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Abstract

We present an approach for large-scale modeling of
parametric surfaces using spherical harmonics (SHs). A
standard least square fitting (LSF) method for SH expan-
sion is not scalable and cannot accurately model large 3D
surfaces. We propose an iterative residual fitting (IRF) al-
gorithm, and demonstrate its effectiveness and scalability in
creating accurate SH models for large 3D surfaces. These
large-scale and accurate parametric models can be used in
many applications in computer vision, graphics, and bio-
medical imaging. As a simple extension of LSF, IRF is very
easy to implement and requires few machine resources.

1. Introduction

Parametric surface modeling is an important research
topic in 3D data processing, where a pre-defined mathe-
matic model is used to describe a surface. Typical tech-
niques include spherical harmonics (SHs) [2, 4], hyper-
quadrics [14], and superquadrics [23]. Recently, the SH
method has received a lot attention, and has been stud-
ied and applied to several areas including computer vision
[2, 4], computer graphics [5, 10, 24], medical image analy-
sis [11, 12, 16, 20, 21], and computational biology [19].

Spherical harmonics were first used as a type of para-
metric surface representation for radial or stellar surfaces
r(θ, φ) by Schudy and Ballard [2, 20], where the harmonics
were used as basis functions to expandr(θ, φ). Recently,
an extended method, called SPHARM, was proposed by
Brechbühler, Gerig and Kubler [4] to model more general
shapes, where three functions ofθ andφ were used to rep-
resent a surface. SPHARM can deal with protrusions and
intrusions and can model arbitrarily shaped but simply con-
nected 3D objects.

Although SPHARM has been successfully applied to
many applications in biomedical imaging [11, 12, 16, 21],
it is still difficult to use it to accurately model large and

complicated surfaces such as brain cortex. In these studies,
a least square fitting (LSF) method [4] is usually used for
spherical harmonic expansion. In typical cases, a 3D model
with a few thousand vertices is expanded using spherical
harmonics up to degree 15-25 and the SPHARM recon-
struction can only roughly approximate the original model.

To the best of our knowledge, although SPHARM has
been available for a decade, no attempts have been made
to build complicated SPHARM models using a large-scale
LSF method. One possible reason is that most methods for
solving large linear systems [3, 9] are either designed for
sparse or symmetric matrices or not easy to implement. In
this paper, we propose an iterative residual fitting (IRF) al-
gorithm, which can perform large-scale spherical harmonic
expansion (e.g., up to degree100) and generate accurate
models for complicated 3D surfaces (e.g., with > 40, 000
vertices) efficiently. As a simple extension of LSF, IRF is
very easy to implement and requires few machine resources.
As a result, large-scale SPHARM modeling can be easily
done on standard workstations with average configuration
using a standard linear solver. We also believe that much
larger SPHARM models can be created if one combines the
IRF method with an enhanced large-scale linear solver.

Besides LSF, spherical harmonic expansions can also be
evaluated using numeric integrations [15, 19]. One of the
best approaches in this category was proposed by Healyet
al. [15]. Healy’s algorithm was used by several studies
[5, 13, 24] to process 3D models. Bulow [5] used spherical
harmonics to describe star-shaped surfaces and developed a
surface smoothing method based on linear diffusion. Zhou
et al. [24] developed a 3D surface filtering method using
spherical harmonics that worked for arbitrary surfaces. Gu
et al. [13] used the conformal mapping for spherical har-
monic transformation for the purpose of brain surface com-
pression and rotation-invariant shape analysis. The spher-
ical harmonic expansions used in these studies were typi-
cally up to degree 30 or 60, and the corresponding recon-
structions did not seem to capture all the surface details of
the original models. We expect that adding more higher



degree harmonics into the models can improve the repre-
sentation accuracy. Thus, it is an interesting future topicto
compare Healy’s method with our IRF algorithm concern-
ing both modeling accuracy and running time.

2. Preliminary

2.1. Surface Parameterization

We use the following convention for spherical coordi-
nates(θ, φ) to match the definition of spherical harmon-
ics: θ is taken as the polar (colatitudinal) coordinate with
θ ∈ [0, π], andφ as the azimuthal (longitudinal) coordi-
nate withφ ∈ [0, 2π). To create a SPHARM model for
a 3D closed surface, we first need to perform surface pa-
rameterization [8] that establishes a bijective mapping be-
tween each vertexv = (x, y, z)T on a surface and a pair
of spherical coordinates (θ, φ). We usev(θ, φ) to denote
such a mapping, meaning that,v is parameterized with
(θ, φ). Taking into consideration thex, y, andz coordi-
nates ofv in object space, the mapping can be represented
as:v(θ, φ) = (x(θ, φ), y(θ, φ), z(θ, φ))T .

A satisfactory mapping often requires a minimization of
some types of distortions such as length distortion, angle
distortion, or area distortion. Here we list a few interest-
ing spherical mapping methods. (1) Brechbühleret al. [4]
developed an equal area mapping technique for voxel sur-
faces by solving a constrained optimization problem. (2)
We [22] developed a spherical mapping technique for trian-
gle surfaces to control both area and length distortion. (3)
We [6] created a spherical mapping by deforming an ellip-
soid mesh to cortical surfaces as well as to the unit sphere.
(4) Guet al. [13] developed a conformal mapping method
to minimize angle distortions. (5) Praun and Hoppe [18]
developed a spherical mapping method that minimizes dis-
tortion in vector length. In our experiments, we used five 3D
models, and their spherical parameterizations were created
using Method 1 (Hipp), Method 2 (Bowl, Part, and Head),
and Method 3 (Cort). Figure 1 shows the Bowl model and
its spherical parameterization.

2.2. Spherical Harmonic Expansion

Spherical harmonics are a natural and convenient choice
of basis functions for representing any twice-differentiable
spherical function [1, 2]. They are an infinite set of complex
functions that are continuous, orthonormal, single-valued,
and complete on the sphere. Spherical harmonicsY m

l (θ, φ)
of degreel and orderm are defined as follows:

Y m
l (θ, φ) =

√

2l + 1

4π
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Figure 1. Sample spherical parameterization.

wherel andm are integers with|m| ≤ l, and the associ-
ated Legendre polynomialPm

l is defined by the differential
equation

Pm
l (x) =

(−1)m

2ll!
(1 − x2)

m

2

dl+m

dxl+m
(x2 − 1)l. (2)

Any twice-differentiable spherical functionf(θ, φ) can
be represented by a linear combination of spherical harmon-
icsY m

l (θ, φ) as follows:

f(θ, φ) =
∞
∑

l=0

l
∑

m=−l

am
l Y m

l (θ, φ), (3)

where the coefficientsam
l are uniquely determined by [19]

am
l =

∫ π

0

∫ 2π

0

Y m
l (θ, φ)∗ f(θ, φ) sinθ dφ dθ. (4)

HereY m
l (θ, φ)∗ is the complex conjugate ofY m

l (θ, φ).
The spherical harmonic expansion described above is es-

sentially the Fourier transform for functions defined on the
sphere; and it transfers spherical scalar signals into its fre-
quency spectrum. Spherical harmonics have several favor-
able properties such as orthonormality, completeness, and
coarse-to-fine hierarchy, which make them a nature choice
of basis functions to represent radial surfacesr(θ, φ) [2, 19].
Recently, Brechbühleret al. [4] have extended the spheri-
cal harmonics expansion technique to more general shapes
by representing a surface using three functions ofθ andφ.
This technique has been referred to as the SPHARM surface
modeling in previous studies [11, 12]; and can be applied to
arbitrarily shaped but simply-connected objects.

The SPHARM expansion requires a spherical parameter-
ization performed in advance, as described in Section 2.1.
The parameterization has the following form ofv(θ, φ) =
(x(θ, φ), y(θ, φ), z(θ, φ))T , where x(θ, φ), y(θ, φ), and
z(θ, φ) are three functions defined on the sphere. Thus, in
order to describe the object surface, we just need to expand
these three spherical functions using spherical harmonics:



v(θ, φ) =

∞
∑

l=0

l
∑

m=−l

cm
l Y m

l (θ, φ), (5)

wherecm
l =

(

cm
lx, cm

ly , cm
lz

)T

.

The task of the SPHARM expansion is to compute the
coefficientscm

l up to a user-desired degree, which we will
discuss in detail in Section 3. Note that a degreeLmax ex-
pansion involves3 × (Lmax + 1)2 coefficients. The object
surface can be reconstructed using these coefficients. Since
spherical harmonics form a complete set of orthonormal ba-
sis functions with a coarse-to-fine hierarchy, using more co-
efficients leads to a more accurate reconstruction.

3. Methods

In this section, we present a new method for spherical
harmonic expansion. We focus our discussion on expanding
a spherical scalar signalf(θ, φ). For the SPHARM case, we
can apply the same method three times and expandx(θ, φ),
y(θ, φ), andz(θ, φ) separately. Given a functionf(θ, φ)
and a user-specified maximum degreeLmax, our task is to
extract coefficientsam

l in Eq. (3) forl ≤ Lmax and|m| ≤ l.
There are two types of approaches for computingam

l :
one uses numerical integration according to Eq. (4) [15, 19];
the other formulates a linear system and solves it using least
square fitting (LSF) [4]. The LSF approach is easy to im-
plement if some linear solver is available (e.g., we are us-
ing one provided by Matlab). Our method belongs to this
category and overcomes its limitation of being unscalable.
An interesting future topic is to compare our method with
Healy’s algorithm [15], which incorporates a divide-and-
conquer idea and becomes one of the best methods in the
numerical integration category. Here we first briefly de-
scribe the LSF approach and then present our method.

3.1. Least Square Fitting

The input data for spherical harmonic expansion contain
a spherical functionf(θ, φ) and a user-specified maximum
degreeLmax. The spherical function is described by a set
of spherical samples(θi, φi) and their function valuesfi =
f(θi, φi), for 1 ≤ i ≤ n. According to Eq. (3), we can
formulate a linear system as follows.











y1,1 y1,2 y1,3 · · · y1,k

y2,1 y2,2 y2,3 · · · y2,k

...
...

...
...

yn,1 yn,2 yn,3 · · · yn,k

























x1

x2

x3

...
xk















=











f1

f2

...
fn











where yi,j = Y m
l (θi, φi), j = l2 + l + m + 1, and

k = (Lmax + 1)2. Note that we use an indexing scheme

that assigns a unique indexj = l2 + l + m + 1 to every
pair (l, m). Least square fitting is used to solve the above
system for(x1, x2, ..., xk)T , sincen 6= k in almost all the
cases. Because eachxj ≡ âm

l is an estimate of the original
coefficientam

l for j = l2 + l + m + 1, we can reconstruct
the original function as follows:

f̂(θ, φ) =

Lmax
∑

l=0

l
∑

m=−l

âm
l Y m

l (θ, φ) ≈ f(θ, φ). (6)

The more degrees one uses, the more accurate the recon-
structionf̂(θ, φ) is. See Figure 5 for some examples.

We refer to this method asnaive least square fitting
(NLSF). There are many linear solvers available and we use
Matlab in this study. Thus, NLSF is very easy to implement.
However, it is not suitable for large values ofLmax andn,
since the above linear system cannot even be loaded into the
memory. To model large 3D surfaces, we need to increase
n to get enough surface sampling resolution and capture all
the surface details. At the same time, we also need to pick
a big value ofLmax to capture geometry information in the
high end of the frequency spectrum. These observations
motivate us to develop a modified NLSF approach that can
not only handle large-scale spherical harmonic expansions
but also retain the property of being easy to implement.

3.2. Simple Iterative Residual Fitting

The basic idea behind our method is simple and follows
the properties of spherical harmonic (SH) transform. First,
SHs form a coarse-to-fine hierarchy. If we just use a few low
degree SHs to expand a spherical functionf(θ, φ), we get a
low-pass filtered reconstruction. If we use more degrees,
more details are included in the reconstruction. Our ap-
proach takes advantage of this coarse-to-fine hierarchy. We
start from a low degree reconstruction and then iteratively
adding more details into our model by involving higher de-
gree SHs. Second, SHs form an orthonormal basis and geo-
metric information is stored in different frequency channels.
Thus, if we first extract information from low frequency
channels, the residual (i.e., f(θ, φ)− its reconstruction) will
exactly contain information in high frequency channels. To
add in more details to our model, we can simply use a few
higher degree harmonics to fit the residual.

Let us first introduce some notation:

Al =









Y −l

l
(θ1, φ1) Y −l+1

l
(θ1, φ1) · · · Y l

l (θ1, φ1)

Y −l

l
(θ2, φ2) Y −l+1

l
(θ2, φ2) · · · Y l

l (θ2, φ2)
...

...
...

Y −l

l
(θn, φn) Y −l+1

l
(θn, φn) · · · Y l

l (θn, φn)









,

bl = (â−l
l , â−l+1

l , ..., âl
l)

T ,

f = (f(θ1, φ1), f(θ2, φ2), ..., f(θn, φn))T ,

m = (bT
0 bT

1 ... bT
Lmax

)T ,



(c) Degree 40: SIRF

Figure 2. (a) Spherical function: radius is plotted as a func tion of angle. (b-c) Degree 40 reconstruc-
tions generated by NLSF (b), by SIRF (c), and by a four pass MIR F (d).

whereAl is a matrix of degreel spherical harmonic values
for n sampling points,bl contains the estimated degreel

coefficients,f is a vector of spherical function values atn

sampling points, andm is a spherical harmonic model con-
taining coefficients up to degreeLmax.

Now we can formally present our algorithm as follows.
1. Solve the linear system:

(A0 A1 ... As) (bT
0 bT

1 ... bT
s )T = f .

2. Calculate the residual:
r = f − (A0 A1 ... As) (bT

0 bT
1 ... bT

s )T .
3. Iteratively fit the residual:

for (l = s + 1; l ≤ Lmax; l + +) do
solve forAlbl = r

update residualr = r− Albl

4. Return the spherical harmonic modelm:
m ≡ (bT

0 bT
1 ... bT

Lmax

)T .
We refer to this method assimple iterative residual fit-

ting (SIRF). In SIRF, we first create an SH model using co-
efficients up to degrees. In each iteration, we estimate co-
efficients for one more degree by fitting relevant SHs to the
residual. SIRF stops whenLmax is reached. In NLSF, we
need to load(A0 A1 ... ALmax

) into memory, which may
cause “out of memory” for largeLmax andn. In SIRF, we
only need to loadAi’s one at a time. This solves the mem-
ory overflow problem and makes the method scalable. To
further improve the performance, all theAi’s can be pre-
computed and stored on disk for a fixed sampling scheme.

3.3. Multipass Iterative Residual Fitting

Although SIRF runs much faster than NLSF for large
Lmax and n, it sometimes creates a less accurate recon-
struction. Figure 2 shows such an example: the NLSF re-
construction (b) matches the original function (a) better than
the SIRF reconstruction (c) does. To improve the recon-
struction accuracy, we propose amultipass iterative resid-
ual fitting (MIRF) approach as follows.

1. Create an SH modelm for f using SIRF.
2. Compute the residual:r = f−(A0 A1 ... ALmax

) m.
3. Fit the residual iteratively inp passes and updatem:

for (i = 1; i ≤ p; i + +) do
create an SH modelmr for r using SIRF
update residualr = r − (A0 A1 ... ALmax

) mr

update modelm = m + mr

4. Return the spherical harmonic modelm

Since a single pass of SIRF is not enough to model the
function accurately, MIRF employs multiple passes to fit the
residual iteratively and aims to improve the modeling accu-
racy. The effectiveness of this approach is shown in Fig-
ure 2, where the MIRF reconstruction (d) using four passes
matches the original function (a) very well.

3.4. Generalized Iterative Residual Fitting

Algorithm 1 Iterative Residual Fitting (IRF).
Input: A spherical functionf with n sampled values

{θi, φi, f(θi, φi) | 1 ≤ i ≤ n}, the maximal SH ex-
pansion degreeLmax, the number of passesp, and a
granularity parameterg.

Output: An SH model m of f , where m =
(bT

0 bT
1 ... bT

Lmax

)T andbl = (â−l
l , â−l+1

l , ..., âl
l)

T .
Note that the modelm minimizes

∑n

i=1(f(θi, φi) −
∑Lmax

l=0

∑l

m=−l â
m
l Y m

l (θi, φi))
2.

1: r = (f(θ1, φ1), f(θ2, φ2), ..., f(θn, φn))T

2: m = (0, 0, ..., 0)T {Initialization,|m| = (1+Lmax)2}
3: for i = 1 to p do {Performp passes}
4: d = 0
5: while d ≤ Lmax do
6: d′ = arg maxd′∈[d,Lmax] |(b

T
d bT

d+1 ... bT
d′)| ≤ g

{Involve as many basis functions as possible until
the number exceedsg}

7: solve the following linear system
(Ad Ad+1 ... Ad′) (bT

d bT
d+1 ... bT

d′)T = r

8: r = r − (Ad Ad+1 ... Ad′) (bT
d bT

d+1 ... bT
d′)T

{Update the residualr}
9: d = d′+1 {Let d be the next unprocessed degree}

10: m = m + (bT
0 bT

1 ... bT
Lmax

)T {Model update}
11: return the SH modelm



Besides multiple passes, we observe that the modeling
accuracy can also be improved by involving as many basis
functions as possible at each iteration of least square resid-
ual fitting. If we can load in all the basis functions at the
beginning, this approach becomes NLSF that only requires
one iteration. Figure 2(b) shows that NLSF derives an accu-
rate reconstruction. For large-scale modeling problems, we
cannot load in all the basis functions. But in each iteration,
we can involve more basis functions than SIRF does, reduce
the iteration number, and improve the modeling accuracy.

With this observation, we introduce a granularity para-
meterg, which can be specified by a user to control the
number of basis functions being involved in each iteration.
Our approach aims to involve as many basis functions as
possible in an iteration until the number exceedsg. Al-
gorithm 1 describes a generalized iterative residual fitting
method that incorporates the above idea.

We refer to Algorithm 1 asiterative residual fitting
(IRF) directly. This method is generalized because NLSF,
SIRF and MIRF are just special cases of IRF. If we setp = 1
andg = ∞, IRF performs only one pass and in this pass it
can involve all the basis functions due tog = ∞. Thus, IRF
becomes the same as NLSF. If we lets be 0 in the first step
of SIRF, IRF becomes SIRF whenp = 1 andg = 1, and
becomes MIRF whenp ≥ 1 andg = 1.

4. Experimental Results

We have performed extensive experiments on several 3D
models by varying the values ofp andg in Algorithm 1. The
basic information about these 3D models can be found in
Table 1 and Figure 4. Since these 3D surfaces are not star-
shaped, in our experiments, we create a SPHARM model
for each of them. Thus, we need to perform three SH expan-
sions for each surface using its spherical parameterization.
The spherical parameterization comes with each model and
see Section 2.1 for how it is created. Our algorithm is im-
plemented in Matlab. The experiments are performed on a
DELL workstation PWS670 with a 3 GHz Xeon CPU and
2 GB of RAM, running WinXP and Matlab 7.

4.1. Computing Basis Functions

In order to use least square fitting, we need to compute
SH basis function values of sampled spherical coordinates
(θi, φi), where1 ≤ i ≤ n. These values form matrix
A = (A0 A1 ... ALmax

), whereAl is defined in Section 3.
A has a dimension ofn × (Lmax + 1)2 and so cannot be
completely loaded into memory for largen andLmax. Our
approach is to precomputeA and store it on disk. At the
actual modeling stage, we only load the relevant part ofA

as needed. Figure 3 shows the running time for creatingA,
which is clearly quadratic with respect toLmax and linear

to n. Table 1 Column 4 shows the space required for storing
A for Lmax = 100. For a given model, this preprocessing
step is a one-time operation. The sameA can be reused
for different parameter settings at the modeling stages. The
sameA can even be reused for different models if they share
the same sampling scheme in the parameter space.

4.2. Modeling Accuracy

Let v(θ, φ) be an original 3D surface and̂v(θ, φ) be its
SPHARM reconstruction:

v̂(θ, φ) =

Lmax
∑

l=0

l
∑

m=−l

ĉm
l Y m

l (θ, φ),

where ĉm
l =

(

ĉm
lx, ĉm

ly , ĉm
lz

)T

are SPHARM coefficients

calculated by one of our algorithms. In order to measure
the SPHARM modeling accuracy, we calculate the mean
squared distance (msd) and the maximal squared distance
(xsd) between then mesh vertices on the original surface
and their reconstructions as follows:

msd =
1

n

n
∑

i=1

||v(θi, φi) − v̂(θi, φi)||
2,

xsd = max{ ||v(θi, φi) − v̂(θi, φi)||
2 | 1 ≤ i ≤ n}.

To make the accuracy comparison consistent across differ-
ent 3D surfaces,we have done isotropic scaling for each of
these surfaces so that the volume of its bounding box is 1.

We first test NLSF on five 3D models. The fourth col-
umn of Table 1 shows the maximalLmax our machine can
handle without running out of memory. Figure 4 shows
sample visualization between the original surfaces and their
reconstructions, and the correspondingmsd andxsd val-
ues. For small models like Bowl and Part, NLSF can
create almost perfect reconstructions. This indicates that
SPHARM is an excellent surface modeling technique when
a sufficient number of basis functions can be involved. But
for large models like Hipp, Head and Cort, NLSF can only
involve a limited number of basis functions due to the mem-
ory limitation and result in only suboptimal reconstructions.

Our second experiment is to test if SIRF can help im-
prove the modeling accuracy for large models, since SIRF is
able to involve more basis functions,e.g., up to degree 100
in our experiment. Figure 5 shows the visualization results
together withmsd andxsd for Lmax = 10, 20, 60, 100 for
Hipp and Cort. Both degree 100 reconstructions look satis-
factory. However, Figure 6(a) shows the degree 100 recon-
struction of Head using SIRF and this is obviously not an
accurate reconstruction.

In order to create a more accurate SPHARM model for
Head, we employ the generalized IRF algorithm and vary



Sample satisfactory result generated by IRF
Model Vertex # Face # Sbf DNLSF

max Lmax (p, g) Max squared Mean squared Running
distance (xsd) distance (msd) time (sec.)

Bowl 3458 6912 539 MB 78 60 (1,∞) 1.80e-025 1.41e-026 119
Part 4422 8840 688 MB 71 70 (1,∞) 1.29e-017 6.28e-019 265
Hipp 10082 20160 1.53 GB 40 100 (2, 1) 1.63e-003 2.33e-005 210
Head 27618 55232 4.19 GB 29 100 (1, 400) 2.46e-004 1.16e-005 568
Cort 40962 81920 6.22 GB 24 100 (1, 100) 6.54e-004 4.57e-005 555

Table 1. 3D model information and sample results generated b y IRF. Sbf indicates the space required
to store SPHARM basis functions up to degree 100. DNLSF

max indicates the maximal Lmax NLSF can
handle without running out of memory.
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Figure 3. Time for computing basis functions.

the values ofp (number of passes) andg (granularity para-
meter). Figure 6 shows sample results. In this case, a satis-
factory model can be created when eitherp ≥ 4 or g ≥ 400.
Figure 7 contains more accuracy results for Hipp, Head and
Cort, where− log10 msd is plotted on the y-axis. Clearly,
increasingp, g or both can improve the modeling accuracy.

4.3. Computational Cost

Let n be the number of mesh vertices on a 3D surface,
Lmax the maximal degree of a SPHARM expansion,g the
granularity parameter,p the number of passes. Solving
an overdetermined set ofm1 equations withm2 unknowns
can be done in timeO(m1 m2

2) [7]. Thus, if g ≤ Lmax,
IRF needs to solveO(Lmax p) linear systems and each
requires timeO(n L2

max). If g > Lmax, IRF needs to

solve O(
L2

max

g
p) linear systems and each requires time

O(n g2). The total running time isO(n L2
max Lmax p) =

O(n L3
max p) for g ≤ Lmax, and O(n g2 L2

max

g
p) =

O(n L2
max g p) for g > Lmax. These two cases can be com-

bined and the time complexity of our algorithm becomes

O(n L2
max max{Lmax, g} p).

Figure 7 shows the running time and modeling accuracy
(measured inmsd) for various experiments on Hipp, Head,
and Cort, wheren ∈ {10082, 27618, 40962},Lmax = 100,
g ∈ {1, 100, 200, 400}, and1 ≤ p ≤ 8. The experimen-
tal running time matches our analysis. In practice, we can
control the values ofp andg to be relatively small and still
obtain accurate results. For example, Table 1 shows sample
satisfactory result for each surface used in our experiment
and all these results can be generated within 10 minutes
even for large models like Head and Cort.

5. Discussions and Conclusions

The proposed IRF algorithm makes the spherical har-
monic method applicable to large surfaces and thus can de-
rive many new applications in related areas. For example,
in medical image analysis, it can create accurate parametric
models for cortical surfaces and facilitate statistical surface
analysis to localize shape changes in certain diseases [6].
In computer graphics, using IRF, large-scale expansion can
be performed to generate accurate models; and these para-
metric models can then be used to help many operations
in digital geometry processing such as 3D surface filtering,
compression, morphing, remeshing, and shape matching.

Here we list a few examples.Remeshing: Using a
uniform parameter mesh, a SPHARM reconstruction can
form a uniformly remeshed geometry for the original ob-
ject. Morphing: If different objects are reconstructed us-
ing the same mesh topology, we can morph one to another.
Multiresolution modeling: The coarse-to-fine hierarchy of a
SPHARM model makes it suitable for multiresolution mod-
eling and geometric compression.Other processing: Us-
ing SPHARM, many tasks can be accomplished in the fre-
quency domain more efficiently, such as shape matching,
surface denoising, shape analysis [17] and surface filtering
[24]. Many graphical models do not have genus-zero sur-
faces. But using a method described in [24], SPHARM can
be extended to process arbitrary manifold meshes .



Figure 4. Five 3D models and their SPHARM reconstructions cr eated by NLSF.

Figure 5. Simple iterative residual fitting (SIRF) results f or Hipp (top) and Cort (bottom).

Figure 6. IRF result, where two parameters g (granularity) and p (number of passes) vary.
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Figure 7. Running times and modeling accuracies of IRF exper iments on Hipp, Head and Cort.

To sum up, we have proposed an iterative residual fit-
ting (IRF) algorithm for large-scale modeling of parametric
surfaces using spherical harmonics. The key ideas of IRF
includes: (1) instead of solving a large linear system, IRF
solves a series of smaller linear systems iteratively, and the
size of the smaller system is controlled by the granularity
parameterg; (2) IRF uses multiple passes of LSF to fit the
residual and aims to improve the modeling accuracy, and the
number of passesp can be specified by a user. As a simple
extension of LSF, our IRF algorithm is very easy to imple-
ment and does not require additional machine resources.

The IRF algorithm is also a generalization of the LSF
method, since it turns into LSF wheng = ∞ andp = 1.
This setting works perfectly for small models, but not for
large models due to the memory limitation. To perform
large-scale expansion of complicated surfaces, we can ad-
justg, p, or both to get a desired result.

Our extensive experimental results show that the IRF al-
gorithm can not only create accurate SPHARM models for
large surfaces but also do it efficiently. For example, IRF
can easily and accurately model a complicated surface with
more than 40,000 vertices using spherical harmonics up to
degree 100 within 10 minutes. Since our implementation is
Matlab-based, we expect that the IRF algorithm has a poten-
tial to be implemented more efficiently using a lower level
language such as C. The large-scale and accurate parametric
models generated by IRF can derive many new applications
in computer vision, graphics, and biomedical imaging.
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