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Abstract: There is a lack of a unified statistical modeling framework for cerebral
shape asymmetry analysis in the literature. Most previous approaches start with
flipping the 3D magnetic resonance images (MRI). The anatomical correspondence
across the hemispheres is then established by registering the original image to the
flipped image. A difference of an anatomical index between these two images is used
as a measure of cerebral asymmetry. We present a radically different asymmetry
analysis that utilizes a novel weighted spherical harmonic representation of cortical
surfaces. The weighted spherical harmonic representation is a surface smoothing
technique given explicitly as a weighted linear combination of spherical harmon-
ics. This new representation is used to parameterize cortical surfaces, establish the
hemispheric correspondence, and normalize cortical surfaces in a unified mathemat-
ical framework. The methodology has been applied in characterizing the cortical

asymmetry of a group of autistic subjects.
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1. Introduction

Previous neuroanatomical studies have shown left occipital and rigtht frontal lobe
asymmetry, and left planum temporal asymmetry in normal controls (Barrick
et al. (2005), Kennedy et al. (1999)). These studies mainly flip the whole brain
3D MRI to obtain the mirror reflected MRI with respect to the mid-saggital
cross-section. Then the anatomical correspondence across the hemispheres is
established and a subsequent statistical analysis is performed at each voxel in the
3D MRI. Although this approach is sufficient for the voxel-based morphometry

(Ashburner and Friston (2000)), where we only need an approximate alignment of



corresponding brain substructures, it may fail to properly align highly convoluted
sulcal and gyral foldings of gray matter. In order to address this shortcoming
inherent in 3D whole brain volume asymmetry analysis, we need a new 2D cortical
surface based framework.

The human cerebral cortex has the topology of a 2D highly convoluted grey
matter shell with an average thickness of 3mm. The outer boundary of the shell
is called the outer cortical surface while the inner boundary is called the inner
cortical surface. Cortical surfaces are segmented from magnetic resonance images
(MRI) using a deformable surface algorithm and represented as a triangle mesh
consisting of more than 40,000 vertices and 80,000 triangle elements (MacDonald
et al. (2000), Chung et al. (2003)) (Figure 1). We assume cortical surfaces to
be smooth 2D Riemannian manifolds topologically equivalent to a unit sphere
(Davatzikos and Bryan (1995)). A sample outer surface can be downloaded
from http://www.stat.wisc.edu/~mchung/softwares/hk/hk.html. The detailed
explanation on reading data, visualization and simple manipulation in MATLAB
are given in the web link. The triangle mesh format contains information about
vertex indices, the Cartesian coordinates of the vertices and the connectivity that
tells which three vertices form a triangle. For any type of cortical surface mesh,
if V' is the number of vertices, E is the number of edges, and F' is the number
of faces or triangles in the mesh, the Euler characteristic x of the mesh should
be constant, i.e. x =V — E + F = 2. Note that for each triangle, there are
three edges. Since two adjacent triangles share the same edge, the total number
of edges is E = 3F/2. Hence, the relationship between the number of vertices
and the triangles is F' = 2V — 4. In the sample surface, we have 40,962 vertices
and 81,920 triangles.

Once we obtain the both outer and inner cortical surfaces of a subject, cor-
tical thickness, which is the distance between the outer and inner surfaces, is
computed at each vertices of the outer surface (MacDonald et al. (2000)). Since
different clinical populations are expected to show different patterns of cortical
thickness variations, cortical thickness has been used as a quantitative index for
characterizing a clinical population (Chung et al. (2005)). Cortical thickness
varies locally by region and is likely to be influenced by aging, development and

disease (Barta et al. (2005)). By analyzing how cortical thickness differs locally
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Figure 1. Left: The triangle mesh representation of the part of an outer cortical surface.
The cortical thickness is measured at the vertices of the mesh. Right: Parameterization
of cortical surface using the spherical coordinate system; the north and south poles are
chosen in the plane, i.e. ug = 0, that separates the left and the right hemispheres.

in a clinical population with respect to a normal population, neuroscientists can
locate the regions of abnormal anatomical differences in the clinical population.
Cortical thickness serves as a metric of interest in performing 2D cortical asym-
metry analysis. However, there are various methodological issues associated with
using triangle mesh data. Our novel 2D surface modeling framework called the
weighted spherical harmonic representation (Chung et al. (2007)) can address
these issues in a unified mathematical framework.

Cortical surface mesh construction and cortical thickness computation are
expected to introduce noise. To counteract this, surface-based data smoothing is
necessary. For 3D whole brain volume-based method, Gaussian kernel smooth-
ing, which weights neighboring observations according to their 3D Euclidean
distance, has been used. However, for data that lie on a 2D surface, smoothing
must be weighted according to the geodesic distance along the surface (Andrade
et al. (2001), Chung et al. (2003)). It will be shown that the weighted spher-

ical harmonic representation is a 2D surface-based smoothing technique, where



the explicit basis function expansion is used to smooth out noisy cortical sur-
face data. The basis function expansion corresponds to the solution of isotropic
heat diffusion. Unlike the previous surface based smoothing that solves the heat
equation nonparametrically (Andrade et al. (2001), Cachia et al. (2003), Chung
et al. (2003), Chung et al. (2005)), the result of the weighted spherical harmonic
representation is explicitly given as a weighted linear combination of spherical
harmonics. This provides a more natural statistical modeling framework. A
validation study showing the improved performance of the weighted spherical
harmonic representation over heat kernel smoothing (Chung et al. (2005)) will
be given in the paper.

Comparing measurements defined at mesh vertices across different cortical
surfaces is not a trivial task due to the fact no two cortical surfaces are identically
shaped. In comparing measurements across different 3D whole brain images, 3D
volume-based image registration is needed. However, 3D image registration tech-
niques tend to misalign sulcal and gyral folding patterns of the cortex. Hence, 2D
surface-based registration is needed in order to compare measurements across dif-
ferent cortical surfaces. Various surface registration methods have been proposed
before (Thompson and Toga (1996), Davatzikos (1997), Miller et al. (1997), Fis-
chl et al. (1999), Chung et al. (2005)). These methods solve a complicated
optimization problem of minimizing the measure of discrepancy between two
surfaces. Unlike the previous computationally intensive methods, the weighted
spherical harmonic representation provides a simple way of establishing surface
correspondence between two surfaces in reducing the improper alignment of sul-
cal folding patterns without time consuming numerical optimization.

Once we establish surface correspondence between two surfaces, we also need
to establish hemispheric correspondence within a subject for asymmetry analysis.
However, it is not straightforward to establish a 2D surface-based hemispheric
correspondence. Although there are many 3D volume-based brain hemisphere
asymmetry analyses (Barrick et al. (2005), Kennedy et al. (1999)), due to this
simple reason, there is a lack of 2D surface-based asymmetry analyses. This
will be the first unified mathematical framework on 2D cortical asymmetry. The
inherent angular symmetry presented in the weighted spherical harmonic repre-

sentation can be used to establish the inter-hemispheric correspondence. It turns



out that the usual asymmetry index of (L-R)/(L+R) is expressed as the ratio
between the sum of positive and negative order harmonics.

The novelty of our proposed method is that surface parameterization, surface-
based smoothing, and within- and between- subject surface registration can be
performed within a single unified mathematical framework that provides a more
consistent modeling framework than previously available for cortical analysis.
This paper extends the conference paper (Chung et al. (2007)) presented during
the IEEE statistical signal processing workshop in 2007 with detailed exposition

of our methodology.

2. Methods

Cortical thickness is measured at each vertex and used as a measure for charac-
terizing cortical shape variation. There exists a bijective mapping between the
cortical surface M and a unit sphere S? that is obtained via the deformable

surface algorithm. Consider the parameterization of the unit sphere S? given by
(u1,ug,us) = (sin 0 cos p, sin O sin p, cos 0),

with (6,¢) € [0,7) ® [0,27). The polar angle 6 is the angle from the north
pole and the azimuthal angle ¢ is the angle along the horizontal cross-section.
Then, using the bijective mapping, we can parameterize the Cartesian coordi-
nates v = (v, v2,v3) of each cortical mesh vertex in the cortical surface M
with the spherical angles (0, ¢), i.e., v = v(0,¢) (Figure 1). This enables us to
represent cortical thickness measurements f with respect to the spherical coordi-
nates, i.e., f = f(0, ). Each component of surface coordinates will be modeled

independently as

'Ui(e’ (10) = hl(e’ (10) + Ei(e’ (10)’ (1)

where h; is the unknown smooth coordinate function and ¢; is a zero mean random

field, possibly Gaussian. We model cortical thickness f similarly as

f(0,0) =g(0,¢) +e(0,¢),

where ¢ is the unknown mean cortical thickness and e is a zero mean random
field. We further assume v;, f € £2(5?), the space of square integrable functions
on unit sphere S?. The unknown signals h; and g are then estimated in the finite

subspace of £2(5?) spanned by harmonic basis functions in least squares fashion.



2.1 Spherical Harmonics

The spherical harmonic Y}, of degree [ and order m is defined as

clmPl‘m‘(cosﬁ)sin(|m|gp), —1<m< -1,
Yy, = %P)m‘(cos 9), m =0,
clmPllml(cos 0) cos(|m|y), 1<m<lI,
where ¢, = 22—;1832{%: and P/™ is the associated Legendre polynomial of

order m (Courant and Hilbert (1953), Wahba (1990)). The associated Legendre
polynomial is given by

$2)m/2 Ji+m
241! dat+m (

22— DL e-1,1].

The first few terms of the spherical harmonics are

3
Yoo——,— 2\/—51n981n<p,
U—cos@ Yi1= \/—Slnﬁcosgp

The spherical harmonics are orthonormal with respect to the inner product

(f1, f2) /fl ) f2(82) du(€2),

where 2 = (0, ) and the Lebesgue measure du(2) = sinfdfdp. The norm is
then defined as

1]l = (fr. f1) /2 (2)
Consider the subspace Z; spanned by the [-th degree spherical harmonics:

Zl - { Z ﬂlm}/lm ﬁlm € R}

m=—1

Then the subspace H; spanned by up to k-th degree spherical harmonics is
decomposed as the direct sum of Zy,--- ,Zp:

H, = 106911 - B Iy.

- {Z Z ﬂleZm ﬂlm ER}

=0 m=—1



Traditionally, the coordinate functions h; are estimated by minimizing the inte-

gral of the squared residual within Hj:

o) — h(@)| du(®). (3)

l/L\,(Q) = arg min /

heH,

It can be shown that the minimization is obtained when

k l
=> Z (03, Yimn) Yim (). (4)

=0 m=-—

Representing an anatomical boundary via the Fourier series expansion (4) has
been referred to as the spherical harmonic representation (Gerig et al. (2001),
Gu et al. (2004), Shen et al. (2004), Shen and Chung (2006)). This technique
has been used in representing hippocampi (Shen et al. (2004)), ventricles (Gerig
et al. (2001)) and cortical surfaces (Gu et al. (2004), Chung et al. (2007)).

2.2 Weighted Spherical Harmonic Representation

The weakness of the traditional spherical harmonic representation is that it
produces the Gibbs phenomenon (ringing artifacts) (Gelb (1997), Chung et al.
(2007)) for discontinuous and rapidly changing continuous measurements. The
Gibbs phenomenon can be effectively removed if the spherical harmonic repre-
sentation converges fast enough as the degree goes to infinity. By weighting
the spherical harmonic coefficients exponentially smaller, we can make the rep-
resentation converges faster; this can be achieved by additionally weighting the
squared residuals in equation (3) with the heat kernel. Figure 2 demonstrates
the severe Gibbs phenomenon in the traditional spherical harmonic representa-
tion (top row) on a hat-shaped 2D surface. The hat shaped step function is
simulated as z = 1 for 22 +y? < 1l and z = 0 for 1 < 22 +y? < 2. On the
other hand the weighted spherical harmonic representation shows substantially
reduced ringing artifacts. In both representations, we have used degree k = 42.
For the weighted spherical harmonic representation, the bandwidth ¢ = 0.001 is
used through out the paper. Due to very complex folding patterns, sulcal regions
of the brain exhibit more abrupt directional change than the simulated hat sur-
face(upward of 180 degree compared to 90 degree in the hat surface) so there is
a need for reducing the Gibbs phenomenon in the traditional spherical harmonic

representation.



Figure 2. The Gibbs phenomenon on a hat shaped simulated surface showing the severe
ringing effect on the traditional spherical harmonic representation (top) and reduced
ringing effect on the weighted spherical harmonic representation (bottom). The degree
k = 42 is used for the both cases and the bandwidth ¢ = 0.001 is used for the weighted

spherical harmonic representation.

The heat kernel is the generalization of the Gaussian kernel defined on Eu-
clidean space to an arbitary Riemannian manifold (Rosenberg (1997), Chung

et al. (2005)). On a unit sphere, the heat kernel is written as

00 l

Ko(@,9) =3 > e M07Y,(2)Yim (), (5)
=0 m=-1

where Q = (0,¢) and Q' = (0',¢'). The heat kernel is symmetric and positive

definite, and a probability distribution since

Ko (Q,Q) du(Q) = 1.
S2
The parameter o controls the dispersion of the kernel so we simply call it the
bandwidth. The heat kernel satisfies

ag—00

lim K, (Q, ) = 4i and lim K, (Q, ) = 6(2 - )
T o—

with § as the Dirac-delta function. The heat kernel can be further simplified



using the harmonic addition theorem (Wahba (1990)) as

2041 "
K0 =y 2 ¢ R0 ), (6)
=0

where - is the Cartesian inner product.
Let us define heat kernel smoothing (Chung et al. (2005)) as
Kox f(Q) = [ K(QQ)f(Q)du(). (7)
S2
Then heat kernel smoothing has the following spectral representation, which can
be easily seen by substituting (5) into equation (7) and rearranging the integral

with the summation:

K, f(Q Z Z e D Y ) i (), (8)

=0 m=-1
The k-th degree finite series approximation of heat kernel smoothing is re-
ferred to as the k-th degree weighted spherical harmonic representation. The un-
known mean coordinates h; are estimated using the weighted spherical harmonic
representation, which is the minimizer of the of the weighted squared distance
between measurements v; and a function h in Hj space. The unknown mean

cortical thickness g is estimated similarly.

Theorem. 1

k
> Z DT (0, Yign) Yim
=0 m=—I
= arg min / Ko (Q,)|v () — h(Q)|? du(€) du(Q)
heH, Jg2 Jg2

Proof. Let v; = Zf—o Zin:_l BimYim. Let the inner integral be

1—/ Ko (9, Q)| wi(e) — Z Z Bim Yim (€2 ( dp(SY).

=0 m=-1
Simplifying the expression we obtain

I_Z Z Z Z YZm Yl’m’(Q)ﬂlmﬂl’m’

=0 m==11l'=

2K, * v;(Q Z Z Vi (Q) B + K 07 ().

=0 m=-1



Since I is an unconstrained positive semidefinite qudratic program (QP) in Sy,
there is no unique global minimizer of I without additional linear constraints.
Integrating I further with respect to u(£2), we collapses the QP to a positive

definite QP, which yields a unique global minimizer as

/S2Idu Z Z ﬂ,m—2z D, Vi @mZe—l 07 (12 Vi)

=0 m=-—1

The minimum of the above integral is obtained when all the partial derivatives

with respect to 3; vanish.

oI

dp(Q) = 2B, — 2¢7 D70, V) = 0.
S2 aﬁlm

Hence Zf:o an:_l e‘l(l+1)"(v,~, Yim)Yim is the unique minimizer in Hy,.

We can also show that the weighted spherical harmonic representation is
related to previously available surface-based isotropic diffusion smoothing (An-
drade et al. (2001), Cachia et al. (2003), Chung et al. (2003), Chung et al.
(2005)) via the following theorem.

Theorem. 2.

S S i ) = s o
=0 m=-1 '

where hg satisfies isotropic heat diffusion

Ohg 1 0 Ohg 1 02%hg
8—U_Ah0 81n989< >

no—2 70
S0 ) T it 02

with the initial value condition ho(€2,0 = 0) = v;(Q2).

Proof. We first prove that heat kernel smoothing (7) and its spectral representa-
tion (8) are the solution of the heat equation (9). At each fixed o, which serves as
the physical time of the heat equation, the solution ho(£2, o) belongs to £2(S5?).
Then the solution can be written as

00 l

=33 cm(0)Yim(9). (10)

1=0 m=-1

10



Since the spherical harmonics are the eigenfunctions of the spherical Laplacian
(Wahba (1990)), we have

A}/lm(Q) = _l(l + 1)}/1771(9) (11)

Substituting (10) into (9) and using (11), we obtain

Ocym (o)
0o
The solution of the ordinary differential equation (12) is given by c¢p,(0) =

— —1(l+ Vi (o). (12)

bime {17 for some constant by,,. Hence, we obtain the solution of the form

00 !
ho(Q,0) =D > bime Y, (Q).

=0 m=-1

When ¢ = 0, we have the initial condition

o) l
ho(2,0) =D > b Vi () = vi(9).

=0 m=-1
The coefficients bj,, must be the spherical harmonic coefficients, i.e. by, =
(vi, Yimm). Then from the property of the generalized Fourier series (Rudin (1991)),

the finite expansion is the closest to the infinite series in Hy:

k l
Z Z e_l(l+1)o<via Yimﬂflm(g) = arg min
heH
1=0 m=-1

h—hd@am.

This proves the statement of the theorem.

2.3 Estimating Spherical Harmonic Coefficients

The spherical harmonic coefficients are estimated based on an iterative pro-
cedure that utilizes the orthonormality of spherical harmonics. We assume that
coordinate functions are measured at n points 1,---,€,. Then we have the
normal equations

k l

i) =D ) e Vi ) i (), = 1, -+, (13)
1=0 m=-—1

The normal equations (13) can be written in the matrix form as

V = [Y07 6_1(1+1)UY17 Ty e_k(k+1)JYl€] /87 (14)

Y

11



where the column vectors are V = [v;(Q1), -+ ,v;(Q,)] and g’ = (85,8}, - . B
with 8] = ((vi, Yi,—1), -+, (vi, Y11)). The length of the vector fis 1+ (2-14+1)+
-+ (2-k+1) = (k+ 1) Each submatrix Y; is given by

Y (), - L Y()
Y = : :
Yz,—l(Qn)v to 7Y2,l(Qn)

We may tempted to directly estimate 3 in least squares fashion as E = (Y'Y)"'Y'V.
However, since the size of matrix Y'Y becomes (k+1)% x (k+1)2, for large degree
k, it may be difficult to directly invert the matrix. Instead of directly solving
the normal equations, we project the normal equations into a smaller subspace
7; and estimate 2] + 1 coefficients in an iterative fashion.

At degree 0, we write V = Y0y + rg, where rg is the residual vector of
estimating V in subspace Zy. Note that the residual vector rg consists of residuals
ro(€2;) for all ;. Then we estimate Gy by minimizing the residual vector in least

squares fashion:

> i1 vi(925) Yoo ()
> i1 Yo ()

Go = (Y§Yo) 'YHV =
At degree [, we have
ri_ =e Y8 41y, (15)
where the residual vector r;_; is obtained from the previous estimation as
r =V =Yob - —e VY By

The least squares minimization of r; is then given by Bl = eli+1l)o (Yle)_lY{rl_l.

This iterative algorithm is refereed to as the iterative residual fitting (IRF)
algorithm (Chung et al. (2007)) since we are iteratively fitting a linear equa-
tion to the residuals obtained from the previous iteration. The IRF algorithm is
similar to the matching pursuit method (Mallat and Zhang (1993)) although the
IRF was developed independently. The IRF algorithm was developed to avoid
the computational burden of inverting a huge linear problem while the match-
ing pursuit method was originally developed to compactly decompose a time

frequency signal into a linear combination of pre-selected pool of basis functions.

12



Although increasing the degree of the representation increases the goodness-
of-fit, it also increases the number of estimated coefficients quadratically. So it is
necessary to stop the iteration at the specific degree k, where the goodness-of-fit
and the number of coefficients balance out. From (1), we can see that the k-th
degree weighted spherical harmonic representation can be modeled as a linear

model setting:

k l
u(@) =) > eI V() + ei(y),

=0 m=-—1

where the least squares estimation of ﬁlim is ﬁlim = (vi, Yim). Then we stop the
iteration at degree k by testing if the 2k + 3 coefficients at the next iteration

vanish:
Ho 2 Bri1,— (1) = Brrr,—k = = = Br1p41 = 0-
If we assume ¢; to be a Gaussian random field, the usual F test at the significant

level @ = 0.01 can be used to determine the stopping degree. In our study, at
bandwidth o = 0.001, we stop the iteration at degree k = 42.

2.4 Validation Against Heat Kernel Smoothing

The weighted spherical harmonic representation is validated against heat
kernel smoothing as formulated in Chung et al. (2005). Heat kernel smoothing
was implemented as an iterated weighted averaging technique, where the weights
are spatially adapted to follow the shape of heat kernel in discrete fashion along a
surface mesh. The algorithm has been implemented in MATLAB and it is freely
available at http://www.stat.wisc.edu/~mchung/softwares/hk/hk.html. Since
its introduction in 2005, the method has been used in smoothing various cortical
surface data: cortical curvatures (Luders et al. (2006), Gaser et al. (2006)), cor-
tical thickness (Luders et al. (2006), Bernal-Rusiel et al. (2008)), hippocampus
(Shen et al. (2006), Zhu et al. (2007)), magnetoencephalography (MEG) (Han
et al. (2007)) and functional-MRI (Hagler Jr. (2006); Jo et al. (2007)).

Define the n-th iterated heat kernel smoothing of signal f € L?(S?) as

KM o« £(Q) = Ky % % Ky f(Q).
PRENI(Y) Kook Ko f ()
n times

Then we have the following theorem

13



Theorem. 3 K, x f(Q) = K(E_T/LZL x f(Q).

Proof. By letting f = Y,y in (8), and using the orthonormality of spherical
harmonics, we obtain
Ko Yy (Q) = | Ko (Q,Q )Yy () du() = e~ oy, 0(Q).
S2
This is the restatement of the fact that e {(+17 and Y are eigenvalues and

eigenfunctions of the above integral equation with heat kernel. By reapplying

heat kernel smoothing to (8), we obtain

00 1
E@P«f(Q) = D> U5V Ky % Yin(Q) (16)
=0 m=-1

00 l
= DD e R V) Vi (). (17)
=0 m=-1
Then, arguing inductively, we obtain the spectral representation of the n-th it-

erated heat kernel smoothing as

[e'e) l
K f@) = > e (£,¥1,) Vi ().
=0 m=-1
The right side is the spectral representation of heat kernel smoothing with band-
width no. This proves K5 f(Q) = Kp» % f(£2). Rescaling the bandwidth, we

obtain the result.

Theorem 3 shows that heat kernel smoothing with large bandwidth o can be
decomposed into n repeated applications of heat kernel smoothing with smaller
bandwidth o/n. When the bandwidth is small, the heat kernel behaves like
the Dirac-delta function and, using the parametriz expansion (Rosenberg (1997),
Wang (1997)), we can approximate it locally using the Gaussian kernel:

d?(Q, Q)
4o

1
Ko(Q) = ——exp|-

where d(p, q) is the geodesic distance between p and ¢. For small bandwidth, all

|1+ 0(c%)], (18)

the kernel weights are concentrated near the center, so we need only to worry

about the first neighbors of a given vertex in a surface mesh.

14



Let Q4,---,€Q,, be m neighboring vertices of vertex 2 = € in the mesh.
The geodesic distance between €2 and its adjacent vertex €; is the length of edge
between these two vertices in the mesh. Then the discretized and normalized

heat kernel is given by

exp ( _ d(QA;Qi)Q)
W,(Q,Q;) = -
Z;nzo €xp ( - W)

Note that >" W, (€Q,9Q;) = 1. The discrete version of heat kernel smoothing

on a triangle mesh is then defined as

m

W, x f(Q) = ZW(;(Q,Qi)f(Qi)-

i=0
The discrete kernel smoothing should converges to heat kernel smoothing (7) as
the mesh resolution increases. This is the form of the Nadaraya- Watson estimator
(Chaudhuri and Marron (2000)) applied to surface data. Instead of performing a
single kernel smoothing with large bandwidth no, we perform n iterated kernel
smoothing with small bandwidth o as follows W f().

For comparison between the weighted spherical harmonic representation and
heat kernel smoothing, we used the sample cortical thickness data in constructing

the analytical ground truth. Consider a surface measurement of the form

k l
FO =" BimYim() (19)

=0 m=-1
for some given (,. Heat kernel smoothing of f is given as an exact analytic

form, which serves as the ground truth for validation:

k l
Kox f(Q) =YY" e 'H7g, v,,.(). (20)

1=0 m=—1
Using the sample cortical thickness data, we simulated the measurement of the
form (19) by estimating Gy, = (f, Yim) (Figure 3 top left). Then we compared
the weighted spherical harmonic representation of f and the discrete version of
heat kernel smoothing W(}E% * f against the the analytical ground truth (20)
(Figure 3 top right) along the surface mesh.
For the weighted spherical harmonic representation, we used ¢ = 0.001 and

the corresponding optimal degree k = 42 (Figure 3 bottom left). The relative

15
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Weighted spherical
harmonic representation

Heat kernel smoothing

Figure 3. Cortical thickness is simulated from the sample cortical thickness. The ground
truth is analytically constructed from the simulation. Then the weighted spherical har-
monic representation and heat kernel smoothing of the simulated cortical thickness are
compared against the ground truth. The plot is the relative error over the number of
iterations for heat kernel smoothing against the ground truth.

error for the weighted spherical harmonic representation is up to 0.013 at a cer-
tain vertex and the mean relative error over all mesh vertices is 0.0012. For heat
kernel smoothing, we used varying numbers of iterations, 1 < n < 70, and the
corresponding bandwidth ¢ = 0.001/n. The performance of heat kernel smooth-
ing depended on the number of iterations, as shown in the plot of relative error
over the number of iterations in Figure 3. The minimum relative error was ob-
tained when 21 iterations was used (Figure 3 bottom right). The relative error
was up to 0.055 and the mean relative error was 0.0067. Our simulation result
demonstrates that the weighted spherical harmonic representation performs bet-
ter than heat kernel smoothing. The main problem with heat kernel smoothing
is that the number of iterations needs to be predetermined, possibly using the
proposed simulation technique. Even at the optimal iteration of 21, the weighted

spherical harmonic representation provides a better performance.

16



2.5 Encoding Surface Asymmetry Information

Given the weighted spherical harmonic representation, we need to establish
surface correspondence between hemispheres and between subjects. This requires
establishing anatomical correspondence using surface registration. The main mo-
tivation for the surface registration is to establish proper alignment for cortical
thickness to be compared across subjects and between hemispheres. Previously,
the cortical surface registration was performed by minimizing an objective func-
tion that measures the global fit of two surfaces while maximizing the smoothness
of the deformation in such a way that the sulcal and gyral folding patterns are
matched smoothly (Thompson and Toga (1996), Robbins (2003), Chung et al.
(2005)). In the weighted spherical harmonic representation, surface registration
is straightforward and does not require any sort of explicit time consuming opti-
mization. Consider a surface li obtained from coordinate functions v; measured
at points Qq,- -+, Qy:

k l

R =33 7 (0, Y, (@)

1=0 m=-1

Consider another surface j; obtained from coordinate functions w; measured at
points Q-+,

k l

@)=Y e w, Vi) ().

=0 m=—1

Suppose the surface HZ is deformed to i/z\, + d; under the influence of the displace-
ment vector field d;. We wish to find d; that minimizes the discrepancy between

l?i + d; and 32 in the finite subspace Hy. This can be easily done by noting that

>3 w0, )Y () = avg min ||hi+di - [ 1)

d;€H,,
1=0 m=—1 i€Hk

The proof of this statement is given in Chung et al. (2007). This implies that the
optimal displacement in the least squares sense is obtained by simply taking the
difference between two weighted spherical harmonic representation and matching

coefficients of the same degree and order. Then a specific point Hi(Qo) in one

17



Figure 4. The point %; (6o, ¢o) (left) corresponds to iALf (0,27 —¢p) (middle) after mirror
reflection with respect to the midsaggital cross section uo = 0. From the spherical
harmonic correspondence, hi(8,2m — ¢g) corresponds to hi(6,2r — ¢q) (right). This
establishes the mapping from the left hemisphere to the right hemisphere in least squares
fashion.

surface corresponds to ﬁ(ﬂo) in the other surface. We refer to this point-to-point
surface correspondence as the spherical harmonic correspondence.

The spherical harmonic correspondence can be further used to establish the
inter-hemispheric correspondence by letting ﬂ be the mirror reflection of l/z\, The
mirror reflection of li with respect to the midsaggital cross section us = 0 is
simply given by 3;(9, ) = li-*(@, ) = Ei(e, 27w — ), where * denotes the mirror
reflection operation (Figure 4). The specific point h;(fg, o) in the left hemi-
sphere will be mirror reflected to %(90, 2w — ¢p) in the right hemisphere. The
spherical harmonic correspondence of }2-(90, 2w — ) is Ei(ﬁo, 2w — ). Hence, the
point Ei(eo, ©0) in the left hemisphere corresponds to the point Ei(eo, 21 — ) in
the right hemisphere. This establishes the inter-hemispheric anatomical corre-
spondence. The schematic of obtaining this inter-hemispheric correspondence is
given in Figure 4. This inter-hemispheric correspondence is used to compare cor-
tical thickness measurements f across the hemispheres. The weighted spherical

harmonic representation of cortical thickness f is

k l

§0,0) =D > e U Vi) Yin (6, ).

=0 m=—1
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At a given position h;(6g, ¢o), the corresponding cortical thickness is g(6o, o),
which should be compared with the thickness g(0y, 2 —pq) at position ﬁi(ﬁo, 21—

®o):

k l
9(00,2m — o) = > > e T Y)Y (0, 2 — ). (22)

=0 m=-—1

The equation (22) can be rewritten using the property of spherical harmonics:

_Ym 07 ) —l S S _17
Yin(0.2n =) = {1l 9) "
Km(07§0)7 0 S m S l7

k-1
§(60,2m — o) = D> Y e UYLV (B0, p0)

=0 m=-1

kool
=30 e V) Yin (60, 00).

=0 m=0

Comparing with the expansion for g(6y, o), we see that the negative order
terms are invariant while the positive order terms change sign. Hence we define

the symmetry index as

k

-1
|:/g\(97 (70) + §(97 27 — (10):| = Z Z e_l(l+1)0<f> lem>YYlm(007 (100)7

=0 m=-1

1

and the asymmetry index as
ko1
A0,9) = 5 [30,9) = 50,27 = @) = > 3 VUL Vi) Vi (B0, 00).

=0 m=0

N | —

We normalize the asymmetry index by dividing it by the symmetry index as

_g9(0,0) —g(8,2m — @) Zz 12_:_16_1(l+1 (f, Yim)Yim (0, )
N9 = 50,0 750.27— ) ~ 005y e W, Vo) Vi (01 )

We refer to this index as the normalized asymmetry inder. The numerator is

the sum of all negative orders while the denominator is the sum of all positive
and the 0-th orders. Note that N(0,0) = N(#,7) = 0. This index is intuitively

interpreted as the normalized difference between cortical thickness in the left
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subject 3 <

Figure 5. Three representive subjects showing cortical thickness (f), its weighted-
SPHARM representation (g), asymmetry index (A), symmetry index (S) and normalized
asymmetry index (N). The Cortical thickness is projected onto the original brain surfaces
while all other measurements are projected onto the 42-th degree weighed spherical
harmonic representation

and the right hemispheres. Note that the larger the value of the index, the larger
the amount of asymmetry. The index is invariant under the affine scaling of the
human brain so it is not necessary to control for the global brain size difference
in the later statistical analysis. Figure 5 shows the asymmetry index for three

subjects.

3. Application to Autism Study
3.1 Description of Data Set

Three Tesla Ti-weighted MR scans were acquired for 16 high functioning
autistic and 12 control right handed males. The autistic subjects were diagnosed
by a trained and certified psychologist at the Waisman center at the University of
Wisconsin-Madison (Dalton et al. (2005)). The average ages were 17.14+2.8 and

16.1 £ 4.5 for control and autistic groups respectively. Image intensity nonuni-
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formity was corrected using a nonparametric nonuniform intensity normalization
method (Sled et al. (1988)) and then the image was spatially normalized into
the Montreal neurological institute stereotaxic space using a global affine trans-
formation (Collins et al. (1994)). Afterward, an automatic tissue-segmentation
algorithm based on a supervised artificial neural network classifier was used to
segment gray and white matters (Kollakian (1996)).

Triangle meshes for outer cortical surfaces were obtained by a deformable
surface algorithm (MacDonald et al. (2000)) and the mesh vertex coordinates
v; were obtained. At each vertex, cortical thickness f was also measured. Once
we obtained the outer cortical surfaces of 28 subjects, the weighted spherical
harmonic representations ﬁl were constructed. We used bandwidth ¢ = 0.001
corresponding to k = 42 degrees. The weighted spherical harmonic represen-
tations for three representative subjects are given in Figure 5. The symmetry
(S), asymmetry (A) and normalized asymmetry (V) indices are computed. The
normalized asymmetry index is used in localizing the regions of cortical asym-
metry difference between the two groups. These indices are projected on the
average cortical surface (Figure 5). The average cortical surface is constructed
by averaging the Fourier coefficients of all subjects within the same spherical
harmonics basis following the spherical harmonic correspondence. The average
surface serves as an anatomical landmark for displaying these indices as well as

for projecting the final statistical analysis results in the next section.

3.2 Statistical Inference on Surface Asymmetry

For each subject, the normalized asymmetry index A(6, ) was computed
and modeled as a Gaussian random field. The null hypothesis is that A(6, )
is identical in the both groups for all (6, ¢), while the alternate hypothesis is
that there is a specific point (fy, ¢o) at which the normalized asymmetry index
is different. The group difference on the normalized asymmetry index was tested
using the T random field, denoted as T'(f, ). Since we need to perform the
test on every points on the cortical surface, it becomes a multiple comparison
problem. We used the random field theory based t statistic thresholding to
determine statistical significance (Worsley et al. (1996)). The probability of
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T-stat P-value

4.54 . 0.1

Figure 6. The statistically significant regions of cortical asymmetry thresholded at the

corrected P-value of 0.1. The P-value has been corrected for multiple comparisons.
obtaining false positives for the one-sided alternate hypothesis is given by

P[(eil)lgsq T(9,0) > h] ZRd (23)
where Ry is the d-dimensional Resel of S?, and pg is the d-dimensional Euler
characteristic (EC) density of the T-field (Worsley et al. (1996), Worsley et al.
(2004)). The Resels are

47
FWHM?’
where FWHM is the full width at the half maximum of the smoothing kernel. The
FWHM of the heat kernel used in the weighted spherical harmonic representation

Ro(S?) =2, R1(S%) =0, Ry(5?) =

is not given in a closed form, so it is computed numerically. From (6), the
maximum of the heat kernel is obtained when Q- Q' = 1. Then we numerically
solve for Q- Q"

k

k
2l~|—1 I(141)0 2l+1 I(1+1)o p0 ,
IZ; 47 IZ_; 47 FE(2- €2,

N =
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In previous surface data smoothing techniques (Chung et al. (2003), Chung
et al. (2005)), a FWHM of between 20 to 30 mm was used for smoothing data
directly along the brain surface. In our study, we used a substantially smaller
FWHM since the analysis is performed on the unit sphere, which has smaller
surface area. The compatible Resels of the unit sphere can be obtained by using
the bandwidth of ¢ = 0.001, which corresponds to a FWHM of 0.0968 mm. Then,
based on the formula (23), we computed the multiple-comparison-corrected P-
value and thresholded at a = 0.1 (Figure 6). We found that the central sulci and
the prefrontal cortex exhibits abnormal cortical asymmetry pattern in autistic
subjects. The larger positive t statistic value indicates thicker cortical thickness

with respect to the corresponding thickness at the opposite hemisphere.

4. Conclusions

We have presented a novel cortical asymmetry technique called the weighted
spherical harmonic representation that unifies surface representation, parameter-
ization, smoothing, and registration in a unified mathematical framework. The
weighed spherical representation is formulated as the least squares approximation
to an isotropic heat diffusion on a unit sphere in such a way that the physical
time of heat diffusion controls the amount of smoothing in the weighted spherical
harmonic representation. The methodology is used in modeling cortical surface
shape asymmetry. Within this framework the asymmetry index, that measures
the amount of asymmetry presented in the cortical surface, was constructed as the
ratio of the weighted spherical harmonic representation of negative and positive
orders. The regions of statistically different asymmetry index are localized using
random field theory. As an illustration, the methodology was applied quantify-
ing the abnormal cortical asymmetry pattern of autistic subjects. The weighted
spherical harmonic representation is a very general surface shape representation
S0 it can be used for any type of surface objects that are topologically equivalent

to a unit sphere.
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