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Abstract. We explain how to compute clustering accuracy in general k
clusters in Matlab.

Let yi be the true classification label for the i-th data. Let ŷi be the estimate
of yi we determined from classification algorithms. Let y = (y1, · · · , yn) and
ŷ = (ŷ1, · · · , ŷn). The classification accuracy A(y, ŷ) is given by

A(ŷ, y) =
1

n

n∑
i=1

1(ŷ 6= y),

where 1 is the indicator function.
In clustering, there is no direct association between true clustering labels and

predicted cluster labels. Given k clusters C1, · · · , Ck, its permutation π(C1), · · · ,
π(Ck) is also a valid cluster for π ∈ Sk, the permutation group of order k. Suppose
[1 1 2 1 1 3 3] is the estimated cluster labels when the true labels are [1 1 1 2 2 3
3]. Then any permutation of estimated cluster labels such as [ 2 2 1 2 2 3 3] and
[ 3 3 1 3 3 2 2] are other valid cluster labels. There are k! possible permutations
in Sk (Chung et al. 2019). Thus the clustering accuracy is modified as

A(ŷ, y) =
1

n
max
π∈Sk

n∑
i=1

1(π(ŷ) 6= y).

This a modification to assignment problem can be solved using Hungarian algo-
rithm in O(k3) run time (Edmonds & Karp 1972).

In Matlab, it can be solved using confusionmat.m, which tabulates misclus-
tering errors between the true cluster labels and predicted cluster labels. The
confusion matrix C(ŷ, y) is a matrix of size k× k tabulating the correct number
of clustering in each cluster. The diagonal entries show the correct number of
clustering while the off-diagonal entries show the incorrect number of clusters.
In Matlab, it can be computed using confusionmat.m:

ytrue = [ 1 1 1 2 2 3 3]

ypred = [ 1 1 2 1 1 3 3]

C = confusionmat(ypred, ytrue)

C =
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2 2 0

1 0 0

0 0 2

Alternately, we can compute the confusion matrix by simply counting the
number of correct clustering:

C=zeros(k);

n=length(ytrue);

for i=1:n

C(ypred(i),ytrue(i))=C(ypred(i),ytrue(i))+1;

end

To compute the clustering accuracy, we need to sum the diagonal entries. But
the above matrix C is one possible confusion matrix. Under the permutation of
cluster labels, we can get different confusion matrices. For large k, it is prohibitive
expensive to search for all permutations. Thus we need to maximize the sum of
diagonals of the confusion matrix under permutation with weight C = (cij):

1

n
max
Q∈Sk

tr(QC) =
1

n
max
Q∈Sk

∑
i,j

qijcij ,

where Q = (qij) is the permutation matrix consisting of entries 0 and 1 such
that there is exactly single 1 in each row and each column. This is a linear
sum assignment problem (LSAP), a special case of linear assignment problem
(Bougleux & Brun 2016). LSAP is solved using matchpairs.m in Matlab (Duff
& Koster 2001):

M=matchpairs(C, 0, ’max’);

M =

2 1

1 2

3 3

accuracy = sum(C(sub2ind(size(C), M(:,1), M(:,2))))/n

accuracy=

0.7143
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