgroups by recursively partitioning the data.1-6 Being primarily focused on detection
of treatment interaction effects, the partitions typically use predictive variables (variables that interact with the treatment)
instead of prognostic variables (variables that predict the outcome regardless of treatment, such as age and disease stage
at baseline).7 As a result, prognostic variables may be hidden and their effects confounded with treatment effects in the
subgroups. For example, Koch and Schwartz8 warned that “efficacy assessments, as well as the assessment of benefit/risk,
require careful inspection of relevant prognostic subgroups of clinical trials.”

To illustrate, consider a German breast cancer study9 where 686 participants with primary node positive breast can-
cer were randomized to receive hormone therapy or not (horTh, yes, no). The response was recurrence-free survival
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time (8-2659 d; 299 uncensored, 387 censored), and there were 7 predictor variables: age (21-80 y), tsize (tumor size,
3-120 mm), pnodes (number of positive lymph nodes, 1-51), progrec (progesterone receptor status, 0-2380 fmol), estrec
(estrogen receptor status, 0-1144 fmol), menostat (menopausal status, pre/post), and tgrade (tumor grades 1, 2, and 3).
The Kaplan-Meier survival curves in Figure 1 show that, on average, hormone therapy increases recurrence-free survival
time. Treatment remains statistically significant when adjusted for covariates in a proportional hazards model. The P val-
ues in Table 1 reveal, however, that variables tgrade, progrec, and, especially, pnodes are more significant and hence have
strong prognostic effects.

An analysis using the GUIDE10 regression tree method finds that participants in the subgroup defined by “progrec
≤ 21” do not, on average, benefit from treatment.5 Figure 2 shows the regression tree and the Kaplan-Meier curves in
the subgroups (terminal nodes). Confidence intervals of relative risk for therapy versus no therapy, calculated using a
bootstrap method described later, confirm that treatment is not statistically significant at the .05 level for progrec ≤ 21.
As is quite typical, the result does not involve any prognostic variables.

Random treatment assignment ensures that the covariates are approximately balanced with respect to treatment at the
root node of the tree. But the balance is not necessarily maintained at the terminal nodes. The possibility exists that the
observed treatment effect in any terminal node is partly attributable to prognostic effects. A naive way to account for
prognostic effects is to regress them out with a fitted model and use the residuals to find subgroups. This is problematic
in 3 respects. First, it depends on model choice. If the fitted model is linear in the covariates, then only linear prognostic
effects may be removed. Besides, a variable may be prognostic in only one part of the sample space, eg, for males but not
females. Second, the residuals from the fitted model are not independent, which violates the assumption of independent
observations most methods require. Third, residuals may not be readily defined when the outcomes are subject to cen-
soring. One objective of this article is to solve these problems by extending GUIDE to explicitly include linear prognostic
effects within subgroups.

Subgroup analysis, as performed in the past, is known to have reproducibility issues, mainly due to multiple testing that
inflate type 1 error probability (probability of finding a subgroup where none exists). Many recommendations have been
proposed to deal with them, including prespecifying and limiting the number of subgroups, adjusting for multiple testing,
and reporting all subgroups tested.11-16 Given the power of machine learning algorithms to search for subgroups, it does not
make sense to prespecify them simply to enable multiplicity adjustment. Besides, the latter is difficult even for prespecified
subgroups because, as Berger et al17 noted, “it is inherently a multiple testing problem with the complication that test
statistics for subgroups are typically highly dependent, making simple multiplicity corrections such as the Bonferroni
correction too conservative.” A second goal of this article is to extend a bootstrap method of multiplicity adjustment4,18,19
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FIGURE 1 Kaplan-Meier survival curves for all participants in breast cancer data [Colour figure can be viewed at wileyonlinelibrary.com]

TABLE 1 Proportional hazards model fitted to breast cancer data

Variable Coeff P Value Variable Coeff P value

horTh = yes −.3372 8.9e−03 tsize .0078 .0507
age −.0094 .3111 pnodes .0499 1.7e−11
meno = pre −.2673 .1449 progrec −.0022 .0001
tgrade .2803 .0082 estrec .0002 .7084
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FIGURE 2 GUIDE regression tree for breast cancer data. At each intermediate node, a participant goes to the left subnode if and only if
the condition is satisfied. Sample sizes are printed in italics beside nodes, and 95% bootstrap confidence intervals of relative risks for therapy
versus no therapy are printed below nodes [Colour figure can be viewed at wileyonlinelibrary.com]

that is ideally suited for computerized subgroup search: it does not require prespecification of subgroups nor limits on
the number of subgroups examined.

The remainder of this article is organized as follows. Section 2 briefly reviews some previous regression tree algo-
rithms for subgroup identification. Section 3 presents the subgroup identification method, where treatment effects are
adjusted for linear prognostic effects, for data with uncensored outcomes and applies it to data from a diabetes ran-
domized trial. Section 4 describes the bootstrap calibration technique for interval estimation of treatment effects within
subgroups. Section 5 extends the ideas to outcomes subject to censoring and applies them to the breast cancer data. Section
6 concludes the article with some remarks.

2 PREVIOUS REGRESSION TREE METHODS

The first regression tree algorithm, called AID,20 appeared in 1963. It was followed 2 decades later by CART.21 Both algo-
rithms fit piecewise-constant regression models only and search all splits on all variables to minimize the sum of squared
residuals in the constant models fitted to the nodes induced by each split. This strategy gives preferential bias to variables
that allow more splits.10,22-25 Furthermore, being piecewise-constant models, AID and CART are unsuitable for subgroup
identification when there is a treatment variable. Either the variable is chosen to split a node, in which event the treated
participants go to one node and the untreated to the other, or the treatment variable is not selected at all. What is needed
is a method that fits a linear model (linear in treatment effects) in each node. The first algorithm to do this appears to be
that of Negassa et al.26

Let X = (X1,X2, … ,XK) denote a K-dimensional vector of covariate values, and let (U1,X1), (U2,X2), … , (Un,Xn) be
the survival times and covariate vector values of n participants. For participant i, let Si be an independent observation
from some censoring distribution, and let 𝛿i = I(Ui < Si) be the event indicator. The observed data vector of participant i is
(Yi, 𝛿i,Xi), where Yi = min(Ui, Si). Let 𝜆(y, x) denote the hazard function at time y and covariate vector x. The proportional
hazards model postulates that 𝜆(𝑦, x) = 𝜆0(𝑦) exp(𝜂), where 𝜆0(y) is a baseline hazard function independent of x, and
𝜂 = 𝜷

′x is a linear function of the covariates. Assuming that the treatment variable Z takes values 0 and 1, the method
of Negassa et al26 recursively partitions the data in a set t into subsets tL and tR = t − tL. The set tL = {Xj ≤ cj} for
some constant cj if Xj is an ordinal variable; otherwise, tL = {Xj ∈ Aj} for some subset Aj of values of Xj if the latter is
categorical (ie, unordered). The value of cj or Aj is chosen to maximize the Cox partial likelihood ratio statistic for testing
the hypothesis H0: 𝜆(𝑦, x) = 𝜆0t exp(𝛽0zI(x ∈ t)} versus H1: 𝜆(𝑦, x) = 𝜆0t(𝑦) exp{𝛽1zI(x ∈ tL) + exp{𝛽2zI(x ∈ tR)}. The
interaction trees (IT) method6,27 chooses instead the split that minimizes the P value for testing H0: 𝛽3 = 0 in the model
𝜆(𝑦, x) = 𝜆0t(𝑦) exp{𝛽1z + 𝛽2I(x ∈ tL) + 𝛽3zI(x ∈ tL)} fitted to the data in t (note that 𝜆0t(y) is a function of t and y).
The virtual twins (VT) method2 first uses a random forest28 model to estimate the treatment effect for each participant.
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Then it fits a CART tree model to the estimated effects to find the subgroups. The IT and VT are biased toward splitting
on variables that allow more splits.24,25 The SIDES method3,29,30 finds multiple alternative subgroups that yield the most
improvement in a criterion such as P value of treatment effect difference between tL and tR. For each split, the procedure
is repeated on the child node with the larger treatment effect. SIDES uses heuristic and resampling-based adjustments to
control the probability of false discovery. It also uses multiplicity adjustments to reduce selection bias, but its effectiveness
has not been studied. All 3 methods require prior imputation of missing covariate values (a difficult task by itself), and
none extends easily to data with 3 or more treatment arms. For the breast cancer data, neither IT nor SIDES found any
subgroup, and VT is inapplicable to censored responses.

3 UNCENSORED OUTCOMES

The basic GUIDE regression tree algorithm recursively partitions the data and sample space using one predictor variable
at a time. Each node of the tree is split into 2 child nodes such that the total residual sum of squares (or, more generally,
deviance), summed over the 2 child nodes, is minimum. A node is not partitioned if its sample size falls below a prespec-
ified small value or its residual deviance is zero. The resulting tree is pruned to a smaller size using a cross-validation
method similar to that in CART. GUIDE differs from CART, however, in 2 important respects: split selection and node
modeling. Instead of searching all splits on all variables, GUIDE uses significance tests to select the most significant
split variable and then finds the optimal split on the basis of that variable. Besides saving substantial computation, this
approach yields unbiased variable selection. It is this computational advantage that makes fitting a nontrivial model in
each node practical.

Let Y be an uncensored response variable, and let the treatment variable Z take values 1, 2, … ,G. For subgroup
identification, GUIDE fits the treatment-only least-squares model

EY = 𝛽t0 +
G∑

z=2
𝛽tzI(Z = z) (1)

to each node t of the tree.5 Differences (𝛽tL0 − 𝛽tR0) between sibling nodes tL and tR reflect the prognostic effect of the
variable selected to split their parent node. To avoid selection bias, GUIDE uses significance tests to find the best Xj to split
each node t before looking for the best cj or Aj for the selected Xj.10 There are 2 options to find the best Xj.5 One, called
Gs, computes a chi-square test of the data for each treatment level, with the signs of the residuals as rows and the values
of Xj (or discretized values of Xj if the latter is an ordinal variable) as columns. Then it converts each chi-square statistic
into one with a single degree of freedom, sums the single degree of freedom chi-squares over the treatment levels, and
picks the Xj with the largest sum. The second option, called Gi, tests for lack of fit of an additive model fitted to the data
in the node. Specifically, given a candidate split variable X, let V = X if it is categorical; otherwise, if X is ordinal, let V
be the categorical variable obtained by discretizing the X values at the sample quantiles into H groups, where H = 3 or
4, depending on whether the number of observations in the node is less or greater than 30G. If X has missing values, one
group is reserved for missing values. The additive model EY = 𝛽t0 +

∑G
z=2 𝛽tzI(Z = z) +

∑H
v=1 𝛾tvI(V = v) is tested against

the full model EY = 𝜂t0 +
∑G

z=2
∑H

v=1 𝜔tvzI(V = v,Z = z), and the X variable with the smallest lack-of-fit P value is selected
to split the node. We focus on the Gi approach here because it is more sensitive to predictive variables.

Although model 1 accounts for some prognostic effects through the 𝛽t0 parameters, they are limited to the split variables,
which (by design of Gi) tend to be predictive rather than prognostic. This is not a problem if every variable has both
predictive and prognostic effects. But if there are prognostic variables that do not have predictive effects, the prognostic
effects may be confounded with the treatment effects within nodes. In principle, it is straightforward to allow for the
effects of prognostic variables by simply including them as linear predictors in each node. The question is how many
and which, if not all, variables to use. Including all variables is potentially problematic because the sample sizes in the
nodes shrink as they are partitioned. If there are many variables, this will limit the number of splits and thus reduce the
probability of finding subgroups. Our solution is to fit only a single prognostic variable at each node. Specifically, model 1
is replaced by the linear prognostic model

EY = 𝛽t0 + 𝛽t1X (t) +
G∑

z=2
𝛽tzI(Z = z), (2)
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where X(t) is the prognostic variable minimizing the sum of squared residuals in node t. Two obvious advantages of this
approach are execution speed and avoidance of computational difficulties due to multicollinearity in the X variables. A
third is the possibility of graphing the fitted model and data in each subgroup (see below for an example). Although using
only a single linear predictor may seem suboptimal, continued splitting followed by pruning of the nodes will likely result
in the prognostic variables being correlated in the terminal nodes so that inclusion of one with the strongest effect may
be sufficient to account for the effects of the others.

We illustrate this idea on data from a multicenter, randomized double-blind trial on the long-term efficacy and safety of
pioglitazone vs gliclazide in patients with type 2 diabetes mellitus that is inadequately controlled by diet alone31 Gliclazide
increases the amount of insulin produced by the pancreas while pioglitazone is an “insulin sensitizer”; ie, it improves the
ability of the body to use insulin. The trial consisted of 1249 participants between 35 and 75 years old with hemoglobin
A1c (HbA1c) between 7.5% and 11.0% and for whom diet was prescribed for at least 3 months. Each participant was
randomized to a 52-week treatment period consisting of a 16-week forced-titration period to a maximum dose and a
36-week maintenance period at the maximum tolerated dose of the drug. The treatments were 80 mg gliclazide (625
participants), 30 mg pioglitazone (114 participants), and 45 mg pioglitazone (510 participants). Twenty-three baseline
variables were measured for each participant; see Table 2 for their names and numbers of missing values. The response
variable was HbA1c, measured for each participant at −2, 0, 4, 8, 12, 16, 24, 32, 42, and 52 weeks from baseline. For
this illustration, we combine the 30 and 45 mg pioglitazone groups into 1 “pioglitazone” treatment group and take as
the response variable A1C10, the HbA1c value at the 10th observation period (52 wk). This yields a sample size of 1038
participants; see Loh et al4 for an analysis of HbA1c over all time points.

The left side of Figure 3 shows the GUIDE result where a treatment-only model 1 is fitted to each node. It splits first
on FastInsulin; if FastInsulin > 58.69, the tree splits further on A1CBase. The sample size and mean A1C10 are printed
beside each node. Neither IT nor SIDES finds any subgroups. The unpruned IT tree split first on FastInsulin ≤ 58.34,
which is almost the same as that in the GUIDE tree. On the other hand, the initial subgroup found by SIDES before it
failed to be confirmed was {BMI ≤ 25.2,Age > 52,FastBG ≤ 12.8}.

The right side of Figure 3 shows the GUIDE model where a linear prognostic variable is fitted in each node. It is almost
the same as the tree on the left side, the only difference being the split value at node 3. A1CBase is the best prognostic
variable in nodes 2 and 6, and FastBG is the best in node 7. Figure 4 graphs the data and fitted model in the terminal
nodes, with gliclazide and pioglitazone in red and blue colors, respectively. The slope of the parallel lines in each graph
indicates the linear prognostic effect, and the distance between the lines is the estimated treatment effect.

Table 3 shows the regression coefficients, t statistics, and P values in the linear models fitted to the nodes of the tree. The
P values and associated confidence intervals cannot be interpreted at face value, as they are computed assuming that the

TABLE 2 Baseline predictor variables and their numbers of missing values
for 1038 participants in diabetes data with HbA1c at 10 weeks

Variable No. of Miss Variable No. of Miss

HDL 29 Age 0
LDL 129 Weight 0
Total cholesterol 28 BMI 0
Triglycerides 28 Waist 2
Creatinine 1 A1CBase 0
FastInsulin 114 HOMA-S 136
ALT 2 HOMA-IR 136
AST 2 HOMA-B 136
GGT 1 Diastolic blood pressure 0
C-peptide 817 Systolic blood pressure 0
Diabetes duration 0 Pulse 0
FastBG 0

Abbreviations: A1CBase, baseline hemoglobin A1c; ALT, alanine aminotransferase; AST,
aspartate aminotransferase; B, beta cell function; BMI, body mass index; FastBG, fast-
ing blood glucose; FastInsulin, fasting insulin; GGT, 𝛾-glutamyl transpeptidase; HDL,
high-density lipoproteins; HOMA, Homeostasis Model Assessment; IR, insulin resis-
tance; LDL, low-density lipoproteins; S, insulin sensitivity.
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FIGURE 3 GUIDE models without (left) and with (right) linear prognostic control for diabetes data. At each split, an observation goes to
the left branch if and only if the condition is satisfied. The symbol “≤∗” stands for “≤ or missing.” Beside each node are the sample size (in
italics) and mean A1C10. The variable beneath each terminal node in the tree on the right is the best linear predictor [Colour figure can be
viewed at wileyonlinelibrary.com]

6 7 8 9 10 11 12

5
6

7
8

9
10

11

A1CBase

Node  2

6.5 7.0 7.5 8.0 8.5 9.0 9.5

5
6

7
8

9
10

11

A1CBase

Node  6

5 10 15 20

5
6

7
8

9
10

11
FastBGBase

Node  7

G
P

FIGURE 4 Plots of A1C10 vs linear prognostic variable in nodes of tree on right side of Figure 3 [Colour figure can be viewed at
wileyonlinelibrary.com]

TABLE 3 Regression estimates in terminal nodes of tree on
right side of Figure 3a

Unadjusted
Node Regressor Coefficient t Stat P Value

2 A1CBase .4254 8.90 .0000
Treatment.P .3488 3.48 .0006

6 A1CBase .4933 8.23 .0000
Treatment.P −.1298 −1.82 .0692

7 FastBG .1154 3.92 .0001
Treatment.P −.8426 −5.27 .0000

Abbreviations: A1CBase, baseline hemoglobin A1c; FastBG, fasting
blood glucose; Treatment.P, effect of pioglitazone relative to gliclazide.
aA negative value indicates that pioglitazone reduces hemoglobin A1c
more than does gliclazide. The P values in the last column do not take
the search algorithm into account. The bootstrap-calibrated threshold
for .05-level significance is .00275; ie, a treatment effect is statistically
significant at the .05 level if its unadjusted P value is less than .00275.

subgroups are predefined. Therefore, the P values are biased low, and the intervals are too short. Correcting the bias using
Bonferroni corrections is hard,17 because the subgroups change with each replication of the experiment. Instead, Loh
et al4 used a bootstrap method to calibrate the nominal coverage of the confidence intervals. The basic idea of bootstrap
calibration was originally conceived by Loh.18,19 We review it and then extend it to the current problem in the next section.
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4 BOOTSTRAP CALIBRATION

Let F denote the population, and let  denote the data that are assumed to be a random sample from F. Let  be the set
of subgroups (terminal nodes) derived from . Given any t ∈  , let 𝛽 t denote the true treatment effect in t. Clearly, 𝛽 t is
a function of F and . Given a desired value of 𝛼 ∈ (0, 1), we want to construct (1 − 𝛼) confidence intervals, It say, such
that “PF(𝛽 t ∈ It) = 1 − 𝛼 for each t ∈  .” The quoted statement does not make sense of course, because  is not fixed.
Nevertheless, suppose we proceed to construct a standard t interval for the treatment effect in each node t. Let T𝜈,𝛼 denote
the upper-𝛼 quantile of the t distribution with 𝜈 degrees of freedom. Given any ′,  ′, and 𝛼

′ ∈ (0, 1), where  ′ is a set
of subgroups constructed from ′, define

J(′, t′, 𝛼′) = (𝛽t′ − T𝜈t′ ,𝛼
′∕2 �̂�t′ , 𝛽t′ + T𝜈t′ ,𝛼

′∕2 �̂�t′ ), t′ ∈  ′, (3)

where 𝛽t′ and �̂�t′ are the treatment effect estimate and standard error and 𝜈t′ the residual degrees of freedom, computed
from the ′ observations in t′ ∈  ′. The interval J(, t, 𝛼) is just the usual (1 − 𝛼) t interval for the treatment effect in
subgroup t ∈  assuming t is prespecified. It is too short (because 𝛽t may not have a t distribution and �̂�2

t most likely
underestimates the error variance), but the interval may still provide a good approximation if we can widen it by an
appropriate amount, by either increasing �̂�2

t or decreasing the value of 𝛼. The first solution was proposed by Loh et al,5

which replaces �̂�2
t with a bootstrap estimate. Although simulation results reported there show that the resulting intervals

have better coverage probabilities, it is not clear that the bootstrap variance estimates are consistent. We now propose an
alternative solution that keeps the variance estimates unchanged but widens the intervals by decreasing the value of 𝛼.
Besides being more intuitive, its applicability is more general and is not limited to t intervals.

Consider first the hypothetical situation where we know F and can repeatedly draw random samples from it. Let i
denote the ith sample (i = 1, 2, … ,L, for some large integer L). Using the same algorithm that produced  from , obtain
a new set of subgroups i from i. Given 𝛼

′ , apply (3) to the i observations to construct intervals J(i, t∗, 𝛼′) for t∗ ∈ i.
Let 𝛽t∗,F denote the true treatment effect in subgroup t∗ ∈ i computed from F. Let |i| be the number of subgroups in
i and mi be the number of intervals for which 𝛽t∗,F ∈ J(i, t∗, 𝛼′). Define 𝛾i(𝛼′) = mi∕|i| and �̄�(𝛼′) = L−1 ∑L

i=1 𝛾i(𝛼′).
Repeat the whole exercise with different values of 𝛼′ to find 𝛼F such that �̄�(𝛼F) = 1− 𝛼. Now use (3) with ′ = ,  ′ = 
and 𝛼

′ = 𝛼F to construct the calibrated intervals J(, t, 𝛼F) for t ∈  . Then

EF

{||−1
∑
t∈

I(𝛽t,F ∈ J(, t, 𝛼F))

}
= 1 − 𝛼, (4)

where the expectation is over all random samples  from F. That is, the coverage probability of J(, t, 𝛼F), averaged over
the subgroups in the tree model constructed from , has expected value (1−𝛼). If F is unknown, we replace it with F̂, the
empirical distribution of , in the procedure to obtain the bootstrap-calibrated intervals J(, t, 𝛼F̂), where �̄�(𝛼F̂) = 1 − 𝛼.

Algorithm 1 gives the steps formally, including those for bootstrap calibration of simultaneous confidence intervals
(with 𝜃 referring to simultaneous coverage). The values of 𝛼F̂ for the nonsimultaneous and simultaneous intervals are
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FIGURE 5 Coverage of simultaneous (red) and nonsimultaneous (black) intervals of treatment effect with linear prognostic control for
diabetes data, based on 1000 bootstrap iterations [Colour figure can be viewed at wileyonlinelibrary.com]
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linearly interpolated between the pair of 𝛼
′ values whose bootstrap coverage probabilities are just above and below

the desired levels. Figure 5 plots the coverage values, on the basis of 1000 bootstrap iterations, of the nonsimulta-
neous and simultaneous intervals for the diabetes data for a grid of nominal 𝛼 values. The values of 𝛼F̂ for 95%
nonsimultaneous and 90% simultaneous intervals are .00393 and .00035, respectively. Therefore, the unadjusted P val-
ues in Table 3 are statistically significant at the .05 nonsimultaneous and .10 simultaneous levels only if they are
less than .00393 and .00035, respectively. Figure 6 adds bootstrap-calibrated 95% nonsimultaneous and 90% simul-
taneous confidence intervals for the treatment effects to the trees in Figure 3. With 95% nonsimultaneous inter-
vals, treatment is statistically significant in nodes 2 and 7 with and without adjusting for prognostic effects. But
on the basis of 90% simultaneous intervals, treatment is significant in node 7 only after prognostic adjustment.

Wei-Yin Loh


Wei-Yin Loh
correction: gamma should be theta
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FIGURE 6 GUIDE models without (left) and with (right) linear prognostic control for diabetes data. Beside each node are the sample size
(in italics) and mean A1C10. Below each node are 95% nonsimultaneous (top) and 90% simultaneous (bottom) bootstrap-calibrated intervals
for treatment effect (pioglitazone-gliclazide). The best linear prognostic variable is printed below each terminal node in the tree on the right.
Nodes with statistically significant and nonsignificant treatment effects at the 95% nonsimultaneous level are colored green and yellow,
respectively [Colour figure can be viewed at wileyonlinelibrary.com]

5 CENSORED OUTCOMES

If the response variable is subject to right censoring, we fit the proportional hazards model

log𝜆(𝑦, x) = log𝜆0(𝑦) + 𝛽t0 +
G∑

z=2
𝛽tzI(Z = z) (5)

to each node t instead of the linear model 1. The usual proportional hazards model does not have a constant term because
it can be absorbed in 𝜆0(y). Here the 𝛽 t0 term is needed to represent the effect of node t. As a result, 𝜆0(y) is defined only up
to a multiplicative constant, and the 𝛽 t0 values are overparameterized, although their contrasts are well defined. Given a
split by a variable X of a node into child nodes tL and tR, the difference 𝛽tL0 − 𝛽tR0 is a measure of the prognostic effect of X.

Unlike IT and other survival tree methods,6,26 GUIDE uses the same baseline hazard function 𝜆0(y) for all t to ensure
that the model as a whole has proportional hazards:

log𝜆(𝑦, x) = log𝜆0(𝑦) +
∑

t

{
𝛽t0 +

G∑
z=2

𝛽tzI(Z = z)

}
. (6)

This is performed by using Poisson regression to estimate the regression coefficients in model 6 via a well-known con-
nection between the proportional hazard likelihood and the Poisson likelihood.5,32,33 Specifically, let Λ0(𝑦) = ∫ 𝑦

−∞ 𝜆0(u)du
denote the baseline cumulative hazard function. The regression coefficients of the proportional hazards model are
obtained by iteratively fitting a Poisson regression tree34 to the data, using the event indicators 𝛿i as Poisson responses
and logΛ0(𝑦i) as offset variable. At the first iteration, Λ0(yi) is estimated by the Nelson-Aalen method.35,36 Thereafter, the
estimated relative risks of the observations from the tree model are used to update Λ0(yi) for the next iteration (see, eg,
Lawless37, p. 361).

Therefore, in place of model 2, the data in each node are fitted with the Poisson model

logE(𝛿) = logΛ0(𝑦) + 𝛽t0 + 𝛽t1X (t) +
G∑

z=2
𝛽tzI(Z = z). (7)

Selection of a variable X to split each node follows the procedure in Section 3 with least squares replaced by Poisson
regression. In the Gi method, for example, the variable X selected to split a node t is the one with the smallest lack-of-fit
P value in testing the Poisson model logE(𝛿) = logΛ0(𝑦) + 𝛽t0 +

∑G
z=2 𝛽tzI(Z = z) +

∑
v𝛾tvI(V = v) against the full model

logE(𝛿) = logΛ0(𝑦) + 𝜂t0 +
∑G

z=2
∑

v𝜔tvzI(V = v,Z = z), where V is a categorical version of X.
The breast cancer example gives a trivial tree with no splits after pruning when a linear prognostic variable is included

in each node. The best variable to split the root node, if it were split, is estrec. To induce a split, we refit the data with
variable estrec excluded. Now a nontrivial tree is obtained with the 0-SE pruning rule (the 0-SE tree is the one with the
smallest cross-validation estimate of deviance). The result is given in Table 4 and Figure 7, which also shows the tree
model without controlling for linear prognostic effects. The tree structures are almost identical, except a slight difference
in the split points. Variable pnodes is the best linear prognostic variable in both nodes of the tree on the right. Figure 8

http://wileyonlinelibrary.com
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TABLE 4 Regression estimates in terminal nodes of tree on right
side of Figure 7a

Unadjusted
Subgroup Regressor Coefficient t Stat P Value

progrec ≤ 24.5 pnodes .0868 8.35 .0000
horTh.yes −.2092 −1.27 .2063

progrec > 24.5 pnodes .0399 3.61 .0003
horTh.yes −.6433 −3.30 .0011

Abbreviation: horTh.yes, effect of hormone therapy versus no hormone therapy.
aA negative coefficient implies that hormone therapy reduces the hazard rate.
The P values in the last column do not take the search algorithm into account.
The bootstrap-calibrated threshold for .05-level nonsimultaneous significance is
.00989 and that for .10-level simultaneous significance is .00207.

FIGURE 7 GUIDE proportional hazards regression trees for breast cancer data without (left) and with (right) linear prognostic control. At
each split, an observation goes to the left branch if and only if the condition is satisfied. Beside each node is the sample size (in italics). Below
each node are 95% nonsimultaneous (top) and 90% simultaneous (bottom) bootstrap-calibrated intervals of relative risk due to treatment and
the best linear prognostic variable. Nodes with statistically significant and nonsignificant treatment effects at the 95% nonsimultaneous level
are painted green and yellow, respectively [Colour figure can be viewed at wileyonlinelibrary.com]
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FIGURE 8 Coverage of simultaneous (red) and nonsimultaneous (black) intervals of treatment effect with linear prognostic control for
breast cancer data, based on 500 bootstrap iterations [Colour figure can be viewed at wileyonlinelibrary.com]

plots the coverage probabilities of the unadjusted simultaneous and nonsimultaneous intervals (based on 500 bootstraps)
for a grid of 1000 𝛼 values. The bootstrap-calibrated value 𝛼F̂ for 95% nonsimultaneous intervals is .00989 and that for 90%
simultaneous intervals is .00207. The respective bootstrap-calibrated intervals of relative risk due to treatment are given
beneath each node of the tree in Figure 7. Treatment remains significant after allowing for the prognostic effect of pnodes
in the subgroup where progrec > 24.5.

A simulation experiment was performed to check the coverage probability of the bootstrap-calibrated intervals for the
breast cancer data. To maximize the relevance of the simulation to the real data, the latter were used as the true (discrete)
population in the simulation, which was performed as follows.

1. Draw a simple random sample with replacement from the real data.

http://wileyonlinelibrary.com
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TABLE 5 Simulated coverage probabilities (SEs in parentheses) of 95%
nonsimultaneous and 90% simultaneous intervals for treatment effect with linear
prognostic control, using breast cancer data as simulation populationa

95% Nonsimultaneous 90% Simultaneous

Uncalibrated t interval .875 (.010) …
Bootstrap calibrated interval .939 (.008) .890 (.010)

aResults based on 1000 simulation trials, 100 bootstraps per trial, and a calibration grid of 1000
equally spaced 𝛼 values over the interval (1∕20000, 1∕20).

2. Construct a GUIDE tree model with linear prognostic control on the sampled data.
3. Use Algorithm 1 to construct bootstrap-calibrated 90% simultaneous and 95% nonsimultaneous intervals for the

treatment effect in each subgroup of the model with 100 bootstrap iterations and an 𝛼-grid of 1000 equally spaced
values over the interval (1∕20000, 1∕20).

4. Use the real (population) data to estimate the true treatment effect in each subgroup.
5. Find the proportion of intervals that contains the true values.
6. Repeat the above steps 1000 times to obtain the simulated coverage probabilities of the bootstrap intervals.

Table 5 shows the results together with those of the uncalibrated intervals and the simulation standard errors. The aver-
age coverage of the uncalibrated 95% nonsimultaneous intervals is about .875 while that of the calibrated intervals is about
.939 (the latter is within 2 simulation standard errors of .950). Similarly, the coverage of the calibrated 90% simultaneous
intervals is .890, which is 1 simulation standard error from the target of .90. The average values of the bootstrap-calibrated
𝛼F̂ over the 1000 simulation trials are .0187 and .0078 for the nonsimultaneous and simultaneous intervals, respectively.

6 CONCLUSION

We pursued 2 main ideas in this article. The first is a flexible and nonparametric way to explicitly allow for the effects of
prognostic variables in the search and identification of subgroups. Regressing out the linear effects of prognostic variables
before searching for subgroups is undesirable for many reasons, the most important being: (1) the residuals after removing
linear prognostic effects are not independent, which violates a common assumption of subgroup search algorithms; (2) it
may not be easy to identify the prognostic variables, because a variable may be both prognostic and predictive; and (3) the
effect of a prognostic variable may not be linear or uniform throughout the sample space. The last point is demonstrated
by the diabetes example, where different variables are prognostic in different parts of the sample space.

Although we used only 1 linear prognostic predictor in each node here, it is theoretically permissible (and possibly
preferable) to allow more than 1 or all potentially prognostic variables. Using all prognostic variables (ie, fitting a multiple
linear model in each node) necessarily makes the tree shorter, because each node must contain correspondingly more
observations. This problem can be avoided by using stepwise regression or a regularization method such as LASSO,38 at
the cost of greater computation time. Whether the additional expense yields increased precision in subgroup selection
and treatment effect estimation is left for future research.

The second main idea here is postselection inference. Until now, this is performed in a post hoc fashion, with the focus
being control of type 1 error probability, by either prespecification of subgroups or intricate multiplicity adjustments.
In theory, subgroup prespecification should not be necessary; the investigator should not be prevented from analyzing
subgroups revealed by the data. Prespecification is only necessary to enable multiplicity correction.

Bootstrap calibration is an alternative to multiplicity adjustment. Unlike Bonferroni-type corrections that often require
careful mathematical analysis, calibration is fully automatic. All that is needed is repeated application of the search
algorithm on bootstrap samples of the data. It is crucial that the algorithm (but not the subgroups) remain the same for
all bootstrap samples. This does not preclude human expert-guided ad hoc search, but it is unrealistic to expect an expert
to repeatedly and independently analyze large numbers of bootstrap data sets. Therefore, calibration is best done with a
computer search algorithm (Dmitrienko et al39 used “principled” and “disciplined” to describe algorithmic search).

Asymptotic validity of bootstrap calibration for a regression tree model depends on 3 assumptions: (1) the empirical
distribution F̂ converges to the true distribution F, (2) the coverage probability of the confidence intervals is a smooth
function of F, and (3) the partitions of the tree converge, as the sample size increases. The first assumption, convergence
of F̂ to F, is necessary for any reasonable method to work. While it may be possible to construct counterexamples where
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the second (“smoothness”) assumption is violated, we expect that it is satisfied in real applications. The third assumption
can be satisfied by setting a minimum threshold on the proportion of training samples in each terminal node, to prevent
the tree structure from growing without bound.34,40

Permutation tests have been used to control type 1 error probability in subgroup search. They are fundamentally dif-
ferent and less versatile than bootstrap calibration is. In the former, synthetic data sets are generated from the real data
by randomly permuting the treatment labels to simulate the null hypothesis of no treatment effect. The search algorithm
is applied to each synthetic data set, and the fraction of them that yield subgroups is obtained. If the fraction exceeds a
given 𝛼 level, the real data are deemed to contain no subgroups. Although this approach controls the type 1 error proba-
bility, it has low power if the treatment effect is positive in one subgroup and negative in another. A variant that permutes
treatment-outcome pairs instead of only treatment labels essentially tests the null hypothesis of neither treatment nor
prognostic effects.3 Permutation tests are particularly hard to conceive for assessing significance of treatment effects after
adjustment for linear prognostic effects in subgroups. Our bootstrap calibration approach goes beyond controlling type 1
error probability—it gives confidence intervals for treatments effects in the subgroups.

The linear prognostic adjustment method described here is implemented in the GUIDE software, which may be
obtained from www.stat.wisc.edu/~loh/guide.html.
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