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Abstract We present a unified heat kernel smoothing framework for modeling 3D
anatomical surface data extracted from medical images. Due to image acquisition
and preprocessing noises, it is expected the medical imaging data is noisy. The sur-
face coordinates of the anatomical structures are regressed using the weighted linear
combination of Laplace-Beltrami (LB) eigenfunctions to smooth out noisy data and
perform statistical analysis. The method is applied in characterizing the 3D growth
pattern of human hyoid bone between ages 0 and 20 obtained from CT images. We
detected a significant age effect on localized parts of the hyoid bone.

1 Introduction

For normally developing children, age and gender could be major factors that af-
fect the functions and structures of growing hyoid bone. As in other developmental
studies [13, 35], we expect highly localized complex growth pattern to emerge be-
tween ages 0 and 20 in the hyoid bone. It is expected the growth to be outward with
respect to the surface of the bone. However, it is unclear what specific parts of the
hyoid bone are growing. This provides a biological motivation for a need to develop
a local surface-based morphometric technique beyond simple volumetric techniques
that cannot detect localized subtle anatomical changes along the hyoid bone surface.
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The end results of existing surface-based morphometric studies in medical imag-
ing are statistical parametric maps (SPM) that show the statistical significance of
growth at each surface mesh vertex [13, 29, 42]. In order to obtain stable and
robust SPM, various signal smoothing and filtering methods have been proposed.
Among them, diffusion equations, kernel smoothing, and wavelet-based approaches
are probably most popular. Diffusion equations have been widely used in image
processing as a form of noise reduction starting with Perona and Malik in 1990’s
[27]. Although numerous techniques have been developed for performing diffusion
along surfaces [13, 2, 32, 31, 24, 33], most approaches are nonparametric and re-
quires finite element or finite difference schemes which are known to suffer various
numerical instabilities [12].

Kernel smoothing based models have been also proposed for surface and man-
ifolds data [6, 12]. The kernel methods basically smooth data as weighted average
of neighboring mesh vertices using mostly a Gaussian kernel and its iterative appli-
cation is supposed to approximates the diffusion process. Recently, wavelets have
been popularized for surface and graph data. Spherical wavelets have been used on
brain surface data that has been mapped onto a sphere [25, 7]. Since wavelet basis
functions have local supports in both space and scale, the wavelet coefficients from
the scale-space decomposition using the spherical wavelets provides shape features
that describe local shape variation at a variety of scales and spatial locations. How-
ever, spherical wavelets have an intrinsic problem that they require to establish a
smooth mapping from the surface to a unit sphere, which introduces a serious met-
ric distortion. The spherical mapping such as conformal mapping introduces serious
metric distortion which usually compounds SPM. Furthermore, such basis functions
defined on sphere seem to be suboptimal than those directly defined on anatomical
surface, in detecting locations or scales of shape variations. To remedy the limitation
of spherical wavelets, spectral graph wavelet transform defined on a graph has been
applied to arbitrary surface meshes by treating surface meshes as graphs [3, 16, 20].
Wavelet transform is a powerful tool decomposing a signal or function into a collec-
tion of components localized at both location and scale. Although all three methods
(diffusion-, kernel- and wavelet-based) look different from each other, it is possible
to develop a unified framework that relates all of them in a coherent mathematical
framework.

Starting with a symmetric positive definite kernel, we propose a unified kernel
smoothing framework within the Hilbert space theory. The proposed kernel smooth-
ing works for any symmetric positive definite kernel, which behaves like weights
between two functional data. We show how this facilitates a coherent statistical in-
ference for functional signals defined on an arbitrary manifold. The focus of the
paper is on the development of the proposed kernel smoothing on manifolds.

The outline of this paper is as follows. First, we present a unified bivariate kernel
smoothing that is related to diffusion-like equations on manifolds. The proposed ker-
nel regression inherits various mathematical and statistical properties of diffusion-
like equations. We establish the relationship between the kernel smoothing and re-
cently popular spectral graph wavelets for manifolds. The proposed kernel smooth-
ing is shown to be equivalent to the wavelet transform. This mathematical equiva-
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Fig. 1 CT image showing the location of the hyoid bone and 3D model showing the relative loca-
tion of the hyoid bone with respect to the mandible (gray) and vocal tract structures (green).

lence levitates a need for constructing wavelets using a complicated computational
machinery as often done in previous diffusion wavelet constructions [3, 16, 20]. A
unified statistical inference framework is developed for a CT imaging application by
linking the kernel regression to the random field theory [34, 41]. This levitates the
need for using time consuming nonparametric procedures such as false discovery
rates (FDR) or permutation tests that do not have explicate control over the scale
and smoothness of models. Finally, we illustrate how the kernel smoothing proce-
dure can be used to localize the disconnected hyoid bone growth pattern in human.

2 Preliminary

First, let us illustrate two statistical problems in the Euclidean space that motivate
the development of the proposed kernel smoothing on manifolds.

Consider measurements fi sampled at pi ∈ Rd . The measurements are usually
modeled as

fi = h(pi)+ εi

with mean zero noise εi and unknown mean function h that has to be estimated.
In the traditional kernel regression framework [6, 14, 26], the mean function h is
estimated in the weighted least squares fashion:

ĥ(p) =
k

∑
j=1

G(p− pi) fi,

where G is given by Nadaraya-Waton type of normalized kernel. In the local poly-
nomial regression framework, h is estimated as
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ĥ(p) = arg min
β0···βk

n

∑
i=1

G(p− pi)
∣∣∣ fi−

k

∑
j=0

β j(p− pi)
j
∣∣∣2. (1)

Often normalized Gaussian kernels are used for G. In many related local polynomial
or kernel regression frameworks, kernel G and polynomial basis p j are translated by
the amount of pi in fitting the data locally. In this fashion, at each data point pi, ex-
actly the same shape of kernel and distance are used. However, one immediately
encounters a difficulty of directly generalizing the Euclidean formulation (1) to an
arbitrary surface since it is unclear how to translate the kernel and basis in a co-
herent fashion. To remedy this problem, many recent kernel regression framework
on manifolds use bivariate kernel G(p,q) and bypass the problem of translating a
univariate kernel [6]. By simply changing the second argument, it has the effect of
translating the kernel.

A similar problem is also encountered in wavelets in a Euclidean space. Consider
a wavelet basis Wt,q(p) obtained from a mother wavelet W with scale and translation
parameters t and q:

Wt,q(p) =
1
t

W
( p−q

t

)
. (2)

Scaling a function on a surface is trivial. But the difficulty arises when one tries to
define a mother wavelet and translate it on a surface. It is not straightforward to gen-
eralize the Euclidean formulation (2) to an arbitrary manifold. If one tries to modify
the existing spherical wavelets to an arbitrary surface [25, 7], one also encounters
the lack of regular grids on the surface. The recent work based on the spectral graph
wavelet transform bypasses this problem also by taking bivariate kernel as a mother
wavelet [3, 16, 23, 20]. To remedy these two different but related problems, we
propose to use a bivariate kernel and bypass the problem of translating a univariate
kernel. By simply changing the second argument, it has the effect of translating the
kernel.

3 Methods

In many anatomical studies in medical imaging, measurements are sampled densely
at each voxel, so it is more practical to model the measurements as a function. Con-
sider a functional measurement f defined on a manifold M ⊂ Rd . We assume the
following additive model:

f (p) = h(p)+ ε(p), (3)

where h is the unknown signal and ε is a zero-mean random field, possibly Gaus-
sian. The manifold M can be a single connected or multiple disjoint components
as our hyoid bone application. We further assume f ∈ L2(M ), the space of square
integrable functions on M with the inner product
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〈 f ,g〉=
∫

M
f (p)g(p) dµ(p),

where µ is the Lebesgue measure. Define a self-adjoint operator L satisfying

〈g1,L g2〉= 〈L g1,g2〉

for all g1,g2 ∈ L2(M ). Then L induces the eigenvalues λ j and eigenfunctions ψ j
on M :

L ψ j = λ jψ j. (4)

Without loss of generality, we can order the eigenvalues

0 = λ0 < λ1 ≤ λ2 ≤ ·· · .

The eigenfunctions ψ j form an orthonormal basis in L2(M ). We will consider a
smooth symmetric positive definite kernel of the form

K(p,q) =
∞

∑
j=0

τ jψ j(p)ψ j(q) (5)

for some τ j in this paper. The constants τ j are identified as follows. Apply the kernel
convolution on the eigenfunction ψ j:

K ∗ψ j(p) =
∫

M
K(p,q)ψ j(q) dµ(q). (6)

Substituting (7) into (6), we have K ∗ψ j(p) = τ jψ j(p) indicating τ j and ψ j must be
the eigenvalues and eigenfunctions of the convolution (6).
Example 1. For τ j = e−λ t , we have heat kernel

K(p,q) =
∞

∑
j=0

e−λ t
ψ j(p)ψ j(q) (7)

that has been often discussed in numerous studies but without much theoretical jus-
tification [18, 30, 19, 10]. For this study, we will denote the heat kernel as Ht(p,q)
to explicitly show that the spread of the kernel is determined by t, diffusion time.

3.1 Kernel smoothing on manifolds

Consider subspace Hk ⊂ L2(M ) spanned by the orthonormal basis {ψ j}, i.e.

Hk = {
k

∑
j=0

β jψ j(p) : β j ∈ R}.
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Fig. 2 Laplace-Beltrami eigenfunctions ψ j of various degrees ( j = 0,1,5,20,100,500) on the
template. The first eigenfunction is constant in each component. As the degree increases, the spatial
frequency increases.

Then the least squares estimation (LSE) of h in Hk is given by the shortest distance
from f to Hk:

ĥ(p) = arg min
h∈Hk

∫
M

∣∣ f (p)−h(p)
∣∣2 dµ(p) =

k

∑
j=0

f jψ j(p), (8)

where f j = 〈 f ,ψ j〉 are the Fourier coefficients. Figure 3 shows an example of LSE
with L as the Laplace-Beltrami operator and k = 1000. This is the usual Fourier
series expansion that tends to suffer the Gibbs phenomenon, i.e., ringing artifact
[8, 15] for compact surfaces (Example 1).

The Gibbs phenomenon can be effectively removed if the Fourier series expan-
sion converges fast enough as the number of basis functions goes to infinity. By
weighting the Fourier coefficients exponentially smaller, we can make the represen-
tation converges faster; this can be achieved by additionally weighting the squared
residuals in equation (8) with some weights. Thus, we propose to estimate h by
minimizing the weighted distance to the space Hk:

ĥ(p) = arg min
h∈Hk

∫
M

∫
M

K(p,q)
∣∣∣ f (q)−h(p)

∣∣∣2 dµ(q) dµ(p). (9)
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Fig. 3 Heat kernel smoothing with different bandwidth between 0.1 and 1000. As the bandwidth
increases, the kernel regression becomes inversely proportional to the square root of the surface
area.

Without loss of generality, we will assume the kernel to be a probability distribution
so that ∫

M
K(p,q) dµ(q) = 1

for all p ∈M . The solution of (9) has the following analytic expression:

Theorem 1.

ĥ(p) = arg min
h∈Hk

∫
M

∫
M

K(p,q)
∣∣∣ f (q)−h(p)

∣∣∣2 dµ(q) dµ(p) =
k

∑
j=0

τ j f jψ j,

where f j = 〈 f ,ψ j〉 are Fourier coefficients.
Proof. Any function h ∈Hk can be expressed as

h(p) =
k

∑
j=0

β jψ j(p). (10)

Then by plugging (10) into the inner integral I(p), it becomes

I(p) =
∫

M
K(p,q)

∣∣∣ f (q)− k

∑
j=0

β jψ(p)
∣∣∣2 dµ(q).
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Simplifying the expression, we obtain

I(p) =
k

∑
j=0

k

∑
j′=0

ψ j(p)ψ j′(p)β jβ j′ −2K ∗ f (p)
k

∑
j=0

ψ j(p)β j +K ∗ f 2(p). (11)

The kernel can be written as

K(p,q) =
∞

∑
j′=0

τ j′ψ j′(p)ψ j′(q). (12)

The convolution is then written as

K ∗ f (p) =
∞

∑
j′=0

τ j′ f j′ψ j′(p).

Since I is an unconstrained positive semidefinite quadratic program (QP) in β j,
there is no unique global minimizer of I without additional linear constraints. Inte-
grating I further with respect to dµ(p), we collapses (11) to a positive definite QP,
which yields a unique global minimizer:

∫
M

I(p) dµ(p) =
k

∑
j=0

β
2
j −2

k

∑
j=0

τ j f jβ j + const.

The minimum of the above integral is obtained when all the partial derivatives with
respect to β j vanish, i.e. ∫

M

∂ I
∂β j

dµ(p) = 2β j−2τ j f j = 0

for all j. Hence ∑
k
j=0 τ j f jψ j must be the unique minimizer. ut

Theorem 1 generalizes the weighted spherical harmonic (SPHARM) represen-
tation on a unit sphere to an arbitrary manifold [9]. Theorem 1 implies that the
kernel regression can be performed by simply computing the Fourier coefficients
f j = 〈 f ,ψ j〉 without doing any numerical optimization. The numerically difficult
optimization problem is reduced to the problem of computing Fourier coefficients.
If the kernel K is a Dirac-delta function, the kernel regression simply collapses to
the least squares estimation (LSE) which results in the standard Fourier series, i.e.

ĥ(p) = arg min
h∈Hk

∫
M

∣∣∣ f (q)−h(q)
∣∣∣2 dµ(q) =

k

∑
j=0

f jψ j.

It can be also shown that as k→ ∞, the kernel regression

ĥ =
k

∑
j=0

τ j f jψ j
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converges to convolution K ∗ f establishing the connection to the manifold-based
kernel smoothing framework [5, 12]. Hence, asymptotically the proposed kernel
regression should inherit many statistical properties of kernel smoothing.

3.2 Properties of kernel smoothing

Kernel smoothing can be shown to be related to the following diffusion-like Cauchy
problem.

Theorem 2. For an arbitrary self-adjoint differential operator L , the unique solution
of the following initial value problem

∂g(p, t)
∂ t

+L g(p, t) = 0,g(p, t = 0) = f (p) (13)

is given by

g(p, t) =
∞

∑
j=0

e−λ jt f jψ j(p). (14)

Proof. For each fixed t, g(p, t) can be written as

g(p, t) =
∞

∑
j=0

c j(t)ψ j(p). (15)

Then

L g(p, t) =
∞

∑
j=0

c j(t)λ jψ j(p). (16)

Substituting (15) and (16) into (13), we obtain

∂c j(t)
∂ t

+λ jc j(t) = 0 (17)

for all j. The solution of equation (17) is given by c j(t) = b je−λ jt . So we have a
solution

g(p, t) =
∞

∑
j=0

b je−λ jtψ j(p).

At t = 0, we have

g(p,0) =
∞

∑
j=0

b jψ j(p) = f (p).

The coefficients b j must be the Fourier coefficients, i.e.,
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b j = 〈 f ,ψ j〉= f j.

ut
For a particular choice of kernel K with τ j = e−λ jt , the proposed kernel regression

ĥ = ∑
k
j=0 τ j f jψ j should converge to the solution of the diffusion-like equation.

Example 2. If L is the Laplace-Beltrami operator, (13) becomes an isotropic dif-
fusion equation as a special case and we are then dealing with heat kernel

Ht(p,q) =
∞

∑
j=0

e−λ jtψ j(p)ψ j(q),

which is often explored mathematical objects in various fields [5, 12].
In order to construct wavelets on an arbitrary graph and mesh, diffusion wavelet

transform has been proposed recently [3, 16, 20]. The diffusion wavelet construction
has been fairly involving so far. However, it can be shown to be a special case of
the proposed kernel regression and the proposed method is substantially simpler
to construct. Following the notations in [3, 16, 20], diffusion wavelet Wt,p(p) at
position p and scale t is given by

Wt,q(p) =
k

∑
j=0

g(λ jt)ψ j(p)ψ j(q),

for some scale function g. If we let τ j = g(λ jt), the diffusion wavelet transform is
given by

〈Wt,p, f 〉=
∫

M
Wt,q(p) f (p) dµ(p) =

k

∑
j=0

τ j f jψ j(q),

which is the exactly kernel regression we introduced. Hence, the diffusion wavelet
transform can be simply obtained by doing the kernel regression without an addi-
tional wavelet machinery [20]. Further, if we let g(λ jt) = e−λ jt , we have

Wt,p(q) = Ht(p,q),

which is a heat kernel. The bandwidth t of heat kernel controls resolution while the
translation is done by shifting one argument in the kernel.

Although the kernel regression is constructed using global basis functions ψ j, the
kernel regression at each point p coincides with the diffusion wavelet transform at
that point. Hence, just like wavelets, the kernel regression will have the localization
property of wavelets. This is demonstrated in the following example:
Example 3. A hat-shaped step function is simulated in 3D as z = 1 for x2 + y2 < 1
and z = 0 for 1 ≤ x2 + y2 ≤ 2 (Figure 4). Then the step function is reconstructed
using the Fourier series expansion via LSE (top) and kernel regression (bottom). In
the both cases, up to 7225 basis functions were used. For the kernel regression, the
heat kernel with bandwidth t = 0.0001 is used. LSE clearly shows the visible Gibbs
phenomenon, i.e., ringing artifact [8, 15] compared to the kernel regression.
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Fig. 4 The Gibbs phenomenon on a hat shaped simulated surface showing the ringing effect on
the traditional Fourier series expansion (top) and the reduced effect on the heat kernel smoothing
(bottom). 7225 basis functions were used for the both cases and the bandwidth t = 0.001 is used
for the kernel regression.

3.3 Numerical Implementation

The Laplace-Beltrami operator is chosen as the self-adjoint operators L of choice.
The eigenfunctions of the Laplace-Beltrami operator on an arbitrary curved surface
is analytically unknown. So it is necessary to discretize (4) using the Cotan formu-
lation as a generalized eigenvalue problem [44, 28]:

Cψ = λAψ, (18)

where C is the stiffness matrix, A is the mass matrix and ψ = (ψ(p1), · · · ,ψ(pn))
′ is

the eigenfunction evaluated at n mesh vertices. Once we obtained the basis functions
ψ j, the corresponding Fourier coefficients β j are estimated as

β j = f′Aψ j,

where f = ( f (p1), · · · , f (pn))
′ and ψ j = (ψ j(p1), · · · ,ψ j(pn))

′ [44]. Figure 2 shows
few representative LB-eigenfunctions on the hyoid surface. For heat kernel smooth-
ing, we used the bandwidth σ = 5 and 500 LB-eigenfunctions on the final template.
The number of eigenfunctions used is more than sufficient to guarantee relative error
less than 0.3% in our data.
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Fig. 5 Type-I error plot over bandwidth t of kernel regression for testing the difference between
the groups I and III. As the bandwidth increases, the multiple comparisons corrected type-I error
decreases. The bandwidth 5 is chosen for the study. The choice of the bandwidth around 5 does not
change the over-all Type-I error much.

3.4 Statistical Inference

We are interested in determining the significance of functional signals on a manifold
8. We borrow the statistical parametric mapping (SPM) framework for analyzing
and visualizing statistical tests performed on the template surface that is often used
in brain image analysis [2, 21, 36, 37, 43]. Since test statistics are constructed over
all mesh vertices on the surface, multiple comparisons need to be accounted. For
continuous functional data, the random field theory [34, 37, 41] is natural to use.
The random field theory assumes the measurements to be smooth Gaussian random
field. Heat kernel smoothing will make the data more smooth and Gaussian as well
as increase the signal-to-noise ratio [11].

Consider a functional measurements f1, · · · , fn on manifold M . In the simplest
statistical setting, the measurements can be modeled as

fi(p) = h(p)+ εi(p),

where h is an unknown group level signal and εi is a zero-mean Gaussian random
field [41]. At each fixed point p, we are assuming εi ∼ N(0,σ2).

We are interested in determining the significance of h, i.e.

H0 : h(p) = 0 for all p ∈M vs. H1 : h(p)> 0 for some x ∈M . (19)



Title Suppressed Due to Excessive Length 13

Note that any point p0 that gives h(p0) > 0 is considered as signal. The hypoth-
sis (19) is an infinite dimensional multiple comparisons problem for continuously
indexed hypotheses over the manifold M . The underlying group level signal h is
estimated using the proposed heat kernel smoothing. Subsequently, a test statistic
is given by a T-field T (p) or a F-field, which is simply given by the square of the
T-field [41, 37].

For sufficiently high threshold z, the corrected type-I error of testing hypothesis
(19) is given by

P
(

sup
p∈M

T (p)> z
)
=

d

∑
j=0

µ j(M )ρ j(z),

where µd(M ) is the j-th Minkowski functional or intrinsic volume of M and ρ j is
the j-th Euler characteristic (EC) density of T-field. Since the hyoid bone is compact
with no boundary but has three disconnected components, the Minkowski function-
als are simply

µ2(M ) = area(M )/2
µ1(M ) = 0
µ0(M ) = χ(M ) = 3×2.

The term µ1 is zero since there is no boundary and µ0 is simply the Euler charac-
teristic of the template surface. Note that the Euler characteristic of a closed surface
with no hole or handle is 2 and there are three such surfaces. The EC-densities of
the T-field with ν degrees of freedom is given by

ρ0(z) = 1−P(Tν ≤ z),

ρ1(z) =
1√
2t2
· 1

2π

(
1+

z2

ν
)−(ν−1)/2,

ρ2(z) =
1

2t2 ·
1

(2π)3/2

Γ ( ν+1
2 )

( ν

2 )
1/2Γ ( ν

2 )
z
(

1+
z2

ν

)−(ν−1)/2
.

The EC-density of the F-field is similarly given in [41, 34]. The EC-density has
the kernel bandwidth 2t2 in the formulation so the inference is done at a particular
smoothing scale. Figure 5 shows the type-I error plot over different bandwidth t of
the kernel regression in our application. As the bandwidth t becomes zero, the type-I
error increases. When t = 0, the kernel regression collapse to the usual Fourier se-
ries expansion. Note that the Fourier expansion with 500 LB-eigenfunctions is close
to the original data without any smoothing. Hence, the proposed kernel regression
can be viewed as having substantially smaller type-I error compared to the Fourier
series expansion as well as the original data demonstrating a better statistical per-
formance. Type-II error and the statistical power can be also computed similarly.

Theorem 3. The statistical power P of testing the hypotheses

H0 : h(p) = 0 for all p ∈M vs. H1 : h(p) = cσ > 0 for some p ∈M .
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Fig. 6 Schematic of a case when H1 is true.

using the T random field T (p) is given by

P(n)≈ 1− exp
[
−

d

∑
j=0

µ j(M1)ρ j(t∗α − c
√

n)
]
,

where t∗α is the α-quantile given by

α = P
(

sup
p∈M

T (p)> t∗α
)
.

Proof. In the region M0 corresponding to H0,

f i(p)∼ N(0,σ2).

In the region M1 corresponding to H1,

f i(p)∼ N(cσ ,σ2).

Figure 6 illustrates this setting.
Consider the test statistic

T (p) =
f̄ (p)

S(p)/
√

n
, (20)

where f̄ and S are the sample mean and standard deviation of the measurements
f i, · · · , f n. In M0, T (p) is a T random field with n− 1 degrees of freedom [1]. In
M1, T (p) can be written as



Title Suppressed Due to Excessive Length 15

T (p) = T ′(p)+
cσ

S(p)/
√

n
,

where T ′(p) a T random field with n− 1 degrees of freedom. Since σ is usually
estimated using the standard deviation, approximately we have S(p) = σ and the
test statistic becomes T (p) = T ′(p)+ c

√
n. At each fixed p, T (p) is no longer a T

random field but a non-central T random field [17]. Subsequently the power P at
the given α-level is given by

P(n) = P
(

sup
p∈M1

T (p)> t∗α
)

(21)

= P
(

sup
p∈M1

T ′(p)> t∗α − c
√

n
)
, (22)

where t∗α is the α-quantile of supp∈M T (p) under H0, i.e.

α = P
(

sup
p∈M

T (p)> t∗α
)
.

Although (21) is intractable to directly compute, we can approximate (22) us-
ing the expected Euler characteristic (EC) method [40, 38]. The power (22) can be
written as

P(n) =
d

∑
j=0

µ j(M1)ρ j(t∗α − c
√

n),

where µd(M ) is the j-th Minkowski functional or intrinsic volume of M and ρ j
is the j-th EC-density of T-field [39, 1, 34, 38]. The expansion only works for suf-
ficiently large t∗α − c

√
n. For small threshold, the power may not be bounded be-

tween 0 and 1. So it is necessary to use the exponential transform used in [17]
to bound the power. For small P(n), using the Taylor expansion, we can write
exp
[
−P(n)

]
≈ 1−P(n). Equivalently, it is written as P(n)≈ 1−exp

[
−P(n)

]
.

This transformation guarantees the power estimation to be bound between 0 and 1
[17]. Subsequently, the power is given by

P(n) = 1− exp
[
−

d

∑
j=0

µ j(M1)ρ j(t∗α − c
√

n)
]
.

ut
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4 Application

4.1 CT Imaging Data and Preprocessing

The study consists of high resolution CT images of 70 normal subjects ages be-
tween 0 and 20 years (mean age = 58.0 ± 11.3 years). CT scans were converted
to DICOM format and Analyze 8.1 software package (AnalyzeDirect, Inc., Over-
land Park, KS) was then used in segmenting binary hyoid bone images by a trained
individual rater in the native space by simple image intensity thresholding and care-
ful manual editing. A nonlinear image registration using the diffeomorphic shape
and intensity averaging technique with cross-correlation as similarity metric was
performed through Advanced Normalization Tools (ANTS) [4]. A study-specific
template was constructed. We have chosen a 12 year old subject identified as F155
as the initial template and aligned the remaining 69 hyoids to the initial template
affinely to remove the overall size variability. Some subject may have larger hyoid
than others so it is necessary to remove the global size differences in local shape
modeling. From the affine transformed individual hyoid surfaces, we performed the
diffeomorphic nonlinear image registration to the template using ANTS.

Then by averaging the inverse deformation fields from the initial template to in-
dividual hyoid, we obtain the yet another final template. Figure 7 shows the initial
and final templates. The isosurface of the final template volume is extracted using
the marching cube algorithm [22]. Figure 8 shows the mean displacement differ-
ences between the groups I and II (top) and II and III (bottom). Each row shows
the group differences of the displacement: group II - group I (first row) and group
III - group II (second row). The arrows are the growth direction given by the mean
displacement differences and colors indicate their lengths in mm. We are interested
in localizing the regions of hyoid bone growth between the age groups.

70 subjects are binned into three age categories: ages between 0 and 6 years
(group I), between 7 and 12 years (group II), and between 13 and 19 years (group
III). There are 26, 14 and 30 subjects in group I, II and III respectively. The main
biological hypothesis of interest is if there is any localized hyoid bone growth spurts
between these specific age groups.

4.2 Results

The displacement from the template to an individual surface is obtained at each
mesh vertex. Since the length measurement provides a much easier biological inter-
pretation, we used the length of displacement vector as a response variable among
many other possible features. Since the length on the template surface is expected
to be noisy due to image acquisition, segmentation and image registration errors,
it is necessary perform the proposed kernel regression and subsequently reduce the
type-I error and obtain more stable SPM. Figure 3 shows an example of kernel
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Fig. 7 Left: Hyoid F155 which forms an initial template MI . All other mandibles are affine reg-
istered to F155. Middle: The superimposition of affine registered hyois showing local misalign-
ments. Diffeomorphic registration is then performed to register misaligned affine transformed hy-
oids. Right: The average of deformation with respect to F155 provides the final population average
template MF where statistical parametric maps will be constructed.

smoothing on our data. The kernel smoothing increases the signal-to-noise ratio
(SNR) and improves the smoothness and Gaussianness of data. Subsequently, the
heat kernel smoothing of the displacement length is taken as the response variable.
We have chosen t = 5 as the bandwidth for the study since the bandwidth 5 is where
the type-I error starts to flatten out in Figure 5. Note that the Fourier expansion with
500 LB-eigenfunctions is close to the original data (relative error of less than 0.3%).
Hence, performing the proposed kernel regression before the statistical analysis can
substantially smaller type-I error demonstrating its effectiveness.

After the displacement lengths are smoothed, we constructed the F-field, or
equivalently the T-field square, for testing the length difference between the age
groups I and II, II and III, and I and III showing the regions of growth spurts be-
tween different age range (Figure 9). Since test statistics are constructed over all
mesh vertices on the mandible, multiple comparisons were account using the ran-
dom field theory [37, 41].

For testing the differences between the groups I and II, II and III, and I and III,
they are based on F-field with 1 and 38, 1 and 42, and 1 and 54 degrees of freedom
respectively. The result is displayed in Figure 9, where the significant results were
only found between the groups II and III (middle), and I and III (bottom) at 0.1 level.
Between the groups II and III, we obtained the maximum F-statistic value of 9.36
(right hyoid), which corresponds to the p-value of 0.041 (corrected). Between the
groups I and III, we obtained the maximum F-statistic value of 10.55 (middle hyoid),
which corresponds to the p-value of 0.028 (corrected). In the F-statistic maps for
middle and bottom rows, red regions are considered as exhibiting significant growth
spurts.
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Fig. 8 Hyoid bones are binned into three age groups: group I (ages 0 and 6), group II (ages 7 and
12) and group III (ages 13 and 19) and the mean displacements between the groups are visualized.
Each row shows the mean group differences of the displacement: group II - group I (first row) and
group III - group II (second row). The arrows are the mean displacement differences and colors
indicate their lengths in mm.

5 Conclusion

We have developed a new kernel regression framework on a manifold that unifies
bivariate kernel regression, heat diffusion and wavelets in a single coherent math-
ematical framework. The kernel regression is both global and local in a sense it
uses global basis functions to perform regression but locally equivalent to diffusion
wavelet transform. The proposed framework is demonstrated to reduce type-I error
in modeling shape variations compared to the usual Fourier series expansion. The
method is then used in developing a statistical inference procedure for functional
signals on manifolds.
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