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Abstract

We present a unified statistical approach to modeling disconnected

3D anatomical structures extracted from medical images. Due to image

acquisition and preprocessing noises, it is expected the imaging data is

noisy. The surface coordinates of the structures are regressed using the

weighted linear combination of Laplace-Beltrami (LB) eigenfunctions

to smooth out noisy data and perform statistical analysis. The method

is applied in characterizing the 3D growth pattern of human hyoid bone

between ages 0 and 20. We detected a significant age effect on localized

parts of the hyoid bone.
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1 Introduction

For normally developing children, age and gender could be major factors

that affect the functions and structures of growing hyoid bone. As in other

developmental studies [1, 2], we expect highly localized complex growth pat-

tern to emerge between ages 0 and 20 in the hyoid bone. It is expected the

growth to be outward with respect to the surface of the bone. However, it

is unclear what specific parts of the hyoid bone are growing. This provides

a biological motivation for a need to develop a local surface-based morpho-

metric technique beyond simple volumetric techniques that cannot detect

localized subtle anatomical changes along the hyoid bone surface.

The end results of existing surface-based morphometric studies in med-

ical imaging are statistical parametric maps (SPM) that shows statistical

significance of growth at each surface mesh vertex [1, 3, 4]. In order to ob-

tain stable and robust SPM, various signal smoothing and filtering methods

have been proposed. Among them, diffusion equations, kernel smoothing,

and wavelet-based approaches are probably most popular. Diffusion equa-

tions have been widely used in image processing as a form of noise reduction

starting with Perona and Malik in 1990’s [5]. Although numerous techniques

have been developed for performing diffusion along surfaces [6, 7, 8, 9, 10, 11],

most approaches are nonparametric and requires finite element or finite dif-

ference schemes which are known to suffer various numerical instabilities

[12].

Kernel smoothing based models have been also proposed for surface

and manifolds data [13, 12]. The kernel methods basically smooth data

as weighted average of neighboring mesh vertices using mostly a Gaussian

kernel and its iterative application is supposed to approximates the dif-
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fusion process. Recently, wavelets have been popularized for surface and

graph data. Spherical wavelets have been used on brain surface data that

has been mapped onto a sphere [14, 15]. Since wavelet basis functions have

local supports in both space and scale, the wavelet coefficients from the

scale-space decomposition using the spherical wavelets provides shape fea-

tures that describe local shape variation at a variety of scales and spatial

locations. However, spherical wavelets have an intrinsic problem that they

require to establish a smooth mapping from the surface to a unit sphere,

which introduces a serious metric distortion. The spherical mapping such as

conformal mapping introduces serious metric distortion which usually com-

pounds SPM. Furthermore, such basis functions defined on sphere seem to

be suboptimal rather than those directly defined on anatomical surface, in

detecting locations or scales of shape variations. To remedy the limitation

of spherical wavelets, spectral graph wavelet transform defined on a graph

has been applied to arbitrary surface meshes by treating surface meshes as

graphs [16, 17, 18]. Wavelet transform is a powerful tool decomposing a

signal or function into a collection of components localized at both location

and scale. Although all three methods (diffusion-, kernel- and wavelet-based)

look different from each other, it is possible to develop a unified framework

that relates all of them in a coherent mathematical framework.

Starting with a symmetric positive definite kernel, we propose a unified

kernel regression framework within the Hilbert space theory. The proposed

kernel regression works for any symmetric positive definite kernel, which be-

haves like weights between two functional data. We show how this facilitates

a coherent statistical inference for functional signals defined on an arbitrary

manifold. The focus of the paper is on the development of the proposed

kernel regression on manifolds. The outline of this paper is as follows.
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(i) First, we present a unified bivariate kernel regression that is related to

diffusion-like equations on manifolds. The proposed kernel regression

inherits various mathematical and statistical properties of diffusion-

like equations.

(ii) We establish the relationship between the kernel regression and re-

cently popular spectral graph wavelets for manifolds. The proposed

kernel regression is shown to be equivalent to the wavelet transform.

This mathematical equivalence levitates a need for constructing wavelets

using a complicated computational machinery as often done in previ-

ous diffusion wavelet constructions [16, 17, 18].

(iii) A unified statistical inference framework is developed for a CT imaging

application by linking the kernel regression to the random field theory

[19, 20]. This levitates the need for using time consuming nonpara-

metric procedures such as false discovery rates (FDR) or permutation

tests that do not have explicate control over the scale and smoothness

of models.

(iv) Finally, we illustrate how the kernel regression procedure can be used

to localize the disconnected hyoid bone growth pattern in human.

2 Preliminary

First, let us illustrate two statistical problems in an Euclidean space that

motivate the development of the proposed kernel regression in manifolds.

Consider measurements fi sampled at pi ∈ Rd. The measurements are

usually modeled as

fi = h(pi) + εi
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Figure 1: CT image showing the location of the hyoid bone and 3D model

showing the relative location of the hyoid bone with respect to the mandible

(gray) and vocal tract structures (green).

with mean zero noise εi and unknown mean function h that has to be esti-

mated. In the traditional kernel regression framework [13, 21, 22], the mean

function h is estimated in the weighted least squares fashion:

ĥ(p) =

k∑
j=1

G(p− pi)fi,

where G is a given Nadaraya-Waton type of normalized kernel. In the local

polynomial regression framework, h is estimated as

ĥ(p) = arg min
β0···βk

n∑
i=1

G(p− pi)
∣∣∣fi − k∑

j=0

βj(p− pi)j
∣∣∣2. (1)

Often normalized Gaussian kernels are used for G. In many related local

polynomial or kernel regression frameworks, kernel G and polynomial basis

pj are translated by the amount of pi in fitting the data locally. In this

fashion, at each data point pi, exactly the same shape of kernel and dis-

tance are used. However, one immediately encounters a difficulty of directly

generalizing the Euclidean formulation (1) to an arbitrary surface since it is
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unclear how to translate the kernel and basis in a coherent fashion. To rem-

edy this problem, many recent kernel regression framework on manifolds use

bivariate kernel G(p, q) and bypass the problem of translating a univariate

kernel [13]. By simply changing the second argument, it has the effect of

translating the kernel.

A similar problem is also encountered in wavelets in a Euclidean space.

Consider a wavelet basis Wt,q(p) obtained from a mother wavelet W with

scale and translation parameters t and q:

Wt,q(p) =
1

t
W
(p− q

t

)
. (2)

Scaling a function on a surface is trivial. But the difficulty arises when one

tries to define a mother wavelet and translate it on a surface. It is not

straightforward to generalize the Euclidean formulation (2) to an arbitrary

manifold. If one tries to modify the existing spherical wavelets to an arbi-

trary surface [14, 15], one also encounters the lack of regular grids on the

surface. The recent work based on the spectral graph wavelet transform

bypasses this problem also by taking bivariate kernel as a mother wavelet

[16, 17, 23, 18]. To remedy these two different but related problems, we

propose to use a bivariate kernel and bypass the problem of translating a

univariate kernel. By simply changing the second argument, it has the effect

of translating the kernel.

3 Methods

In many anatomical studies in medical imaging, measurements are sampled

densely at each voxel, so it is more practical to model the measurements

as a function. Consider a functional measurement f defined on a manifold
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M⊂ Rd. We assume the following additive model:

f(p) = h(p) + ε(p), (3)

where h is the unknown signal and ε is a zero-mean random field, possibly

Gaussian. The manifold M can be a single connected or multiple disjoint

components as our hyoid bone application. We further assume f ∈ L2(M),

the space of square integrable functions on M with the inner product

〈f, g〉 =

∫
M
f(p)g(p) dµ(p),

where µ is the Lebesgue measure. Define a self-adjoint operator L satisfying

〈g1,Lg2〉 = 〈Lg1, g2〉

for all g1, g2 ∈ L2(M). Then L induces the eigenvalues λj and eigenfunctions

ψj on M:

Lψj = λjψj . (4)

Without loss of generality, we can order the eigenvalues

0 = λ0 < λ1 ≤ λ2 ≤ · · · .

The eigenfunctions ψj form an orthonormal basis in L2(M). We will con-

sider a smooth symmetric positive definite kernel of the form

K(p, q) =

∞∑
j=0

τjψj(p)ψj(q) (5)

for some τj in this paper. The constants τj are identified as follows. Apply

the kernel convolution on the eigenfunction ψj :

K ∗ ψj(p) =

∫
M
K(p, q)ψj(q) dµ(q). (6)
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Figure 2: Laplace-Beltrami eigenfunctions ψj of various degrees (j =

0, 1, 5, 20, 100, 500) on the template. The first eigenfunction is constant in

each component. As the degree increases, the spatial frequency increases.

Substituting (7) into (6), we have K ∗ ψj(p) = τjψj(p) indicating τj and ψj

must be the eigenvalues and eigenfunctions of the convolution (6).

Example 1. For τj = e−λt, we have heat kernel

K(p, q) =
∞∑
j=0

e−λtψj(p)ψj(q) (7)

that has been often discussed in numerous studies but without much the-

oretical justification [24, 25, 26, 27]. For this study, we will denote the

heat kernel as Ht(p, q) to explicitly show that the spread of the kernel is

determined by t, diffusion time.
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Figure 3: Heat kernel regression with different bandwidth between 0.1 and 1000. As the

bandwidth increases, the kernel regression becomes inversely proportional to the square

root of the surface area.

3.1 Kernel regression on manifolds

Consider subspace Hk ⊂ L2(M) spanned by the orthonormal basis {ψj},

i.e.

Hk = {
k∑
j=0

βjψj(p) : βj ∈ R}.

Then the least squares estimation (LSE) of h in Hk is given by the shortest

distance from f to Hk:

ĥ(p) = arg min
h∈Hk

∫
M

∣∣f(p)− h(p)
∣∣2 dµ(p) =

k∑
j=0

fjψj(p), (8)

where fj = 〈f, ψj〉 are the Fourier coefficients. Figure 3 shows an example

of LSE with L as the Laplace-Beltrami operator and k = 1000. This is the

usual Fourier series expansion that tends to suffer the Gibbs phenomenon,

i.e., ringing artifact [28, 29] for compact surfaces (Example 1).

The Gibbs phenomenon can be effectively removed if the Fourier se-

ries expansion converges fast enough as the number of basis functions goes
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to infinity. By weighting the Fourier coefficients exponentially smaller, we

can make the representation converges faster; this can be achieved by addi-

tionally weighting the squared residuals in equation (8) with some weights.

Thus, we propose to estimate h by minimizing the weighted distance to the

space Hk:

ĥ(p) = arg min
h∈Hk

∫
M

∫
M
K(p, q)

∣∣∣f(q)− h(p)
∣∣∣2 dµ(q) dµ(p). (9)

Without loss of generality, we will assume the kernel to be a probability

distribution so that ∫
M
K(p, q) dµ(q) = 1

for all p ∈M. The solution of (9) has the following analytic expression:

Theorem 1.

ĥ(p) = arg min
h∈Hk

∫
M

∫
M
K(p, q)

∣∣∣f(q)− h(p)
∣∣∣2 dµ(q) dµ(p) =

k∑
j=0

τjfjψj ,

where fj = 〈f, ψj〉 are Fourier coefficients.

Proof. Any function h ∈ Hk can be expressed as

h(p) =
k∑
j=0

βjψj(p). (10)

Then by plugging (10) into the inner integral I(p), it becomes

I(p) =

∫
M
K(p, q)

∣∣∣f(q)−
k∑
j=0

βjψ(p)
∣∣∣2 dµ(q).

Simplifying the expression, we obtain

I(p) =

k∑
j=0

k∑
j′=0

ψj(p)ψj′(p)βjβj′ − 2K ∗ f(p)

k∑
j=0

ψj(p)βj +K ∗ f2(p). (11)
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The kernel can be written as

K(p, q) =

∞∑
j′=0

τj′ψj′(p)ψj′(q). (12)

The convolution is then written as

K ∗ f(p) =

∞∑
j′=0

τj′fj′ψj′(p).

Since I is an unconstrained positive semidefinite quadratic program (QP)

in βj , there is no unique global minimizer of I without additional linear

constraints. Integrating I further with respect to dµ(p), we collapses (11)

to a positive definite QP, which yields a unique global minimizer:∫
M
I(p) dµ(p) =

k∑
j=0

β2j − 2
k∑
j=0

τjfjβj + const.

The minimum of the above integral is obtained when all the partial deriva-

tives with respect to βj vanish, i.e.∫
M

∂I

∂βj
dµ(p) = 2βj − 2τjfj = 0

for all j. Hence
∑k

j=0 τjfjψj must be the unique minimizer.

Theorem 1 generalizes the weighted spherical harmonic (SPHARM) rep-

resentation on a unit sphere to an arbitrary manifold [30]. Theorem 1 im-

plies that the kernel regression can be performed by simply computing the

Fourier coefficients fj = 〈f, ψj〉 without doing any numerical optimization.

The numerically difficult optimization problem is reduced to the problem

of computing Fourier coefficients. If the kernel K is a Dirac-delta function,

the kernel regression simply collapses to the least squares estimation (LSE)

which results in the standard Fourier series, i.e.

ĥ(p) = arg min
h∈Hk

∫
M

∣∣∣f(q)− h(q)
∣∣∣2 dµ(q) =

k∑
j=0

fjψj .
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It can be also shown that as k →∞, the kernel regression

ĥ =

k∑
j=0

τjfjψj

converges to convolution K ∗ f establishing the connection to the manifold-

based kernel smoothing framework [31, 12]. Hence, asymptotically the pro-

posed kernel regression should inherit many statistical properties of kernel

smoothing.

3.2 Properties of kernel regression

The kernel regression can be shown to be related to the following diffusion-

like Cauchy problem.

Theorem 2. For an arbitrary self-adjoint differential operator L, the unique

solution of the following initial value problem

∂g(p, t)

∂t
+ Lg(p, t) = 0, g(p, t = 0) = f(p) (13)

is given by

g(p, t) =
∞∑
j=0

e−λjtfjψj(p). (14)

Proof. For each fixed t, g(p, t) can be written as

g(p, t) =
∞∑
j=0

cj(t)ψj(p). (15)

Then

Lg(p, t) =

∞∑
j=0

cj(t)λjψj(p). (16)
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Substituting (15) and (16) into (13), we obtain

∂cj(t)

∂t
+ λjcj(t) = 0 (17)

for all j. The solution of equation (17) is given by cj(t) = bje
−λjt. So we

have a solution

g(p, t) =
∞∑
j=0

bje
−λjtψj(p).

At t = 0, we have

g(p, 0) =

∞∑
j=0

bjψj(p) = f(p).

The coefficients bj must be the Fourier coefficients, i.e.

bj = 〈f, ψj〉 = fj .

For a particular choice of kernel K with τj = e−λjt, the proposed kernel

regression ĥ =
∑k

j=0 τjfjψj should converge to the solution of the diffusion-

like equation.

Example 2. If L is the Laplace-Beltrami operator, (13) becomes an isotropic

diffusion equation as a special case and we are then dealing with heat kernel

Ht(p, q) =

∞∑
j=0

e−λjtψj(p)ψj(q),

which is often explored mathematical objects in various fields [31, 12].

In order to construct wavelets on an arbitrary graph and mesh, diffusion

wavelet transform has been proposed recently [16, 17, 18]. The diffusion

wavelet construction has been fairly involving so far. However, it can be

shown to be a special case of the proposed kernel regression and the proposed

method is substantially simpler to construct. Following the notations in

13



[16, 17, 18], diffusion wavelet Wt,p(p) at position p and scale t is given by

Wt,q(p) =

k∑
j=0

g(λjt)ψj(p)ψj(q),

for some scale function g. If we let τj = g(λjt), the diffusion wavelet trans-

form is given by

〈Wt,p, f〉 =

∫
M
Wt,q(p)f(p) dµ(p) =

k∑
j=0

τjfjψj(q),

which is the exactly kernel regression we introduced. Hence, the diffusion

wavelet transform can be simply obtained by doing the kernel regression

without an additional wavelet machinery [18]. Further, if we let g(λjt) =

e−λjt, we have

Wt,p(q) = Ht(p, q),

which is a heat kernel. The bandwidth t of heat kernel controls resolution

while the translation is done by shifting one argument in the kernel.

Although the kernel regression is constructed using global basis functions

ψj , the kernel regression at each point p coincides with the diffusion wavelet

transform at that point. Hence, just like wavelets, the kernel regression

will have the localization property of wavelets. This is demonstrated in the

following example:

Example 3. A hat-shaped step function is simulated in 3D as z = 1 for

x2+y2 < 1 and z = 0 for 1 ≤ x2+y2 ≤ 2 (Figure 4). Then the step function

is reconstructed using the Fourier series expansion via LSE (top) and kernel

regression (bottom). In the both cases, up to 7225 basis functions were

used. For the kernel regression, the heat kernel with bandwidth t = 0.0001 is

used. LSE clearly shows the visible Gibbs phenomenon, i.e., ringing artifact

[28, 29] compared to the kernel regression.
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Figure 4: The Gibbs phenomenon on a hat shaped simulated surface showing the ringing

effect on the traditional Fourier series expansion (top) and the reduced effect on the heat

kernel regression (bottom). 7225 basis functions were used for the both cases and the

bandwidth t = 0.001 is used for the kernel regression.

3.3 Numerical Implementation

The Laplace-Beltrami operator is chosen as the self-adjoint operators L of

choice. The eigenfunctions of the Laplace-Beltrami operator on an arbitrary

curved surface is analytically unknown. So it is necessary to discretize (4)

using the Cotan formulation as a generalized eigenvalue problem [32, 33]:

Cψ = λAψ, (18)

where C is the stiffness matrix, A is the mass matrix andψ = (ψ(p1), · · · , ψ(pn))′

is the eigenfunction evaluated at n mesh vertices. Once we obtained the ba-

sis functions ψj , the corresponding Fourier coefficients βj are estimated as

βj = f ′Aψj ,

where f = (f(p1), · · · , f(pn))′ and ψj = (ψj(p1), · · · , ψj(pn))′ [32]. Figure 2

shows few representative LB-eigenfunctions on the hyoid surface. For heat
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kernel regression, we used the bandwidth σ = 5 and 500 LB-eigenfunctions

on the final template. The number of eigenfunctions used is more than

sufficient to guarantee relative error less than 0.3% in our data.

3.4 Statistical Inference

We are interested in determining the significance of functional signals on a

manifold 8. We borrow the statistical parametric mapping (SPM) framework

for analyzing and visualizing statistical tests performed on the template

surface that is often used in brain image analysis [7, 34, 35, 36, 37]. Since

test statistics are constructed over all mesh vertices on the surface, multiple

comparisons need to be accounted. For continuous functional data, the

random field theory [19, 36, 20] is natural to use. The random field theory

assumes the measurements to be smooth Gaussian random field. Heat kernel

regression will make the data more smooth and Gaussian as well as increase

the signal-to-noise ratio [38].

Consider a functional measurements f1, · · · , fn on manifold M. In the

simplest statistical setting, the measurements can be modeled as

fi(p) = h(p) + εi(p),

where h is an unknown group level signal and εi is a zero-mean Gaussian

random field [20]. At each fixed point p, we are assuming εi ∼ N(0, σ2).

We are interested in determining the significance of h, i.e.

H0 : h(p) = 0 for all p ∈M vs. H1 : h(p) > 0 for some x ∈M. (19)

Note that any point p0 that gives h(p0) > 0 is considered as signal. The

hypothsis (19) is an infinite dimensional multiple comparisons problem for

continuously indexed hypotheses over the manifold M. The underlying
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Figure 5: Type-I error plot over bandwidth t of kernel regression for testing

the difference between the groups I and III. As the bandwidth increases, the

multiple comparisons corrected type-I error decreases. The bandwidth 5 is

chosen for the study. The choice of the bandwidth around 5 does not change

the over-all Type-I error much.

group level signal h is estimated using the proposed heat kernel regression.

Subsequently, a test statistic is given by a T-field T (p) or a F-field, which is

simply given by the square of the T-field [20, 36].

For sufficiently high threshold z, the corrected type-I error of testing

hypothesis (19) is given by

P
(

sup
p∈M

T (p) > z
)

=

d∑
j=0

µj(M)ρj(z),

where µd(M) is the j-th Minkowski functional or intrinsic volume ofM and

ρj is the j-th Euler characteristic (EC) density of T-field. Since the hyoid

bone is compact with no boundary but has three disconnected components,
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the Minkowski functionals are simply

µ2(M) = area(M)/2

µ1(M) = 0

µ0(M) = χ(M) = 3× 2.

The term µ1 is zero since there is no boundary and µ0 is simply the Euler

characteristic of the template surface. Note that the Euler characteristic of

a closed surface with no hole or handle is 2 and there are three such surfaces.

The EC-densities of the T-field with ν degrees of freedom is given by

ρ0(z) = 1− P (Tν ≤ z),

ρ1(z) =
1√
2t2
· 1

2π

(
1 +

z2

ν
)−(ν−1)/2,

ρ2(z) =
1

2t2
· 1

(2π)3/2
Γ(ν+1

2 )

(ν2 )1/2Γ(ν2 )
z
(

1 +
z2

ν

)−(ν−1)/2
.

The EC-density of the F-field is similarly given in [20, 19]. The EC-density

has the kernel bandwidth 2t2 in the formulation so the inference is done

at a particular smoothing scale. Figure 5 shows the type-I error plot over

different bandwidth t of the kernel regression in our application. As the

bandwidth t becomes zero, the type-I error increases. When t = 0, the

kernel regression collapse to the usual Fourier series expansion. Note that

the Fourier expansion with 500 LB-eigenfunctions is close to the original

data without any smoothing. Hence, the proposed kernel regression can be

viewed as having substantially smaller type-I error compared to the Fourier

series expansion as well as the original data demonstrating a better sta-

tistical performance. Type-II error and the statistical power can be also

computed similarly.
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Figure 6: Schematic of a case when H1 is true.

Theorem 3. The statistical power P of testing the hypotheses

H0 : h(p) = 0 for all p ∈M vs. H1 : h(p) = cσ > 0 for some p ∈M.

using the T random field T (p) is given by

P(n) ≈ 1− exp
[
−

d∑
j=0

µj(M1)ρj(t
∗
α − c

√
n)
]
,

where t∗α is the α-quantile given by

α = P
(

sup
p∈M

T (p) > t∗α

)
.

Proof. In the region M0 corresponding to H0,

f i(p) ∼ N(0, σ2).

In the region M1 corresponding to H1,

f i(p) ∼ N(cσ, σ2).

Figure 6 illustrates this setting.

Consider the test statistic

T (p) =
f̄(p)

S(p)/
√
n
, (20)

19



where f̄ and S are the sample mean and standard deviation of the measure-

ments f i, · · · , fn. In M0, T (p) is a T random field with n − 1 degrees of

freedom [39]. In M1, T (p) can be written as

T (p) = T ′(p) +
cσ

S(p)/
√
n
,

where T ′(p) a T random field with n−1 degrees of freedom. Since σ is usually

estimated using the standard deviation, approximately we have S(p) = σ

and the test statistic becomes

T (p) = T ′(p) + c
√
n.

At each fixed p, T (p) is no longer a T random field but a non-central T

random field [40]. Subsequently the power P at the given α-level is given by

P(n) = P
(

sup
p∈M1

T (p) > t∗α

)
(21)

= P
(

sup
p∈M1

T ′(p) > t∗α − c
√
n
)
, (22)

where t∗α is the α-quantile of supp∈M T (p) under H0, i.e.

α = P
(

sup
p∈M

T (p) > t∗α

)
.

Although (21) is intractable to directly compute, we can approximate

(22) using the expected Euler characteristic (EC) method [41, 42]. The

power (22) can be written as

P(n) =

d∑
j=0

µj(M1)ρj(t
∗
α − c

√
n),

where µd(M) is the j-th Minkowski functional or intrinsic volume of M

and ρj is the j-th EC-density of T-field [43, 39, 19, 42]. The expansion only

works for sufficiently large t∗α − c
√
n. For small threshold, the power may
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not be bounded between 0 and 1. So it is necessary to use the exponential

transform used in [40] to bound the power. For small P(n), using the Taylor

expansion, we can write

exp
[
− P(n)

]
≈ 1− P(n).

Equivalently, it is written as

P(n) ≈ 1− exp
[
− P(n)

]
.

This transformation guarantees the power estimation to be bound between

0 and 1 [40]. Subsequently, the power is given by

P(n) = 1− exp
[
−

d∑
j=0

µj(M1)ρj(t
∗
α − c

√
n)
]
.

4 Application

4.1 CT Imaging Data and Preprocessing

The study consists of high resolution CT images of 70 normal subjects ages

between 0 and 20 years (mean age = 58.0 ± 11.3 years). CT scans were con-

verted to DICOM format and Analyze 8.1 software package (AnalyzeDirect,

Inc., Overland Park, KS) was then used in segmenting binary hyoid bone

images by a trained individual rater in the native space by simple image

intensity thresholding and careful manual editing. A nonlinear image regis-

tration using the diffeomorphic shape and intensity averaging technique with

cross-correlation as similarity metric was performed through Advanced Nor-

malization Tools (ANTS) [44]. A study-specific template was constructed.
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We have chosen a 12 year old subject identified as F155 as the initial tem-

plate and aligned the remaining 69 hyoids to the initial template affinely

to remove the overall size variability. Some subject may have larger hyoid

than others so it is necessary to remove the global size differences in local

shape modeling. From the affine transformed individual hyoid surfaces, we

performed the diffeomorphic nonlinear image registration to the template

using ANTS.

Then by averaging the inverse deformation fields from the initial tem-

plate to individual hyoid, we obtain the yet another final template. Figure

7 shows the initial and final templates. The isosurface of the final template

volume is extracted using the marching cube algorithm [45]. Figure 8 shows

the mean displacement differences between the groups I and II (top) and II

and III (bottom). Each row shows the group differences of the displacement:

group II - group I (first row) and group III - group II (second row). The

arrows are the growth direction given by the mean displacement differences

and colors indicate their lengths in mm. We are interested in localizing the

regions of hyoid bone growth between the age groups.

70 subjects are binned into three age categories: ages between 0 and 6

years (group I), between 7 and 12 years (group II), and between 13 and 19

years (group III). There are 26, 14 and 30 subjects in group I, II and III

respectively. The main biological hypothesis of interest is if there is any

localized hyoid bone growth spurts between these specific age groups.

4.2 Results

The displacement from the template to an individual surface is obtained at

each mesh vertex. Since the length measurement provides a much easier
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Figure 7: Left: Hyoid F155 which forms an initial template MI . All other

mandibles are affine registered to F155. Middle: The superimposition of

affine registered hyois showing local misalignments. Diffeomorphic regis-

tration is then performed to register misaligned affine transformed hyoids.

Right: The average of deformation with respect to F155 provides the final

population average templateMF where statistical parametric maps will be

constructed.

biological interpretation, we used the length of displacement vector as a re-

sponse variable among many other possible features. Since the length on the

template surface is expected to be noisy due to image acquisition, segmen-

tation and image registration errors, it is necessary perform the proposed

kernel regression and subsequently reduce the type-I error and obtain more

stable SPM. Figure 3 shows an example of kernel regression on our data.

The kernel regression increases the signal-to-noise ratio (SNR) and improves

the smoothness and Gaussianness of data. Subsequently, the heat kernel re-

gression of the displacement length is taken as the response variable. We

have chosen t = 5 as the bandwidth for the study since the bandwidth 5

is where the type-I error starts to flatten out in Figure 5. Note that the

Fourier expansion with 500 LB-eigenfunctions is close to the original data

(relative error of less than 0.3%). Hence, performing the proposed kernel re-
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Figure 8: Hyoid bones are binned into three age groups: group I (ages 0 and

6), group II (ages 7 and 12) and group III (ages 13 and 19) and the mean

displacements between the groups are visualized. Each row shows the mean

group differences of the displacement: group II - group I (first row) and

group III - group II (second row). The arrows are the mean displacement

differences and colors indicate their lengths in mm.

gression before the statistical analysis can substantially smaller type-I error

demonstrating its effectiveness.

After the displacement lengths are smoothed, we constructed the F-field,

or equivalently the T-field square, for testing the length difference between

the age groups I and II, II and III, and I and III showing the regions of

growth spurts between different age range (Figure 9). Since test statistics

are constructed over all mesh vertices on the mandible, multiple comparisons

were account using the random field theory [36, 20].

For testing the differences between the groups I and II, II and III, and
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I and III, they are based on F-field with 1 and 38, 1 and 42, and 1 and

54 degrees of freedom respectively. The result is displayed in Figure 9,

where the significant results were only found between the groups II and III

(middle), and I and III (bottom) at 0.1 level. Between the groups II and

III, we obtained the maximum F-statistic value of 9.36 (right hyoid), which

corresponds to the p-value of 0.041 (corrected). Between the groups I and

III, we obtained the maximum F-statistic value of 10.55 (middle hyoid),

which corresponds to the p-value of 0.028 (corrected). In the F -statistic

maps for middle and bottom rows, red regions are considered as exhibiting

significant growth spurts.

5 Conclusion

We have developed a new kernel regression framework on a manifold that

unifies bivariate kernel regression, heat diffusion and wavelets in a single

coherent mathematical framework. The kernel regression is both global

and local in a sense it uses global basis functions to perform regression but

locally equivalent to diffusion wavelet transform. The proposed framework is

demonstrated to reduce type-I error in modeling shape variations compared

to the usual Fourier series expansion. The method is then used in developing

a statistical inference procedure for functional signals on manifolds. The

whole framework
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Figure 9: F-statistic maps on hyoid showing age effect between the groups.

The significant growth regions (red) are identified only between group II

and III, and I and III. The growth is highly localized near the regions that

connect the disconnected hyoid bones.
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