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Abstract

A nonparametric function1 estimation method called SUPPORT (“Smoothed and

Unsmoothed Piecewise-Polynomial Regression Trees”) is described. The estimate is

typically made up of several pieces, each piece being obtained by fitting a polynomial

regression to the observations in a subregion of the data space. Partitioning is car-

ried out recursively as in a tree-structured method. If the estimate is required to be

smooth, the polynomial pieces may be glued together by means of weighted averaging.

The smoothed estimate is thus obtained in three steps. In the first step, the regressor

space is recursively partitioned until the data in each piece are adequately fitted by a

polynomial of a fixed order. Partitioning is guided by analysis of the distributions of

residuals and cross-validation estimates of prediction mean square error. In the sec-

ond step, the data within a neighborhood of each partition are fitted by a polynomial.

The final estimate of the regression function is obtained by averaging the polynomial

pieces, using smooth weight functions each of which diminishes rapidly to zero outside

its associated partition. Estimates of derivatives of the regression function may be
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obtained by similar averaging of the derivatives of the polynomial pieces. The advan-

tages of the proposed estimate are that it possesses a smooth analytic form, is as many

times differentiable as the family of weight functions are, and has a decision tree repre-

sentation. The asymptotic properties of the smoothed and unsmoothed estimates are

explored under appropriate regularity conditions. Examples comparing the accuracy

of SUPPORT to other methods are given.

Key words and phrases: Consistency, cross-validation, nonparametric regression,

recursive partitioning, smooth partition of unity, tree-structured regression.

1 Introduction

In regression analysis, we typically have n observations on a response variable Y and a vector

of K regressors X = (X1, . . . , XK). The response is assumed to depend on the regressors

through the relationship Y = g(X) + ε, where ε is a “noise” component in the model that

is assumed to be random with conditional mean zero given any X. The aim of a regression

analysis is to find an estimate ĝ(X) of g(X) that minimizes a certain loss function (e.g.,

squared error loss).

Sometimes it may be appropriate to assume that g has a special form, such as

g(X) = β0 +
K∑

k=1

βkhk(Xk), (1)

where the functions h1(X1), . . . , hK(XK) are known but the coefficients βk’s are not. This is

an example of a parametric regression problem, so called because (1) contains only a fixed

number of unknown parameters and the number does not change with the sample size n.

Nonparametric regression analysis generalizes the parametric formulation by making weaker

assumptions on g. Techniques for obtaining estimates of g, when it is a smooth function of its

arguments, include B-splines and smoothing splines (de Boor (1978); Eubank (1988); Ramsay

(1988); Wahba (1990)), kernel smoothers (Gasser and Muller (1979); Gasser and Muller

(1984); Nadarya (1964); Rosenblatt (1971); Watson (1964)), and locally weighted regression

(Cleveland and Devlin (1988)). Other approaches approximate g with a sum of smooth
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functions, e.g., projection-pursuit regression (Friedman and Stuetzle (1981)), generalized

additive models (Buja, Hastie and Tibshirani (1989); Hastie and Tibshirani (1990); Stone

(1985)), and PIMPLE (Breiman (1991)).

In a different direction, attempts have been made to estimate g by recursively partitioning

the data and the regressor space, without requiring that the estimate be smooth everywhere.

Techniques that yield piecewise constant estimates of g are implemented in the AID (Sonquist

(1970)) and the CART (Breiman, Friedman, Olshen and Stone (1984)) regression programs,

and those that yield piecewise linear estimates are reported in Breiman and Meisel (1976)

and Friedman (1979). These methods have the disadvantage of yielding estimates that are

discontinuous. On the other hand, they possess two big advantages that other methods do

not have:

1. The decision tree created by recursive partitioning can provide useful information about

the regressor variables.

2. The estimated surfaces in each node are simple and functionally explicit (being con-

stants or linear models) and hence are easy to comprehend.

The MARS method of Friedman (1991) produces continuous function estimates by combining

spline fitting with recursive partitioning, using the latter to choose the knots. The cost

of obtaining continuity is the increased difficulty in interpreting models that are sums of

products of splines. Another difficulty is that, because of their complexity, the statistical

properties of the MARS estimate are very hard to study analytically.

The main purpose of this paper is to introduce a new method of tree-structured regression

called SUPPORT (“Smoothed and Unsmoothed Piecewise-Polynomial Regression Trees”)

and compare its prediction mean square error (PMSE) with those of other methods. In

addition, we show how the function estimate can be made smooth, thereby overcoming one

of the biggest drawbacks of the earlier tree-structured methods. Our technique provides

estimates of various derivatives of the unknown regression function as well. The proposed

method is built on three principles:

1. Use of polynomial models to fit each subset.
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2. Use of a new recursive partitioning algorithm (Huang (1989)) to generate contiguous

subsets of the regressor space.

3. Use of weighted averaging to combine the piecewise-polynomial regression estimates

into a single smooth one (see O’Sullivan (1991) for a similar suggestion for smoothing

CART).

The recursive partitioning algorithm is designed to mimic the likely strategies of a human

data analyst. The chief areas in which it differs from CART are as follows.

1. Whereas CART fits a constant to each node, SUPPORT fits linear (or polynomial) re-

gression models. This makes the SUPPORT trees shorter (often substantially shorter)

than the CART trees. This is important because the interpretability of a tree di-

minishes rapidly with the number of levels. For example, consider a data set that is

generated by a linear model with one or more nonzero slope coefficients. CART will

produce a tree with the number of levels increasing without bounds as the sample

size increases. If there are more than two regressors, it is very difficult to infer the

underlying simple structure from such trees. The use of linear or polynomial fits also

provides another benefit, namely, estimates of the derivatives of the function.

2. Unlike CART, which obtains a regression tree by backwards “pruning” of an overly

large tree, SUPPORT uses a cross-validatory multi-step look-ahead stopping rule to

determine tree size. This is not necessarily faster, but it is more natural because it

resembles what one might do when independent test samples are available. It does

not appear to be any less effective than pruning. (See Breiman and Meisel (1976) and

Friedman (1979) for earlier versions of one-step look-ahead using random splits.)

3. CART chooses its splits based on the degree of reduction in residual sum of squares

(RSS). SUPPORT selects its splits by analysis of the distributions of the residuals. The

rationale is that if a fitted model is unsatisfactory, the lack of fit would be reflected in

the distributional pattern of the residuals. (See Loh (1991) and Ahn and Loh (1994)

for extensions of this idea to regression modeling of censored survival data.)
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The regression tree algorithm is motivated and described in the next section. The method

of weighted averaging is explained in Section 3. Section 4 gives examples to demonstrate the

relative strengths of SUPPORT compared to other methods. The number of regressors in

these examples range from two to sixteen. Two very attractive features of our method are

that the estimates work quite well for large and complex data sets, and they have simple

technical forms (being piecewise-polynomials). The latter allows us to study their large

sample behavior theoretically in section 5. The last section concludes the paper with some

remarks.

2 The recursive partitioning algorithm

2.1 Motivation and description

An ideal goal of recursive partitioning regression is to find a regression tree of minimal size

and smallest PMSE. The problem is how to measure the true PMSE of a given tree. If a

very large independent test set is available, the PMSE of a tree can be accurately estimated

from the test sample. In the absence of an independent test set, the next best thing seems to

be cross-validation estimation of PMSE using the same data (called the “learning sample”)

that is used to construct the function estimate.

Because there is usually an error associated with cross-validation, we search for a tree

whose estimated PMSE is not reduced by more than a user-specified fraction (f) through

splitting of its terminal nodes. In deciding whether a node should be split, it is not enough

to determine the change in PMSE after just one split. If the regression function is like a sine-

wave with many cycles, for example, it may take several splits of a node before substantial

reductions are realized. This means that some form of “looking ahead” is needed. We

accomplish this by employing “local” cross-validation at each node. That is, before labeling

a node t as terminal, we divide the data in the node into V cross-validation samples. For each

combination of (V − 1) parts, a nested sequence of trees is constructed and the remaining

part is used to determine if any of the trees in the sequence report a fractional reduction

of PMSE greater than f . If the proportion of times out of V when the latter event occurs
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exceeds a pre-assigned threshold level (η), the node t is split.

Split selection is achieved by computing the residuals from a linear model fitted to the

node and comparing the distributions of the two subsamples associated with the positive

and negative residuals along each regressor coordinate. The motivation for this is that the

distributions should not be very different if the fit is adequate. Comparison is made via tests

of sample mean and sample variance differences, with the variable giving the most significant

test statistic chosen to split the node. The cut-point is the average of the two sample means.

If a quadratic term in Xk is lacking from the model, for example, the difference between the

sample variances of the positive and negative residuals along the kth coordinate will be large

and would be detected by a test of variance homogeneity (Levene (1960)). This technique

was used effectively for classification and survival data modeling in Loh and Vanichsetakul

(1988), Loh (1991) and Ahn and Loh (1994).

There are four “tuning parameters” that need to be set in order to execute this part of our

algorithm, namely, f , η, V and MINDAT. The latter is the minimum sample size below which

a node would not be split. Because sibling subnodes tend to have roughly equal sample sizes,

we usually choose MINDAT to be greater than twice the number of regression coefficients

fitted in each subnode. We find that the values V = 10 and f = η = 0.2 are generally quite

suitable. Given any choice of values for these parameters, the SUPPORT computer program

can provide a cross-validation estimate of PMSE for the associated regression tree. Our

approach in each of the examples involving real data is to search over a grid of parameter

values and choose the tree that possesses the smallest cross-validation estimate of PMSE.

2.2 Algorithmic details

We now present the technical details of the algorithm. Let the ith data vector be denoted

by (yi, xi1, . . . , xiK) and let t0 denote the root node of the tree.

2.2.1 Split selection

A split of a node t has the form Xk ≤ or Xk > ak. Choices of k and ak are made as follows.
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1. Model fitting. A linear regression model is fitted to the cases in t. If t contains fewer

cases than there are regressors, a constant is fitted.

2. Residuals. Each case associated with a nonnegative residual is tagged as “class 1” and

each case associated with a negative residual is tagged as “class 2.” Let Ij denote the

number of class j cases in the node.

3. Tests for means and variances. Let x̄·kj and s2
kj denote the mean and the variance of

the Xk data values in t that belong to class j, and let s2
k· denote the pooled variance

estimate. Defining zikj = |xikj−x̄·kj |, let z̄·kj and w2
kj denote the mean and the variance,

respectively, of the z’s. Compute the following two test statistics:

(a) Test for difference in means

t
(1)
k = (x̄·k1 − x̄·k2)

/
sk·

√
I−1
1 + I−1

2 , k = 1, . . . , K;

(b) Test for difference in variances (Levene, 1960)

t
(2)
k = (z̄·k1 − z̄·k2)

/
wk·

√
I−1
1 + I−1

2 , k = 1, . . . , K.

These tests are intended to be sensitive to differences in the two group means and

variances, respectively. For example, if the regression function is convex in the node,

the group associated with the nonnegative residuals will tend to have larger variance

than the group with the negative residuals. Let α′
k be the smaller of the two P -values

associated with these two statistics obtained from the Student’s t-distribution with

(I1 + I2 − 2) degrees of freedom.

4. Variable selection. Let k0 be the smallest value of k such that α′
k0

= mink α
′
k and define

α(t) = α′
k0

(2)

to be the smallest P -value for node t. The node is split into two subnodes along

Xk0 = ak0 , where ak = (x̄·k1 + x̄·k2)/2 is the average of the two class means.
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2.2.2 Stopping rule

The decision to split a node or not is made through cross-validation. Let L(t) denote the

learning sample in node t. The cases in L(t) are randomly divided into V roughly equal parts,

L1, . . . ,LV , say (we omit reference to t because it is constant in the present discussion). The

following process is repeated for each v = 1, . . . , V :

1. A large regression tree Tv (where the sample size in each terminal node is not greater

than MINDAT) is constructed for the cases in L(v) = L−Lv. Each intermediate node

t′ of Tv has a smallest P -value α(t′) according to the definition (2). Suppose that there

are s(v) such distinct P -values. Adjoin the numbers 0 and 1 to this set and denote

them in sorted order by {β0, . . . , βs(v)+1}, with β0 = 0 and βs(v)+1 = 1.

2. Compute γi = (βi + βi+1)/2, for i = 1, . . . , s(v).

3. Let Tv,i be the subtree obtained by removing the subnodes of all those nodes t′ for

which α(t′) > γi. Because γi is decreasing in i, this yields a nested sequence of subtrees

Tv,1 ≺ . . . ≺ Tv,s(v) = Tv.

4. Let ξ(v, i) denote the estimate of the PMSE of Tv,i obtained by running the test sample

Lv through it. Let f (0 < f < 1) be a user-controlled parameter.

(a) Set i = 1.

(b) If ξ(v, i) < (1 − f)ξ(v, 1), set θ(v) = 1 and exit.

(c) Otherwise increment i by 1.

i. If i ≤ s(v), go to step 4b.

ii. Else, set θ(v) = 0.

The purpose of these steps is to determine if there is a nontrivial tree, obtained by

splitting the root node t∗ of Tv with a substantially smaller (as defined by f) PMSE

than that of the trivial tree consisting of t∗ itself.

8



Once the values of {θ(1), . . . , θ(V )} are obtained, define their average θ̄ = V −1 ∑V
v=1 θ(v).

This measures the frequency with which the best cross-validation trees are nontrivial. Let η

(0 < η < 1) be a pre-selected threshold frequency.

• If θ̄ > η, the node t is split and the procedure is applied recursively to its children

nodes.

• Otherwise, t is declared to be a terminal node.

3 Smoothing by weighted averaging

Although the prediction error of the piecewise-polynomial estimate is typically very good

(see Huang (1989) and the examples below), it lacks continuity. If the true function is contin-

uous, a continuous estimate would be desirable. One way to produce a continuous estimate

is by averaging the polynomial pieces. First note that each polynomial is well-defined and

continuous (in fact, infinitely differentiable) not only on the subset of the regressor space over

which it is constructed, but over the whole space. Therefore if we use smooth weight func-

tions in the average, where each weight function drops rapidly to zero outside its associated

partition, a smooth estimate will result.

Specifically, let τ > 0 be a small number. For each partition t (corresponding to a

terminal node of a tree), let tτ be a set containing t such that the volume of tτ is equal

to (1 + τ)K times that of t. (Since t is typically a Cartesian product of intervals, a simple

way to do this is to let tτ be the corresponding Cartesian product with each side lengthened

proportionately.) Suppose that ĝt(X) is a polynomial fitted to the data in t (or to the data

in tτ if that is preferred). Clearly, ĝt(X) is well-defined over the entire regressor space. Let

H(X, t) be a bounded nonnegative smooth function associated with t such that H(X, t) > 0

for X ∈ t and is equal to 0 if X is outside tτ . Define W (X, t) = H(X, t)/
∑

sH(X , s).

Then the weighted average

g∗(X) =
∑

t

W (X , t)ĝt(X),

which is defined on the entire regressor space in view of the extended definition of ĝt(X),

is a smooth estimate that is as many times differentiable as the weight functions are. In
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Figure 1: Weight functions (3) with a = 0 and b = 1. The solid and dashed curves are for
τ = 0.25 and 0.35 respectively.

the case that K = 1 and t = (a, b), for example, one possibility is to take d = τ(b − a),

tτ = (a− d, b+ d) and set

H(x, t) = [1 − {x− (a+ b)/2}2{(b− a)/2 + δ}−2]p+1I(x ∈ tτ ),

which is p-times differentiable. An example of an infinitely differentiable weight function is

H(x, t) = exp{−d(|x− a+ d|−1 + |x− b− d|−1)}I(x ∈ tτ ). (3)

The latter is graphed in Figure 1 for two values of τ .

This technique generalizes naturally to higher dimensions by defining the weight functions

as products of univariate weights. The estimate tends to be smoother if piecewise-quadratic

or cubic fits are used instead of piecewise-linear fits. This is consistent with the well-known

nice properties of cubic splines used in data smoothing. The main disadvantages in using
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high-order polynomials are greater difficulty in interpreting the coefficients and shorter tree

structures than sometimes desired.

The same method can be used to estimate the derivatives of the function. Instead of

averaging the piecewise-polynomial fits, we average their derivatives. Suppose that the

function g is continuously differentiable with derivatives up to order m ≥ 0 on an open set A

that covers the range of the X i’s (the 0-th order derivative of a function is the function itself

and any continuous function by definition has a continuous 0-th derivative). We write U to

denote the collection of all vectors u = (u1, u2, . . . , uK) with nonnegative integer coordinates

such that [u] = u1 +u2 + . . .+uK ≤ m. For u ∈ U , we denote by Du the partial differential

operator ∂[u]/∂xu1
1 ∂x

u2
2 . . . ∂xuK

K operating on g. If Duĝt(X) denotes the uth derivative of

ĝt(X) w.r.t. X, the uth derivative of g(X) may be estimated by

∑
t

W (X, t)Duĝt(X). (4)

Our experience suggests that the values τ = 0.25 or 0.35 are usually quite good. Adaptive

selection of τ can be based on cross-validation error estimation.

4 Examples

Three examples are given in this section to illustrate the method. The first uses simulated

data with two covariates, so that the results may be presented in 3-D perspective plots.

The other two examples involve real data with three and sixteen covariates. For these two

examples, we randomly divide the data into two subsets, one to serve as learning sample

and the other as test sample. We use the tuning parameter values that minimize the ten-

fold cross-validation estimate of PMSE in each case. Although the results are by no means

definitive, the examples are indicative of

1. the predictive accuracy of the method,

2. the sensitivity of the tree structures to choice of tuning parameter values,

3. the robustness of the tree structures against perturbations in the data, and
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4. the effect of outliers on prediction error.

4.1 Simulated data: 100 learning cases and 2 regressors

The regression function in this example is the bivariate normal density function over the

range X1, X2 ∈ (−1, 1). Data were simulated over an equally spaced grid of 100 points

according to the formula

Y = exp{−(X2
1 +X2

2 )/2} + 0.2Z

where Z is a standard normal variate representing the noise. The true function and the data

are plotted in the first row of Figure 2. (There is an inevitable small amount of smoothing in

the plots because of the interpolative nature of all 3-D graphing programs). Because of the

amount of noise in the data, the concave nature of the true function is hard to detect from

the data plot. Using piecewise linear fits with parameter values f = η = 0.2 and 10-fold

cross-validation, our recursive partitioning algorithm partitioned the sample space into eight

rectangles. The plots in the second row of Figure 2 show two smoothed estimates obtained

by weighted averaging of quadratic polynomials (without cross-product terms) fitted to each

partition. The weight function (3) was used. The concavity of the true surface is recovered

quite satisfactorily.

4.2 Mumps data: 600 learning cases and 3 regressors

In the following example, we analyze some data on the incidence of mumps in each of the

48 contiguous states of the U.S. (excluding the District of Columbia) from 1953 to 1989.

The data on number of mumps cases reported come from the statlib archive at Carnegie-

Mellon University. There are 1523 observations on four variables. The dependent variable

(Y ) is the natural logarithm of the number of mumps cases reported per million population

in each state. Because we could not get the state populations for every year, we use the

1970 census figures from the states database in the S (Becker, Chambers and Wilks (1988))

statistics package. The regressor variables are year (coded as actual year minus 1900) and

the longitude and latitude of each state’s center (the latter also obtained from S ). Longitudes
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True function Data

Tau = 0.25 Tau = 0.35

Figure 2: Simulated data example. The upper left figure shows the true regression function
and the upper right the data. The two lower figures show the smooth estimates with τ = 0.25
and 0.35. First degree polynomials were used to determine the partitions and piecewise-
quadratic fits were averaged to give the final estimates.
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Table 1: Coefficients from a linear regression of log-rates of mumps on Year, Latitude and
Longitude; R2 = 60.8%; residual standard deviation = 1.338 with 596 degrees of freedom.

Variable Coefficient S.E. t-ratio
Constant 13.1025 0.6970 18.8
Year -0.154420 0.0052 -29.7
Latitude 0.071007 0.0123 5.77
Longitude -0.001640 0.0037 -0.447

are measured in negative degrees west of the International Date Line. Our goal is to model

the spatial and temporal features in the data using piecewise-linear models. The 1523 cases

are randomly divided (using the MINITAB software) into a learning sample of 600 cases and

a test sample of 923.

Table 1 shows the results of an ordinary least squares (OLS) fit of the learning sample.

Year is highly statistically significant, followed by Latitude. The test-sample estimate of

PMSE based on the 923 independent observations is 1.956.

Using a MINDAT value of 30, 10-fold cross-validation estimates of PMSE are obtained

over a square grid of f and η values from 0.1 through 0.5, with increments of 0.1. The

estimates are minimized at (f, η) = (0.1, 0.3). A minimum test-sample estimate of 1.32 is

also attained at the same values of f and η. Figure 3 shows the piecewise-linear regression

tree. Sample means and sizes are given beneath each terminal node. Since the major splits

are on Year, it is easily seen from the node means that rate of incidence of mumps has in

general decreased rapidly over time.

Figure 4 shows the minimum cross-validation CART tree (called the “0-SE” tree in

Breiman et al. (1984)). Its test-sample estimate of PMSE is 1.29. CART’s default “1-SE”

tree is shorter, with 15 terminal nodes, but its test-sample PMSE of 1.51 is worse. It is not

easy to compare the SUPPORT and CART trees, except that SUPPORT is shorter and both

trees split on Year first. Notice, however, that CART has a tendency to split a node into one

large and one small subnode (Breiman et al. (1984) calls this “end-cut” preference), especially

when there are outliers. This feature often produces very small terminal nodes (e.g., sample

size 2 or 3) and big jumps in the function estimates. The SUPPORT method tends to prefer

“middle-cuts,” where the subnodes are roughly equal in size. Table 2 summarizes the test-
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Figure 3: Piecewise-linear SUPPORT tree for log-rates of mumps based on 600 learning
cases with f = 0.1, η = 0.3 and MINDAT = 30. The number in each node is the sample
mean of the lograte per million population. Terminal node sample sizes are given in italics.
The test-sample estimate of PMSE based on 923 test cases is 1.32.
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Figure 4: CART tree for mumps data based on the 0-SE rule. Nodes marked with asterisks
are not split under the 1-SE rule. The number in each node is the sample mean of the
lograte per million population. Terminal node sample sizes are given in italics. The test-
sample estimates of PMSE are 1.29 and 1.51 for the 0-SE and 1-SE rules, respectively.
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Table 2: Test-sample estimates of PMSE for mumps data. OLS denotes the ordinary least
squares fit. The SUPPORT result is based on piecewise-linear fits without smoothing. The
CART, MARS and PIMPLE results are obtained with their default tuning parameter values.

Method OLS SUPPORT CART CART MARS PIMPLE
0-SE 1-SE

PMSE 1.96 1.32 1.29 1.51 1.46 1.38

sample estimates of PMSE of the methods, including the MARS and PIMPLE (Breiman

(1991)) methods. They show that OLS is the worst. The CART and SUPPORT programs

took 128 and 118 seconds, respectively, on a SUN 3/280 workstation to analyze this data

set.

4.3 Baseball data: 132 learning cases and 16 regressors

Our next example is more challenging, because the data are very sparse—132 cases in 17

dimensions. In addition, there are a couple of extreme outliers that have a dominating effect

on the PMSE of the various function estimates. The data consist of information on the 1987

salaries and 16 other characteristics of 263 baseball hitters (the data file is also obtainable

from the statlib archive). We take the dependent variable to be the natural logarithm of

salary in thousands of dollars. As before, the data set was randomly divided into two parts,

with 132 cases in the learning sample and 131 cases in the test sample. The regressor names

and their regression coefficients from an OLS fit to the learning sample are given in the first

three columns of Table 3. The R2 value is quite low (62.8%) and no indication of lack of fit

was evident from residual plots. Only Years and WalkC are significant, with the first having

a positive coefficient and the second a negative coefficient.

The piecewise-linear SUPPORT tree is shown on the left of Figure 5. The same tree was

obtained for all combinations of MINDAT = 40, 50 and f, η = 0.1, 0.2, . . . , 0.4. The linear

regression results for the two terminal nodes of the tree are given in the last four columns

of Table 3. The variable Years is the only significant regressor in the right node. It is also

significant in the left node, although two other regressors (Runs86 and RunbatC) are equally

significant. The value of R2 is increased substantially in one of the nodes and the residual
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Table 3: Estimated coefficients and t-ratios from linear regressions of log(salary) on 16
regressor variables for the root node and subnodes of the SUPPORT tree for the baseball
data. Coefficients with absolute t-ratios greater than 2 are shown in italics.

All years Years ≤ 7 Years > 7
Abbrev. Regressor description Coeff t Coeff t Coeff t

Constant 4.0729 18.1 4.2451 20.8 6.4355 15.5
Tab86 #Times at bat in 1986 -0.0009 -0.5 -0.0001 -0.0 -0.0000 -0.0
Hits86 #Hits in 1986 0.0058 0.9 -0.0083 -1.2 0.0047 0.5
Home86 #Home runs in 1986 -0.0185 -1.1 -0.0189 -0.9 -0.0352 -1.6
Runs86 #Runs in 1986 0.0043 0.6 0.0239 2.7 0.0004 0.0
Runbat86 #Runs batted in in 1986 0.0091 1.3 0.0037 0.4 0.0107 1.3
Walk86 #Walks in 1986 0.0058 1.2 -0.0068 -1.1 -0.0016 -0.2
Years #Years in major leagues 0.0772 2.3 0.1107 2.5 -0.1331 -3.1
TabC #Times at bat during career 0.0006 1.7 0.0002 0.2 0.0001 0.3
HitsC #Hits during career -0.0031 -1.8 -0.0017 -0.4 -0.0004 -0.3
HomeC #Home runs during career -0.0043 -1.0 -0.0070 -0.9 -0.0015 -0.4
RunsC #Runs during career 0.0035 1.7 0.0004 0.1 0.0010 0.6
RunbatC #Runs batted in during career 0.0012 0.7 0.0077 2.4 0.0011 0.8
WalkC #Walks during career -0.0019 -2.2 0.0015 0.7 0.0001 0.1
Putout86 #Put outs in 1986 0.0002 0.7 -0.0004 -1.7 0.0001 0.4
Asst86 #Assists in 1986 -0.0005 -0.7 -0.0006 -0.8 -0.0006 -0.7
Err86 #Errors in 1986 0.0052 0.4 0.0048 0.4 0.0015 0.1
#Cases 132 82 50
R2 62.8% 84.3% 69.4%
Resid. SD 0.59 0.39 0.41
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Figure 5: The tree on the left is the SUPPORT tree for the baseball player salary data
constructed from the learning sample with f = η = 0.3 and MINDAT = 40. The 0-SE
CART tree is on the right. The node with an asterisk is not split under the 1-SE rule. The
number in each node is the sample mean of log(salary). Terminal node sample sizes are given
in italics. The test-sample estimates of PMSE are 0.37 for SUPPORT and 0.42 and 0.49 for
the 0-SE and 1-SE CART trees, respectively.
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standard deviation is reduced by thirty percent as a result of the split. Residual plots for

both nodes are satisfactory. The fact that the signs for the Years coefficient are opposite for

the two nodes suggests that Salary depends in a crucial way on this regressor.

In view of the sign-change in the Years variable in the subnodes, it may be thought that

the addition of square terms to the ordinary regression model would produce a model com-

petitive with the piecewise-linear one. The 32-term quadratic model does have an improved

R2 value of 85.6%, but it also has nine coefficients significant (absolute t-ratios greater than

3), thus making it harder to interpret. Further, its test-sample estimate of PMSE of 0.48

is larger than that of the piecewise-linear model because of two test cases that are badly

predicted by the quadratic model.

The CART tree is shown on the right of Figure 5. The 0-SE tree has three terminal

nodes and the 1-SE tree two terminal nodes. We observe that neither of the two variables

(RunsC and RunbatC) appearing in the splits were found significant in the OLS fit to the

whole learning sample. The SUPPORT tree, in contrast, splits on Years, the most important

variable (as suggested by linear regression analysis as well as our knowledge of the sport).

To check if this result is a fluke or not, we repeated the analysis switching the roles of the

test sample and the learning sample. Using MINDAT = 40, SUPPORT produced the same

minimum cross-validation tree at (f, η) = (0.2, 0.4), (0.2, 0.5), (0.3, 0.2), (0.3, 0.3), (0.3, 0.4),

and (0.4, 0.2). It is displayed on the left of Figure 6 and has the same structure as before.

The minimum cross-validation CART tree on the right, however, looks quite different. The

estimates of PMSE using the original learning sample as test cases were the same for CART

and SUPPORT.

Finally, we combined the learning and test samples together to make one big learning

sample and obtained the trees in Figure 7. The cross-validation estimate of PMSE of the

SUPPORT tree was minimized at (f, η) = (0.1, 0.4). The increase in data causes the SUP-

PORT tree to have one more split, with the first split the same as before. The CART tree

has the same first split as that in Figure 6, although the other splits are quite different.

The relative instability of CART compared to SUPPORT is perhaps due to a fundamental

difference between the two split selection strategies. CART selects the split that minimizes a

weighted sum of the variances of its two subnodes, with the weights being the subnode sample
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Figure 6: Regression trees for the baseball player salary data constructed using the 131 test
cases as learning sample. The SUPPORT tree on the left is similar to the one in Figure 5.
The tree on the right is obtained with CART’s 0-SE rule; the node with an asterisk is not
split under the 1-SE rule. The number in each node is the sample mean of log(salary). Node
sample sizes are given in italics.
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Figure 7: Regression trees for the baseball player salary data constructed using all 263 cases
(learning and test samples combined). The SUPPORT tree is on the left and the 0-SE CART
tree is on the right (the 1-SE tree is the same). The number in each node is the sample mean
of log(salary). The sample size is given in italics beneath each terminal node.
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Table 4: Test-sample estimates of PMSE for baseball player salary data based on 131 test
samples. Function estimates are based on 132 learning samples. The piecewise-linear regres-
sion method with MINDAT equal to 40 or 50 gives the same tree.

Method Linear Quadratic SUPPORT CART CART MARS PIMPLE
Regression Regression 0-SE 1-SE

PMSE 0.53 0.48 0.37 0.42 0.49 0.36 7.7

sizes. Because the pool of candidate splits is often very large (approximately 131×16 = 2096

in the present example), the selected split can sometimes be highly affected by small local

variations in the data values. On the other hand, SUPPORT picks the variable whose residual

plot is most curved, as measured by Levene’s test. Once this variable is chosen, the cut-point

is fixed—it is the average of the means, along the selected variable axis, of two samples defined

via the residuals. This means that a total of only 16 splits are considered in the present

example. Another consequence of the difference in strategies is that SUPPORT tends to

produce “middle-cuts” (where the sample sizes of the subnodes are roughly equal) whereas

CART sometimes prefers “end-cuts” (unbalanced sample sizes in its subnodes) especially

when outliers are present. The CART and SUPPORT programs took 85 and 50 seconds,

respectively, on a SUN 3/280 workstation to analyze this data set.

Table 4 gives the various test-sample estimates of PMSE. The PIMPLE method is the

worst. Repeating the analysis with different random partitions of the data into learning

and test samples did not produce any significant improvement in the test-sample estimate

of PMSE for PIMPLE.

5 Large-sample results

We now investigate the large-sample behavior of the piecewise-polynomial and the smooth

estimates. Let (Y1,X1), (Y2,X2), ..., (Yn,Xn) be n independent observations forming the

learning sample. Here the Yi’s are real-valued random variables and the X i’s take their

values in the K-dimensional Euclidean space RK . The X i’s may be random or deterministic

depending on the situation. Let C be a compact (closed and bounded) set with a nonempty

interior contained in the range of the X i’s. We want to estimate the function g over C.

21



Let Tn be a “cover” (possibly random) of C based on the learning sample. That is, Tn is a

collection of subsets of the regressor space such that C = ∪t∈Tnt. Note that Tn may or may

not be a partition (some of the sets in Tn may have nonempty intersections). For example,

the recursive partitioning algorithm will yield a collection of disjoint sets, but if we work

with extended nodes (e.g., tτ with τ > 0 as discussed in Section 3 and demonstrated in

Example 4.1), we get overlapping sets. We will assume that any set in Tn is a polyhedron

in RK having at most M faces, where M is a fixed positive integer (Breiman et al. (1984,

page 319)). For t ∈ Tn, we write δ(t) to denote the diameter of t defined as the supremum

of all possible values of |x − y| as x and y vary over the set t. We define |Tn|, the norm of

the collection Tn, as |Tn| = maxt∈Tn δ(t).

For any t ∈ Tn, let Nt and X̄ t denote the number and the average of the X i’s that belong

to t. So, Nt = #{Xi|X i ∈ t} and X̄ t = N−1
t

∑
Xi∈t X i. Assuming that the regression

function g(x) = E(Y |X = x) is mth order differentiable (m ≥ 0), the Taylor expansion of

g around X̄t is given as

g(x) =
∑
u∈U

(u!)−1Dug(X̄ t)(x − X̄ t)
u + rt(x, X̄ t).

Here rt(x, X̄ t) is the remainder term and, for u ∈ U and x ∈ RK , we define u! =
∏K

i=1 ui!

and xu =
∏K

i=1 x
ui
i with the convention that 0! = 00 = 1. Let s(U) = #(U) and β = (bu)u∈U

be a vector of dimension s(U). We write P (x,β, X̄ t) to denote the polynomial (in x)

P (x,β, X̄ t) =
∑
u∈U

bu(u!)−1{δ(t)}−[u](x − X̄ t)
u.

Let ĝn denote the estimate of g constructed from the learning sample by piecewise-polynomial

least squares fit. In other words, ĝn is obtained by fitting polynomials to different subsets

(corresponding to different sets in the collection Tn) of the learning sample by solving the

following minimization problem for every t ∈ Tn:

Minimize
∑
Xi∈t

{Yi − P (X i,β, X̄ t)}2 with respect to β ∈ Rs(U). (5)
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So, if β̂t is a solution to (5), we have ĝn(x) = P (x, β̂t, X̄ t) for any x ∈ t. Further, we can

use DuP (x, β̂t, X̄ t) as an estimate of Dug(x) for u ∈ U and x ∈ t. If the sets in Tn are

overlapping, x may belong to more than one of the sets in Tn. In that case one can use a

simple and convenient rule (e.g., average of different values) so that ĝn and various derivative

estimates are well defined.

At this point, we state a set of sufficient conditions that guarantee a very desirable

asymptotic property of the piecewise-polynomial estimate of the regression function and the

associated derivative estimates. In practice, the behavior of the estimates will largely depend

on the choice of the tuning parameters (e.g., f and η). Nevertheless, the following technical

conditions and the theorems provide useful insights into the large-sample properties of the

proposed estimates.

For X i ∈ t, let Γi be the s(U)-dimensional column vector with components given by

(u!)−1{δ(t)}−[u](X i − X̄ t)
u, where u ∈ U . We denote by Dt the s(U) × s(U) matrix

defined as
∑
Xi∈t ΓiΓ

T
i , where T indicates transpose. Then, it is obvious that whenever Dt

is nonsingular, β̂t = D−1
t

∑
Xi∈t ΓiYi.

Condition (a): maxt∈Tn supx∈t{δ(t)}−m|rt(x, X̄ t)| P→ 0 as n→ ∞.

Condition (b): Let Gn = mint∈Tn{δ(t)}2mNt. Then Gn/ log n
P→ ∞ as n→ ∞.

Condition (c): Let λt be the smallest eigenvalue of N−1
t Dt and λn = mint∈Tn λt. Then λn

remains bounded away from 0 in probability as n→ ∞.

Condition (d): Let ψ(a|x) = E(ea|Y −g(x)||X = x). Then there is a > 0 such that ψ(a|x)

is bounded on C.

Theorem 1 Suppose that conditions (a) through (d) hold. Then for every u ∈ U ,

max
t∈Tn

sup
x∈t

|DuP (x, β̂t, X̄ t) −Dug(x)| P→ 0 as n→ ∞.

The theorem is proved in the Appendix. Note that, because of the smoothness assump-

tions on g, Condition (a) will be satisfied whenever |Tn| P→ 0 as n→ ∞ (cf. condition (12.9)

in Breiman et al. (1984), and the assumptions in their Theorem 12.13). On the other hand,
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it is not necessary that |Tn| P→ 0 in order for Condition (a) to be satisfied. For example, if

g(x) is a polynomial or very close to a polynomial in x over certain regions of the regressor

space, then some of the sets in the collection Tn may not shrink in size as n increases. Note

also that Condition (d), which is a moment condition imposed on the random error ε, is

the same as condition (12.12) of Breiman et al. (1984). Condition (b) ensures that there

will be sufficiently many data points in each terminal node as the total sample size grows.

Condition (c) is needed because we are fitting a polynomial to the data points corresponding

to each set in Tn instead of the histogram-type piecewise constant estimate of Breiman et

al. (1984). It guarantees that in a large sample, each of the matrices Dt’s for t ∈ Tn will be

nonsingular with high probability.

The theorem asserts that our preliminary estimates of the regression function and its

various derivatives are consistent provided Conditions (a) through (d) hold. However, these

preliminary estimates are not smooth everywhere because they are piecewise-polynomials.

The following theorem, which is an immediate consequence of the theorem above, asserts

that if we use an appropriately chosen “smooth partition of unity” (see, e.g., Rudin (1973))

on C to smooth our preliminary estimates, we get smooth and consistent estimates for the

regression function and its derivatives.

Theorem 2 For n ≥ 1, let T ∗
n be a partition (possibly random) that refines the collection

Tn (i.e., for any t∗ ∈ T ∗
n , there is a t ∈ Tn such that t∗ ⊆ t), and let {Wn(x, t∗)}t∗∈T ∗

n
be a

collection of smooth nonnegative functions on C with the following properties.

1.
∑

t∗∈T ∗
n
Wn(x, t∗) = 1 for all x ∈ C and n ≥ 1.

2. For any x ∈ C, let Sn(x) be the union of the sets t∗ ∈ T ∗
n such that Wn(x, t∗) > 0,

i.e., Sn(x) = {y|y ∈ t∗ and Wn(x, t∗) > 0}. Let |Sn(x)| denote the diameter of this

set. Then x ∈ Sn(x) and sup
x∈C |Sn(x)| P→ 0 as n→ ∞.

Let ĝt∗ be the piece of ĝn that is defined on t∗ ∈ T ∗
n . So, ĝt∗(x) = ĝn(x) if x ∈ t∗. We

extend ĝt∗ on the entire RK space using its natural smooth extension. Define Dug∗n(x) =
∑

t∗∈T ∗
n
Wn(x, t∗)Duĝt∗(x), where x ∈ C, and assume that Conditions (a) through (d) hold.

Then, for every u ∈ U , sup
x∈C |Dug∗n(x) −Dug(x)| P→ 0 as n→ ∞.

24



The proof follows immediately from Theorem 1, conditions (1) and (2) of the theorem,

and the smoothness of g on the compact set C. Note that a collection of functions Wn(x, t∗)

satisfying conditions (1) and (2) of the theorem exists in all the situations that typically

arise in practice. For example, if C is a rectangle in RK and T ∗
n is a collection of rectangles,

one can easily construct such collections using B-splines (see, e.g., de Boor (1978, Chapter

9)) or tensor products of B-splines whenever |T ∗
n | P→ 0 as n→ ∞. For a general theorem on

the existence of a “locally finite and smooth partition of unity” on an arbitrary domain, see

Chapter 6 of Rudin (1973). As we have noted before, if the collection Tn is obtained via a

recursive partitioning algorithm, |Tn| may not converge to 0 in probability as n increases in

some cases. However, one can construct T ∗
n from Tn by splitting each of the “big” sets in Tn

into smaller ones, keeping ĝn unchanged.

6 Concluding remarks

The motivation for this research was to find new techniques for tree-structured regression

and to compare them with CART and some recent spline-based methods. Along the way,

the following specific goals became apparent and solutions were found for them.

1. Use of piecewise-polynomial fits instead of piecewise-constant fits. This has two im-

portant advantages. First, a piecewise-polynomial tree typically has fewer splits than

its piecewise-constant counterpart. This aids interpretation. Second, the vast accumu-

lated pool of knowledge and experience with ordinary linear regression can be used to

advantage in the analysis of piecewise-linear regression trees.

2. Substitution of CART’s intensive search method of split selection with a faster method

based on residual analysis. As shown in the last example, our solution tends to choose

variables that are more indicative of global trends. It also yields tree structures that

are more robust against small perturbations in the data.

3. Replacement of CART’s cross-validation pruning with a more natural multi-step look-

ahead stopping rule. Direct stopping rules have been criticized in the literature for

good reason, because they have traditionally been too naive. By endowing a direct

25



stopping rule with multi-step look-ahead and the power of cross-validation, we believe

that we have found a viable alternative.

4. Simple and efficient smoothing of the piecewise-polynomial estimate. Many real appli-

cations require smooth estimates because the true regression function is known to be

smooth. Our search for a solution had to overcome two constraints. First, because re-

cursive partitioning methods are already compute-intensive, the additional smoothing

must be done in an inexpensive way. Second, the properties of the smoothed estimate

should be easy to analyze. The method of weighted averaging achieves these goals. An

unexpected additional benefit is the use of weighted averages of the derivatives of the

piecewise-polynomials to estimate the corresponding derivatives of the function.

5. Asymptotic consistency of our estimate. Although the results reported here are quite

general and do not specifically apply to a particular tree-structured regression proce-

dure, they do extend our understanding of the types of situations in which SUPPORT

would yield reasonable results. The main difficulty lies in our currently incomplete

understanding of the properties of the cross-validatory techniques used in SUPPORT.

It is interesting to note from the examples that, as far as PMSE is concerned, the SUP-

PORT method is competitive against modern and well-regarded non-tree regression methods

such as MARS and PIMPLE. The main practical advantages of SUPPORT are: (i) its so-

lutions can be represented as decision trees, and (ii) the piecewise estimates have familiar

forms, such as linear or quadratic polynomials. Analytic tractability of the large-sample

properties of the estimates is another advantage not shared by MARS or PIMPLE.

The FORTRAN code for the SUPPORT program may be obtained from W.-Y. Loh.
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Appendix

Proof of Theorem 1

Observe that the assertion in the Theorem will follow if we can show that as n→ ∞,

max
t∈Tn

{δ(t)}−m|β̂t − ∆(X̄ t)| P→ 0,

where ∆(X̄t) denotes the s(U)-dimensional vector whose components are Dug(X̄ t){δ(t)}[u]

with u ∈ U . Condition (c) ensures that, with probability tending to 1 as n → ∞, the

matrices Dt’s for t ∈ Tn are all nonsingular. Hence, writing Yi = g(X i) + εi so that

E(εi|X i) = 0, we have

β̂t = D−1
t

∑
Xi∈t

ΓiYi

= D−1
t

∑
Xi∈t

Γig(X i) +D−1
t

∑
Xi∈t

Γiεi, (6)

for all t ∈ Tn on a set that has probability tending to 1 as n → ∞. By straightforward

algebra using the Taylor expansion of g around X̄ t, we can rewrite (6) as

β̂t − ∆(X̄ t) = D−1
t

∑
Xi∈t

Γirt(X i, X̄ t) +D−1
t

∑
i∈t

Γiεi.

Denote by Bt the first term and by Vt the second term on the right above. The term Bt

can be thought of as a “bias” term due to the polynomial approximation of the function

g inside the set t, and the term Vt as the “variance” term caused by the random noise εi.

Such a decomposition is typical and arises quite naturally in almost every nonparametric

regression analysis (see, e.g., Stone (1980, 1982)). From Conditions (a) and (c), we conclude

that maxt∈Tn |{δ(t)}−mBt| P→ 0 as n→ ∞.

Note that εi is a random variable whose conditional mean given X i is 0 and that

Condition (d) implies the existence of constants k1 > 0 and r > 0 such that ψ(w|x) ≤
2 exp{k1w

2/2} for all x ∈ C and 0 ≤ w ≤ r (see the arguments at the beginning of Lemma

12.27 in Breiman et al., (1984)). Let us now pretend that t is a fixed non-random poly-
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hedron in RK , all the data points X i’s that fall in t are a set of fixed deterministic points

in C, and the corresponding εi’s form a set of independent random variables such that the

distribution of εi is the same as the conditional distribution of εi given X i in the original

sample. Then, an application of Lemma 12.26 in Breiman et al. (1984) to each component

of the s(U)-dimensional vector {δ(t)}−mN−1
t

∑
Xi∈t Γiεi implies that there exist constants

k2 > 0, k3 > 0 and ω0 > 0 (which depend only on the compact set C, the integer s(U) and

the constant k1) such that

Pr


{δ(t)}−m|N−1

t

∑
Xi∈t

Γiεi| > ω


 ≤ k2 exp{−k3{δ(t)}2mNtω

2},

whenever ω ≤ ω0. Finally, using arguments that are essentially identical to those in the

proof of Lemma 12.27 in Breiman et al. (1984), by exploiting Conditions (b) and (c) and

the fundamental combinatorial result of Vapnik and Chervonenkis (1971) (see the proof of

Lemma 12.23 in Breiman et al. (1984, page 330)), we conclude that maxt∈Tn |{δ(t)}−mVt| P→ 0

as n→ ∞.
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