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Abstract: We present a new tensor-based morphometric framework that quanti�es

cortical shape variations using a local area element. The local area element is

computed from the Riemannian metric tensors, which are obta ined from the smooth

functional parametrization of a cortical mesh. For the smoo th parametrization, we

have developed a novel weighted spherical harmonic (SPHARM) representation,

which generalizes the traditional SPHARM as a special case. For a speci�c choice

of weights, the weighted-SPHARM is shown to be the least squares approximation

to the solution of an isotropic heat di�usion on a unit sphere . The main aims of

this paper are to present the weighted-SPHARM and to show how it can be used

in the tensor-based morphometry. As an illustration, the me thodology has been

applied in the problem of detecting abnormal cortical regio ns in the group of high

functioning autistic subjects.
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1 Introduction

In many previous cortical morphometric studies, cortical thickness has been

mainly used to quantify cortical shape variations in a population [13] [21] [27]

[33] [34] [35]. The cortical thickness measures the amount of gray matter along

the normal direction on a cortical surface. However, the gray matter growth



can be characterized by both the normal and the tangential directions along the

surface [13]. In this paper, we present a new tensor-based morphometry (TBM)

that quanti�es the amount of gray matter along the tangentia l direction via the

concept of a local area element. The local area element is obtained from the

Riemannian metric tensors, which are computed from the novel weighted spher-

ical harmonic (SPHARM) representation [9]. We will review literature that are

directly related to our methodology and address what our speci�c contributions

are.

Unlike the deformation-based morphometry (DBM) [5] [12] [49], which uses

deformation obtained from the nonlinear registration of brain images, TBM uses

the high order spatial derivatives of deformation in constructing morphological

tensor maps such as Jacobian determinant, torsion and vorticity [4] [12] [13]

[20] [44]. From these tensor maps, 3D statistical parametric maps (SPM) are

constructed to quantify variations in higher order changesof deformation �elds.

The main morphometric measure in the TBM is the Jacobian determinant of

the deformation �eld since it directly measures tissue growth and atrophy. The

advantage of TBM over DBM is that TBM can directly characteri ze tissue growth

while DBM only characterize the relative positional di�ere nce so the Jacobian

determinant is a more relevant metric for quantifying tissue growth and atrophy

[12]. In this study, the concept of the Jacobian determinant is generalized to a

local area element via the Riemannian metric tensor formulation. Our local area

element is the di�erential geometric generalization of the Jacobian determinant

in Riemannian manifolds. So the area element can be used to quantify the

tangential cortical tissue growth and atrophy directly.

As a subset of TBM, cortical surface speci�c morphometries have been de-

veloped [11] [13] [16] [45] [47]. Unlike 3D whole brain volume based TBM, the

surface speci�c morphometries have the advantage of providing a direct quanti�-

cation of cortical morphology. Further, better sensitivit y and speci�city can be

obtained in analyzing cortical surface speci�c morphometric changes [1] [13] [33].

The cerebral cortex is a 2-dimensional highly convoluted sheet without any holes

or handles topologically equivalent to a sphere [20]. Most of the features that

distinguish these cortical regions can only be measured relative to the local ori-

entation of the cortical surface [16]. It is likely that di�e rent clinical populations



will exhibit di�erent cortical surface geometry. By analyz ing surface measures

such as cortical thickness, curvatures, surface area, local area element and frac-

tal dimension, brain shape di�erences can be quanti�ed locally along the cortical

surface [13] [11] [45] [47]. Cortical surface analyses require the segmentation of

tissue boundaries, which are mainly obtained as high resolution triangle meshes

from deformable surface algorithms [19] [16] [34]. The interface between gray and

white matter is called the inner surface while the gray matter and cerebrospinal


uid (CSF) interface is called the outer surface. In this study, we will only use

the outer surface for the local area element computation.

Once we have a triangular mesh as a realization of a cortical surface, surface

related geometric quantities can be computed from the mesh.Due to the dis-

crete nature of triangle mesh, surface parameterization isnecessary for accurate

and smooth estimation of the geometric quantities. Cortical surface parame-

terization has been mainly done by �tting a quadratic polynomial locally [13]

[28] [29]. Then from this local parameterization, Gaussianand mean curvatures

and the Riemmanian metric tensors are computed to characterize cortical shape

variations. However, the quadratic polynomial �t requires an accurate normal

vector estimation, which tend to be highly unstable in triangle meshes [36] [53].

In contrast to this local approach, a global parameterization via SPHARM is

also available [23] [24] [31] [40] [41]. This traditional SPHARM representation

has been mainly used as a data reduction technique rather than obtaining high

order spatial derivative information. 2D anatomical boundaries such as ventri-

cle surfaces [23] and hippocampal surfaces [41] are parameterized by SPHARM

and its coe�cients are fed into statistical analyses such asa principal compo-

nent analysis, a linear discriminant analysis and support vector machines. The

main geometric features are encoded in low degree sphericalharmonic, while the

noise will be in high degree spherical harmonics [24]. In this study, we gener-

alize the traditional SPHARM by weighting its coe�cients wi th exponentially

decaying factors, and develop an iterative analytic di�erentiation framework for

computing the Riemannian metric tensors. It will be shown that the weighted-

SPHARM is a more generalized framework than the traditional SPHARM. Since

we are not performing a �nite di�erence based numerical di�e rentiation, the

tensor estimation should be more stable. Compared to the local polynomial �t-



ting, our approach completely avoids estimating unstable normal vectors. The

weighted-SPHARM tends to be computationally expensive compared to the local

quadratic polynomial �tting while providing more accuracy and 
exibility for a

hierarchical representation.

In previous TBM, computations on a discrete triangle mesh produced sig-

ni�cant mesh noise in cortical measure. In order to increasethe signal-to-noise

ratio (SNR) and the sensitivity of statistical analysis for cortical measure, cortical

surface based data smoothing suchdi�usion smoothing was necessary [1] [8] [13]

[33] [46]. The drawback of the di�usion smoothing is the complexity of setting

up a �nite element method (FEM) and making the numerical scheme stable [8]

[13]. Since the weighted-SPHARM is mathematically equivalent to the di�usion

smoothing [9] while it uses the exact analytical basis, it o�ers a more accurate

numerical approximation over the di�usion smoothing witho ut additional com-

putation. Further, because the full width at the half maximu m (FWHM) of the

smoothing kernel can be exactly computed in the weighted-SPHARM while it is

only an asymptotic approximation in the di�usion smoothing [11], the random

�eld theory based statistical analysis can be used. This provides a more coherent

and uni�ed cortical surface analysis framework.

Once we compute the local area elements from the weighted-SPHARM, it

is necessary to compare them across subjects via surface registration. Most pre-

vious surface registration methods are formulated as an optimization problem

by minimizing an objective function that measures the global �t of two surfaces

while maximizing the smoothness of the deformation in such away that the

gyral patterns are matched smoothly [11] [16] [18] [21] [38][47]. These type of

surface registration techniques are computationally expensive. In the weighted-

SPHARM representation, the surface registration is straightforward and does not

require any sort of optimizations explicitly. Corresponding surface positions are

established by matching spherical harmonics [9]. This technique has an advan-

tage of bypassing the computationally expensive optimization problem since the

correspondence across subjects are built into the weighted-SPHARM represen-

tation itself.



Figure 1: Using the deformable surface algorithm that establish a mapping from a unit
sphere to a cortical surface, we parameterize the cortical surface with the polar angle �

and the azimuthal angle ' .

2 Preliminary

In this section, we introduce mathematical notations and basic concepts of SPHARM.

Since there are variations on de�ning the associated Legendre polynomials and

the spherical harmonics, it is necessary to clearly state the exact mathematical

forms to minimize confusion. Many SPHARM literature [7] [23] [24] [41] use the

complex-valued spherical harmonics while we are using the real-valued spherical

harmonics since it is more intuitive to set up a statistical model.

2.1 Surface Parametrization

Let M and S2 be a cortical surface and a unit sphere respectively.M and S2 are

realized as polygonal meshes with more than 80000 triangle elements. It is natural

to assume the cortical surface to be a smooth 2-dimensional Riemannian manifold

parameterized by two parameters [19]. This parametrization is constructed in

the following way. A point u = ( u1; u2; u3) 2 S2 is mapped to p = ( x; y; z) 2

M via the mapping U, which is obtained by a deformable surface algorithm

that preserves anatomical homology and the topological connectivity of meshes

(Figure 1). We will refer this mapping as the spherical mapping. Then we

parameterizeu by the spherical coordinates:

(u1; u2; u3) = (sin � cos'; sin � sin '; cos� )

with ( �; ' ) 2 N = [0 ; � ] 
 [0; 2� ). The polar angle � is the angle from the north

pole and the azimuthal angle' is the angle along the horizontal cross section of



Figure 2: Spherical harmonic basis of selective degree and orders. The center of the

concentric circles at orderm = 0 is the north pole.

a MRI (Figure 1).

The mapping from the parameter spaceN to the unit sphere S2 will be

denoted asX , i.e. X : N ! S2. Then we have a composite mappingZ from the

parameter space to the cortical surface:Z = U � X : N ! M : Z is a 3D vector

of surface coordinates and it will be stochastically modeled as

Z (�; ' ) = � (�; ' ) + � (�; ' ); (1)

where� is a unknown true di�erentiable parametrization and � is a random vector

�eld on the unit sphere. The computation of the Riemannian metric tensors and

the local area element require estimating di�erentiable function � .



2.2 Spherical Harmonic Representation

The basis functions on a unit sphere are given as the eigenfunctions satisfying

� f + �f = 0 ; where � is the spherical Laplacian:

� =
1

sin �
@
@�

�
sin �

@
@�

�
+

1
sin2 �

@2

@2'
:

There are 2l + 1 eigenfunctions, denoted asYlm (jmj � l ), corresponding to the

same eigenvalue� = l(l +1). Ylm is called thespherical harmonic of degreel and

order m [15]. The explicit form of the 2l + 1 spherical harmonics of degreel is

given by

Ylm =

8
>><

>>:

clm P jmj
l (cos� ) sin(jmj' ); � l � m � � 1;
clmp

2
P jmj

l (cos� ); m = 0 ;

clm P jmj
l (cos� ) cos(jmj' ); 1 � m � l;

whereclm =
q

2l+1
2�

(l �j mj)!
(l+ jmj)! and Pm

l is the associated Legendre polynomialof order

m. Spherical harmonics of particular degrees and orders are illustrated in Figure

2. For �xed l, Pm
l form orthogonal polynomials over [� 1; 1]. Following the con-

vention used in Arfken [3], we have omitted the phase (� 1)m in the de�nition of

the associated Legnedre polynomial. Many previous SPHARM literature [7] [23]

[24] [41] used the complex-valued spherical harmonics so the care is needed in

comparing di�erent numerical implementations of the associated Legendre poly-

nomials and the spherical harmonics. The spherical harmonics form orthonormal

bases onS2 such that
Z

S2
Yij (p)Ylm (p) d� (p) =

(
1 if i = l; j = m;

0 otherwise:
(2)

For f; h 2 L 2(S2), the space of square integrable functions inS2, the inner

product is de�ned as

hf; h i =
Z 2�

0

Z �

0
f (�; ' )h(�; ' ) sin �d�d'

where the Lebesgue measured� (�; ' ) = sin �d�d' . Consider the subspace

H k = f
kX

l=0

lX

m= � l

� i Ylm : � i 2 Rg � L 2(S2);



which is spanned by up to thek-th degree spherical harmonics. We are interested

in estimating f 2 L 2(S2) using a function in H k . The least squares estimation

(LSE) of f in the subspaceH k is then given by the �nite Fourier series expansion.

Theorem 1
kX

l=0

lX

m= � l

f lm Ylm = arg min
h2H k

kf � hk2;

where the norm is de�ned askf k = hf; f i 1=2.

This is the basis of the traditional SPHARM representation of closed anatom-

ical boundaries [23, 24, 41].

3 Weighted-SPHARM

3.1 Basic Theory

The traditional SPHARM is only one possible representation of functional data

measured on a unit sphere. We present a more general representation called the

weighted-SPHARM, which weights the coe�cients of the traditional SPHARM

by the eigenvalues of a kernel. It can be shown that the traditional SPHARM is

the special case of the weighted-SPHARM.

We start with the spectral representation of a positive de�nite kernel in S2.

Consider the positive de�nite kernel K (p; q) of the form

K (p; q) =
1X

l=0

lX

m= � l

� lm Ylm (p)Ylm (q); (3)

where the ordered eigenvalues

� 00 � � 1m1 � � 2m2 � � � � � 0

satisfy
Z

S2
K (p; q)Ylm (q) d� (q) = � lm Ylm (p): (4)

This is the special case of the Mercer's theorem [15]. From (4), it follows that K

is a reproducing kernel inL 2(S2). Without the loss of generality, we assume the



kernel is normalized as
Z

S2
K (p; q) d� (q) = 1 : (5)

The smooth functional estimation h of measurementf is searched inH k that

minimizes the integral of the weighted square distance betweenf and h:

Theorem 2

kX

l=0

lX

m= � l

� lm f lm Ylm

= arg min
h2H k

Z

S2

Z

S2
K (p; q)jf (q) � h(p)j2 d� (p)d� (q):

We will call the �nite expansion given in Theorem 6 as the weighted-SPHARM

representation. The theorem can be proved by substitutingh =
P k

l=0
P l

m= � l clm Ylm (p)

and optimizing with respect to clm .

De�ne kernel smoothing as the integral convolution

K � f (p) =
Z

S2
f (q)K (p; q) d� (q): (6)

=
1X

l=0

lX

m= � l

� lm hf; Y lm i Ylm (p): (7)

The last equation is obtained by substituting (3) into (6). T he equation (7)

shows that the weighted-SPHARM is the �nite expansion of kernel smoothing.

Kernel smoothing (3) can be further shown to be the minimizerof the following

integral.

Theorem 3 For a �xed point p 2 S2,

K � f (p) = arg min
h2 L 2(S2 )

Z

S2
K (p; q)

�
f (q) � h

� 2 d� (q):

This theorem can be proved by di�erentiating the integral wi th respect to h.

For the choice of eigenvalues� lm = e� l (l+1) � ; the corresponding kernel is

called the heat kernelor Gauss-Weistrass kernel [7] [11] [39] and it will be denoted

as

K � (p; q) =
1X

l=0

lX

m= � l

e� l (l+1) � Ylm (p)Ylm (q): (8)



Figure 3: The shape of the heat kernelK � (p; q) for various bandwidths � . The shape is
computed from the harmonic addition theorem and equation (15). The point p is �xed

to be the north pole and the horizontal axis is the angle cos� 1(p � q).

The parameter � determines the spread of kernel as shown in Figure 3. As� ! 0,

� lm ! 1 and the heat kernelK � (p; q) ! � (p� q), the Dirac-delta function. So the

traditional SPHARM is a special case of the weighted-SPHARM. It is interesting

to note that even though the regularizing cost functions aredi�erent in Theorem

1 and 2, they are related asymptotically.

Another interesting property of the weighted-SPHARM is observed by noting

that K � � f is the unique solution of the isotropic heat di�usion

@g
@t

= � g; g(p; t = 0) = f (p) (9)

at time t = � 2=2 [9] [11] [39]. Hence the weighted-SPHARM is the �nite expan-

sion of the isotropic heat di�usion. Instead of solving the heat equation numer-



Figure 4: The �rst column is a hat shaped 3D step function. The weighted-SPHARM

(bottom) of the step function at di�erent bandwidths ( � = 0.01, 0.001, 0.0005, 0.0001)
and the corresponding traditional SPHARM (top) of the same degree. The weighted-

SPHARM has less ringing artifacts.

ically, which tend to be unstable [1] [13], the weighted-SPHARM representation

provides a more stable approach. In a similar approach, Bulow used spherical

harmonics in developing isotropic heat di�usion via the Fourier transform on a

unit sphere as form of hierarchical surface representation[7].

There are two main advantages of using the weighted-SPHARM over the

traditional SPHARM. The weighted-SPHARM reduces the substantial amount

of the Gibbs phenomenon (ringing artifacts) [9] [22] that is associated with the

convergence of a Fourier series. Either discontinuous or rapidly changing mea-

surements will have slowly decaying Fourier coe�cients andthus the traditional

SPHARM representation converges slowly. However, the weighted-SPHARM ad-

ditionally weights the Fourier coe�cients with the exponen tially decaying weights

contributing to more rapid convergence. The Gibbs phenomenon is visually

demonstrated in Figure 4 with a hat shaped step function (z = 1 if x2 + y2 < 1

and z = 0 if 1 � x2 + y2 � 2). The bottom �gures are the weighted-SPHARM

at di�erent scales (� = 0.01, 0.001, 0.0005, 0.0001) and the top �gures are the

corresponding traditional SPHARM of the same degree. The degree selection

process is discussed in the next section. The top �gures exhibit signi�cant ring-

ing artifacts while the bottom �gures show less ringing artifacts.



The second advantage of using the weighted-SPHARM is related to heat

kernel smoothing formulation used in the random �eld theory [11] [51] [52]. The

random �eld theory that is need to correct for multiple compa risons requires

the smoothness of signal, as measured as the full width at thehalf maximum

(FWHM) of the heat kernel. In the traditional SPHARM, the hea t kernel degen-

erates to the Dirac-delta function so we can not apply the random �eld theory

directly.

3.2 Numerical Implementation

The eigenvalues� lm are given analytically from a given kernel. So we only need

to numerically compute the Fourier coe�cients f lm in the weighted-SPHARM

representation. Previously, the computation for the Fourier coe�cients compu-

tation for the Fourier coe�cients was based on the direct numerical integration

over high resolution triangle meshes with more than 80000 triangles and the aver-

age inter-vertex distance of 0.0189 mm [10]. Unfortunatelythe direct numerical

integration is extremely slow and it is not practical when high degree spherical

harmonics are needed. So we have recently developed a new numerical tech-

nique called the iterative residual �tting (IRF) algorithm [9] [40]. Compared to

the numerical integration, which takes more than few hours,the IRF algorithm

takes only about 5 minutes per subject for computing all the coe�cients up to

78 degrees in a personal computer.

The IRF algorithm estimates the Fourier coe�cients iterati vely by breaking

a large least squares problem in the subspaceH k into smaller subspaces. Let

us decompose the subspaceH k into the smaller subspaces as the direct sum:

H k = I 0 � I 1 � � � � I k ; where the subspace

I l = f
lX

m= � l

� lm Ylm (p) : � lm 2 Rg

is spanned by thel-th degree spherical harmonics only. Then the IRF algorithm

estimates the Fourier coe�cients f lm in each subspaceI l iteratively from degree

0 to k. This hierarchical estimation from lower to higher degree is possible due

to the orthonormality of spherical harmonics. The technical detail of the IRF

algorithm, numerical implementation, accuracy issues aregiven in [9] and [40].



Figure 5: The mean (left) and the standard deviation (middle) of the Fourier coe�cients
for 28 subjects. The vertical axis is the degree and the horizontal axis is the order

arranged from the lowest to the highest. Right: The p-value of a Jarque-Bera test for
normality. Smaller p-values indicate the tendency for nonnormality. Only 10 out of total

1849 coe�cients show nonnormality at � = 0 :05 level.

The MATLAB implementation of IRF is freely available at

http://www.stat.wisc.edu/ � mchung/softwares/weighted-SPHARM.html

with a sample outer cortical surface.

While increasing the degree of the weighted-SPHARM increases the goodness-

of-�t, it also increases the number of coe�cients to be estimated quadratically.

So it is necessary to �nd the optimal degree where the goodness-of-�t and the

number of parameters balance out. In most previous SPHARM literature [23]

[24] [40] [41], the degree is simply selected based on a pre-speci�ed error bound

that depends on the size of an anatomical structure. We have adapted a model

selection framework [37] that does not depend on the size of the anatomical

structure.

The Fourier coe�cients f lm can be modeled to follow independent normal

distribution N (� lm ; � 2
l ). Within the same degree, equal variance is assumed. We

have checked the model assumption on our data set. Figure 5 shows the sample

mean and variance of the Fourier coe�cients for the x-coodrinates of 28 subjects.

The vertical direction is the degree k and the horizontal direction is the order

arranged from � k to k. The third �gure shows the p-value of testing normality

using a Jarque-Bera statistic [26]. Only 10 out of total (42 + 1)2 = 1849 coe�-

cients show nonnormality at � = 0 :05 level indicating our normality assumption

is valid. We have also computed cross correlation of all 18492 pairs of coe�-



Figure 6: Left: the cross correlation of up to 42 degree SPHARM coe�cients. Right:

the enlargement of a small white square in the left �gure. The cross correlation map
shows very low correlation in most pairs. The average correlation is 0.16

cients to check independence (Figure 6). Note that Gaussianrandom variables

are independent if cross correlations are zero. The most pairs show extremely

low correlation and the average correlation is 0.16 indicating the independence

assumption is valid.

The above model assumption is equivalent to the following linear model

f (pi ) =
kX

l=0

lX

m= � l

e� � (� +1) � � lm Ylm (pi ) + � (pi ); (10)

where � is a zero mean isotropic Gaussian random �eld. Once we determined

all the coe�cients up to the k-th degree using the IRF algorithm, we check if

adding the next terms � k+1 ;� (k+1) ; � � � ; � k+1 ;k+1 to the k-th degree model (10)

is statistically signi�cant in a forward model section fram ework [9] [37]. If the

corresponding p-value of the test statistic (page 50 in [37]) is bigger than the pre-

speci�ed signi�cance level of 0.05, we stop the iteration. If not, we increase the

degree and repeat the process. For bandwidths� = 0.01, 0.001, 0.0005, 0.0001,

the optimal degrees are 18, 42, 52, 78 respectively (Figure 7).

We have compared the IRF result against the analytical solution of equation



(9). For any arbitrary initial condition of the form

f =
kX

l=0

lX

m= � l

� lm el (l+1) Ylm 2 H k ; (11)

the solution to equation (9) is given by

K � � f =
kX

l=0

lX

m= � l

� lm Ylm : (12)

Comparing the analytical solution (12) to the result obtain ed from the IRF al-

gorithm serves as the basis for validation. It is su�cient to use a single term in

(11) for validation. Let f = el (l+1) Ylm be an initial condition of equation (9).

Then the solution of equation (9) is given by K � � f = Ylm : Table 1 shows the

comparison for various degrees and orders. The �fth column shows the mean

absolute error between the theoretical valueYlm and the numerical result ob-

tained from the IRF algorithm. The mean is taken over all mesh vertices. The

last column shows the numerical computation of integral
R

S2 Y 2
l0m0(p) d� (p) = 1.

Table 1 shows our numerical implementation provides su�ciently good numerical

accuracy.

4 Tensor-based morphometry

Taking weighted-SPHARM as a global parameterization for cortical surface M ,

we can compute the Riemannian metric tensors that are neededin computing

the local area element.

4.1 Metric Tensor Estimation

The weighted-SPHARM estimation b� of the unknown true parametrization � in

equation (1) is given by

b� (�; ' ) =
kX

l=0

lX

m= � l

� lm Z lm Ylm

with Z lm = hZ; Ylm i . For this study, we used eigenvalue� lm = e� l (l+1) � corre-

sponding to the heat kernel. The Riemannian metric tensorsgij will be com-

puted by analytically di�erentiating the weighted-SPHARM . The estimation of



the Riemannian metric tensors requires partial derivatives of b� . Denoting the

partial di�erential operators as @1 = @� and @2 = @' , we have

@i b� =
kX

l=0

lX

m= � l

� lm Z lm @i Ylm (�; ' ):

The derivatives of spherical harmonics can be analyticallycomputed. We

start with the derivative for the associated Legendre polynomials.

@� P jmj
l (x) = l cot �P jmj

l (x) � (l + jmj) sin� 1 �P jmj
l � 1(x);

wherex = cos � . Note that P jmj
l � 1 = 0 if jmj � l . The recursive formula introduces

a numerical singularity at the north and south poles (� = 0 ; � ) so we have

chosen the poles to be the regions of non-interest that connect the left and the

right hemispheres (Figure 1). Then the derivatives of spherical harmonics are

expressed as the functions of spherical harmonics.

@� Ylm = l cot �Y lm � (l + jmj)
clm

cl � 1;m
sin� 1 �Y l � 1;m

with the convention Yl � 1;m = 0 if jmj � l . The constant in the second term can

be further simpli�ed as

(l + jmj)
clm

cl � 1;m
=

r
2l + 1
2l � 1

(l2 � m2):

The derivative with respect to ' is simply given as

@' Ylm = � mYl; � m :

This recursive relation reduces the computational time by recycling the spherical

harmonics used in estimating the SPHARM coe�cients.

The 3� 2 Jacobian matrix J of mapping from parameter spaceN to cortical

surface M is given by J = ( @� �̂ ; @' �̂ ). The Riemannian metric tensors are

g = ( gij ) = J t J: The component is given bygij = @i b� � @j b� with the vector inner

product �. The Riemannian metric tensors measure the amount of deviation of

a cortical surface from a 
at Euclidean plane. If the cortical surface is 
at, we

obtain gij = � ij , the identity matrix. The Riemannian metric tensors enable us to

compute the local area element
p

det g. The area element measures the amount



degreel order m bandwidth � FWHM mean error f lm

18 17 0.01 0.3456 0.0575 0.9995
42 41 0.001 0.1257 0.0126 0.9992

52 51 0.0005 0.0968 0.0101 0.9988
78 77 0.0001 0.0597 0.0068 0.9984

Table 1: FWHM and accuracy for the WFS representation

of the transformed area inM of the unit area in the parameterized spaceN via

the mapping � . Figure 8 shows the estimation of the metric tensors for a subject.

Using the area element, the total surface area ofM can be written as

� (M ) =
Z 2�

0

Z �

0

p
det g(�; ' ) d� d':

Locally, surface deformation can be decomposed into the tangential and the

normal components with respect to a surface normal vector [13]. At each point

p, we de�ne local gray matter volumeas V(p) =
p

det g(p)C(p), where C is cor-

tical thickness. Then the total gray matter volume is approximately given as
R

S2 V(p) d� (p): The gray matter volume will change if either the area element

increases (tangential expansion) or cortical thickness increases (normal expan-

sion). Then the change in the gray matter volume is the sum of the change in

local area and the change in cortical thickness [13]:

dV
V

=
d
p

det g
p

det g
+

dC
C

:

The change in the local area element can be viewed as to contributing to the

tangential component of the gray matter volume change.

The scale invariant area element is de�ned as
p

det g=� (M ), where the total

surface area� (M ) is estimated by summing the area of triangles in a mesh. Fig-

ure 9 shows the scale invariant area element for randomly selected 12 subjects.

Although the scale invariant area element is invariant under a�ne scaling, it is

not invariant under di�erent parameterizations such as conformal mappings [2]

[24] [25], quasi-isometric mappings [48] and area preserving mappings [6] [41] [43].

Considering these parameterizations introduce area distortion, it is necessary to

use a parameterization invariant metric for a stable statistical analysis. This can



Figure 7: The weighted-SPHARM representation at di�erent b andwidths. The �rst

column is the original cortical surface. The color bar indicates x-coordinate values. The
second row shows the result mapped on a unit sphere. The blackdot in the center

indicates the north pole.

be obtained by directly measuring the area expansion rate with respect to a tem-

plate surfaceM 0 rather than the parameter spaceN . Consider a mapping from

the template M 0 to the cortical surfaceM . The Jocobian of this mapping will be

noted asJ0. The Jacobian J0 is expected to be invariant under di�erent parame-

terizations and only depends on the registration between the two surfaces. Letg0

be the metric tensors ofM 0. The area element ofM is
p

det g = det J0
p

det g0.

Then the parameterization invariant measure is obtained bysimply computing

the percentage change of area expansion with respect to the template as
p

det g �
p

det g0p
det g0

= det J0 � 1 (13)

giving a local area related measure invariant under parameterization. This quan-

tity is called the surface area dilatation and it is approximately the trace of the

Jacobian determinant [12]. Our methodology does not work for area-preserving

mappings since the Jacobian determinant is 1. For this singular case, we compute

the Jacobian determinant directly from the surface registration result.



Figure 8: Metric tensor estimation. The metric tensorsgij are estimated by analytically

di�erentiating the weighted-SPHARM representation. The l ocal area element
p

det g
measures the amount of area expansion and shrinking with respect to the parameter

spaceN .

4.2 Statistical Inference on Unit Sphere

For the i -th subject (1 � i � m), we denote the cortical surface asM i and its

parameterization invariant surface Jacobian determinant det J i (�; ' ). Then we

have the following general linear model (GLM):

det J i (�; ' ) = � 0 + � 1(�; ' ) � group i + � (�; ' );

where � is a mean zero Gaussian random �eld.group i is a categorical dummy

variable ( 0 for autism and 1 for control). We are interested in localizing any

group di�erences in the local area element map by testing if� 1(�; ' ) = 0 for

all ( �; ' ). At each �xed point ( �; ' ), the test statistic T(�; ' ) is a two sample

t-statistic with m � 2 degrees of freedom. Since we need to perform the test at

every points (�; ' ), this becomes a multiple comparison problem. We used the

random �eld theory [50] [51] [52] based thresholding to determine the statistical

signi�cance. The p-value for the one sided alternate hypothesis, i.e. � 1 > 0, is

given by

p(�; ' ) = P
h

sup
p2 S2

T(p) > t (�; ' )
i

�
2X

d=0

Rd(S2)� d(h); (14)

where Rd is the d-dimensional resels of S2 and � d is the d-dimensional Euler

characteristic (EC) density of a T-�eld with m � 2 degrees of freedom, and



Figure 9: Scale invariant area elements for randomly selected 6 control subjects (top)
and 6 autistic subjects (bottom). The color scale is thresholded at 1.5 (150%) for bet-

ter visualization. With respect to the parameter space N , there is up to 300% area
expansion.

t(�; ' ) is the observed two samplet-statistic at ( �; ' ). The resels are

R0(S2) = 2 ; R1(S2) = 0 ; R2(S2) =
� (S2)

FWHM 2 ;

where FWHM is the full width at half maximum of the weighted-S PHARM.

The mathematical formulas for the EC-densities are given in[51]. Although

there are some variations in de�ning resels and EC-density through the literature

[50] [51] [52], we have used the convention used in [52]. Figure 10 shows the

resulting corrected p-value map showing highly localized regions of abnormal

pattern in autistic subjects. The p-value map is projected on the average cortical

surface of 38 subjects used in the study. We have used the threshold h = � 5:19

corresponding to the corrected p-value of 0.05.

In computing the corrected p-value, it is necessary to compute the FWHM

but it is not trivial since there is no known close form expression for the FWHM

as a function of � . So the FWHM is computed numerically. The heat kernel can

be simpli�ed from equation (8), via the harmonic addition th eorem [3], as

K � (p; q) =
1X

l=0

2l + 1
4�

e� l (l+1) � P0
l (cos#); (15)

where # is the angle betweenp and q, i.e. cos# = p � q. By �xing p to be



Figure 10: The p-value map projected on the average weighted-SPHARM surface of 28
subjects. The p-value is thresholded at 0.05 using the random �eld theory. The focalized

red (blue) regions show more (less) surface area in the autistic subjects compared to the

controls.

the north pole, i.e. ' = 0 and p = (0 ; 0; 1) while varying q = (sin #; 0; cos#)

for 0 � # = cos� 1(p � q) � � , we can obtain the shape of heat kernel and

its corresponding FWHM numerically for each � (Figure 3). Table 1 shows

the FWHM for various bandwidths � . In previous di�usion and heat kernel

smoothing [13] [11], between 20 to 30 mm FWHM was used. The FWHM used

in this study is extremely small since the analysis is performed on a unit sphere

rather than a larger cortical surface. However, the comparable Resels can be

obtained by using the bandwidth of � = 0 :001 corresponding to the FWHM of

0.1257 mm.

5 Application to Autism Study

Three TeslaT1-weighted MR scans were acquired for 16 high functioning autistic

and 12 control right handed males. 16 autistic subjects werediagnosed via The

Autism Diagnostic Interview - Revised (ADI-R) used by a trai ned and certi�ed

psychologist at the Waisman center at the University of Wisconsin-Madison [17].

The average ages are 17:1 � 2:8 and 16:1 � 4:5 for control and autistic group

respectively. Image intensity nonuniformity was corrected using a nonparametric

nonuniform intensity normalization method [42] and then the image was spatially



normalized into the Montreal neurological institute (MNI) stereotaxic space using

a global a�ne transformation [14]. Afterwards, an automati c tissue-segmentation

algorithm based on a supervised arti�cial neural network classi�er was used to

classify each voxel into three classes: CSF, gray matter andwhite matter [32].

Triangular meshes for outer cortical surfaces were obtained by the anatomic

segmentation using the proximities (ASP) method [34], which is a variant of de-

formable surface algorithms. The algorithm generates 40962 vertices and 81920

triangles with the identical mesh topology for all subjects. The vertices indexed

identically on two cortical meshes will have a very close anatomic homology [13]

[30] [34]. The mesh starts as a sphere located outside the brain and is shrunk

to match the cortical boundary by minimizing a cost function that contains the

image, stretch, bending, and vertex-to-vertex proximity terms. The deforma-

tion in the MNI stereotaxic coordinate system combined with stretch constraints

that limit the movement of vertices, e�ectively enforces a relatively consistent

placement of points on the cortical surface. This provides the same spherical

parameterization at identically indexed vertices across di�erent cortical surfaces.

If we detect anatomical changes along the inner surface, it is unclear if the

changes are due to changes in gray or white matters, or possibly both. On the

other hand, changes in the outer cortical surface are the direct consequence of

changes in the gray matter. Choosing the outer surface representation reduces

the ambiguity of interpreting the statistical result. Ther efore, we have chosen

the outer surface over the inner surface for the study.

Once we obtained the outer cortical surfaces of 28 subjects,the weighted-

SPHARM representation were constructed. We have used the bandwidth � =

0:001 corresponding tok = 42 degrees. The corresponding FWHM is 0.1257

mm. The Fourier coe�cients were estimated using the IRF algorithm. The

corresponding surface positions across two di�erent weighted-SPHARM surfaces

are obtained by matching the harmonics of the same degree andorder via the

SPHARM-correspondence[9]. This is equivalent to obtaining the optimal dis-

placement, in the least squares sense, by taking the di�erence between the two

weighted-SPHARM representations.

Using the weighted-SPHARM representation, area elements and correspond-

ing surface Jacobian determinants are analytically computed, and compared



across subjects. The two samplet-statistic map is computed and its corrected p-

value map is projected on the average weighted-SPHARM surface of 28 subjects

(Figure 10). The average surface is constructed by averaging the Fourier coe�-

cients within the spherical harmonic of the same degree and order. The average

surface serves as an anatomical landmark for showing where group di�erences

are located.

We performed the random �eld theory based multiple comparison correction

on the computed t-statistic map. Figure 10 shows the regions of statistically

signi�cant group di�erence thresholded at � = 0 :05 level (corresponding to the

t-value of � 5.19). Although there are other regions of group di�erence,the left

inferior frontal gyrus show the most signi�cant group di�er ence.

6 Conclusions

In this paper, we presented the weighted-SPHARM representation and its appli-

cation in TBM. The weighted-SPHARM is used as a di�erentiabl e parametriza-

tion of the cortex. Based on a new iterative formulation, spatial derivatives of

the weighted-SPHARM are computed and used to derive metric tensors and an

area element. The ratio of area elements is then used to compute the surface

Jacobian determinant invariant under parameterization. The surface Jacobian

determinant is used in determining statistically signi�ca nt regions of abnormal

cortical tissue expansion and shrinking for autistic subjects.

The weighted-SPHARM is a very 
exible function estimation t echnique for

scalar and vector data de�ned on a unit sphere. We have shown that the

weighted-SPHARM is related to heat kernel smoothing. Sinceheat kernel smooth-

ing is related to isotropic heat di�usion [9] [13] [39], we were able to connect our

new representation to the isotropic heat di�usion. This argument can be further

extended. By choosing a kernel induced from a particular self-adjoint partial

di�erential equation (PDE), we can construct the least squares estimation of the

PDE without numerically solving it [9]. This should serve as a spring board

for investigating other PDE-based data smoothing techniques in the weighted-

SPHARM framework.
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